Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (186)

Search Parameters:
Keywords = photothermal synergistic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2722 KiB  
Article
Uniform Cu-Based Metal–Organic Framework Micrometer Cubes with Synergistically Enhanced Photodynamic/Photothermal Properties for Rapid Eradication of Multidrug-Resistant Bacteria
by Xiaomei Wang, Ting Zou, Weiqi Wang, Keqiang Xu and Handong Zhang
Pharmaceutics 2025, 17(8), 1018; https://doi.org/10.3390/pharmaceutics17081018 - 6 Aug 2025
Abstract
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to [...] Read more.
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to develop uniform Cu-based metal–organic framework micrometer cubes (Cu-BN) for efficient PDT/PTT synergy. Methods: Cu-BN cubes were synthesized via a one-step hydrothermal method using Cu(NO3)2 and 2-amino-p-benzoic acid. The material’s dual-mode responsiveness to visible light (420 nm) and near-infrared light (808 nm) was characterized through UV–Vis spectroscopy, photothermal profiling, and reactive oxygen species (ROS) generation assays. Antibacterial efficacy against multidrug-resistant Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was quantified via colony counting under dual-light irradiation. Results: Under synergistic 420 + 808 nm irradiation for 15 min, Cu-BN (200 μg/mL) achieved rapid eradication of multidrug-resistant E. coli (99.94%) and S. aureus (99.83%). The material reached 58.6 °C under dual-light exposure, significantly exceeding single-light performance. Photodynamic analysis confirmed a 78.7% singlet oxygen (1O2) conversion rate. This enhancement stems from PTT-induced membrane permeabilization accelerating ROS diffusion, while PDT-generated ROS sensitized bacteria to thermal damage. Conclusions: This integrated design enables spatiotemporal PDT/PTT synergy within a single Cu-BN system, establishing a new paradigm for rapid-acting, broad-spectrum non-antibiotic antimicrobials. The work provides critical insights for developing light-responsive biomaterials against drug-resistant infections. Full article
Show Figures

Graphical abstract

14 pages, 3147 KiB  
Article
Regulation of MXene Membranes with β-Lactoglobulin Nanofiber-Templated CuS Nanoparticles for Photothermal Antibacterial Effect
by Zhuang Liu, Chenxi Du, Xin Zhou and Gang Wei
Polymers 2025, 17(14), 1960; https://doi.org/10.3390/polym17141960 - 17 Jul 2025
Viewed by 294
Abstract
Developing advanced antimicrobial agents is critically imperative to address antibiotic-resistant infection crises. MXenes have emerged as a potential nanomedicine for antibacterial applications, but they suffer from suboptimal photothermal conversion efficiency and inherent cytotoxicity. Herein, we report the synthesis of MXene (Ti3C [...] Read more.
Developing advanced antimicrobial agents is critically imperative to address antibiotic-resistant infection crises. MXenes have emerged as a potential nanomedicine for antibacterial applications, but they suffer from suboptimal photothermal conversion efficiency and inherent cytotoxicity. Herein, we report the synthesis of MXene (Ti3C2)-based nanohybrids and hybrid membranes through firstly interfacial conjugation of self-assembled β-lactoglobulin nanofibers (β-LGNFs)-inspired copper sulfide nanoparticles (CuS NPs) onto MXene nanosheets, and subsequent vacuum filtration of the created β-LGNF-CuS/MXene nanohybrids. The constructed β-LGNF-CuS/MXene nanohybrids exhibit excellent photothermal conversion performances and satisfactory biocompatibility and minimal cytotoxicity toward mammalian cells, ascribing to the introduction of highly biocompatible β-LGNFs into the hybrid system. In addition, the fabricated β-LGNF-CuS/MXene hybrid membranes demonstrate high efficiency in antibacterial application through the synergistic photothermal and material-related antibacterial effects of both MXene and CuS NPs. Therefore, the ideas and findings shown in this study are useful for inspiring researchers to design and fabricate functional and biocompatible 2D material-based hybrid membranes for antimicrobial applications. Full article
Show Figures

Figure 1

15 pages, 2902 KiB  
Article
Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management
by Tianci Han and Yunjie Yin
Solids 2025, 6(3), 37; https://doi.org/10.3390/solids6030037 - 12 Jul 2025
Viewed by 311
Abstract
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO [...] Read more.
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO2), while the opposite side is treated with MXene and subsequently coated with polydimethylsiloxane (PDMS) to inhibit oxidation of the MXene. Through these surface modifications, a thermal management fabric based on PLA was successfully developed, capable of passively regulating temperature in response to environmental conditions and user requirements. The study discusses the optimal concentrations of TiO2 and MXene for the fabric, and characterizes and evaluates the functional surface of the PLA. Surface morphology analyses and tests indicate that the resulting functional PLA fabrics possess excellent ultraviolet (UV) resistance, favorable air permeability, high sunlight reflectivity on the TiO2-treated side, and superior photothermal conversion capabilities on the MXene-treated side. Furthermore, photothermal effect tests conducted under a light intensity of 1000 W/m2 reveal that the MXene-treated fabric exhibits a heating effect of approximately 25 °C, while the TiO2-treated side demonstrates a cooling effect exceeding 5 °C. This study developed PLA functional fabrics with heating and cooling capabilities. Full article
Show Figures

Graphical abstract

33 pages, 2309 KiB  
Review
Recent Progress of Nanomedicine for the Synergetic Treatment of Radiotherapy (RT) and Photothermal Treatment (PTT)
by Maria-Eleni Zachou, Ellas Spyratou, Nefeli Lagopati, Kalliopi Platoni and Efstathios P. Efstathopoulos
Cancers 2025, 17(14), 2295; https://doi.org/10.3390/cancers17142295 - 10 Jul 2025
Viewed by 480
Abstract
Nanotechnology has significantly advanced cancer therapy, particularly through the development of multifunctional nanoparticles (NPs) capable of acting as both therapeutic and diagnostic agents. This review focuses on the synergistic integration of radiotherapy (RT) and photothermal therapy (PTT) mediated by engineered NPs—a rapidly evolving [...] Read more.
Nanotechnology has significantly advanced cancer therapy, particularly through the development of multifunctional nanoparticles (NPs) capable of acting as both therapeutic and diagnostic agents. This review focuses on the synergistic integration of radiotherapy (RT) and photothermal therapy (PTT) mediated by engineered NPs—a rapidly evolving strategy that enhances tumor specificity, minimizes healthy tissue damage, and enables real-time imaging. By analyzing the recent literature, we highlight the dual role of NPs in amplifying radiation-induced DNA damage and converting near-infrared (NIR) light into localized thermal energy. The review classifies various metal-based and composite nanomaterials (e.g., Au, Pt, Bi, Cu, and Fe) and evaluates their performance in preclinical RT–PTT settings. We also discuss the physicochemical properties, targeting strategies, and theragnostic applications that contribute to treatment efficiency. Unlike conventional combinatorial therapies, NP-mediated RT–PTT enables high spatial–temporal control, immunogenic potential, and integration with multimodal imaging. We conclude with the current challenges, translational barriers, and outlooks for clinical implementation. This work provides a comprehensive, up-to-date synthesis of NP-assisted RT–PTT as a powerful approach within the emerging field of nano-oncology. Full article
(This article belongs to the Special Issue Nanomedicine’s Role in Oncology)
Show Figures

Figure 1

35 pages, 5960 KiB  
Review
The Role of Perylene Diimide Dyes as Cellular Imaging Agents and for Enhancing Phototherapy Outcomes
by Panangattukara Prabhakaran Praveen Kumar
Colorants 2025, 4(3), 22; https://doi.org/10.3390/colorants4030022 - 1 Jul 2025
Viewed by 464
Abstract
Recent advancements in phototherapy have underscored the need for effective cellular imaging agents that can enhance therapeutic efficacy and precision. Perylene diimide (PDI) dyes, known for their unique optical properties and biocompatibility, have emerged as promising candidates in this domain. This review paper [...] Read more.
Recent advancements in phototherapy have underscored the need for effective cellular imaging agents that can enhance therapeutic efficacy and precision. Perylene diimide (PDI) dyes, known for their unique optical properties and biocompatibility, have emerged as promising candidates in this domain. This review paper provides a comprehensive analysis of the potential applications of PDI dyes in cellular imaging, specifically within the context of phototherapies. We explore the synthesis of these dyes, their photophysical characteristics, and mechanisms of cellular uptake. Moreover, this review highlights recent studies that demonstrate the effectiveness of PDI dyes in the real-time imaging of cellular processes and their synergistic effects in photodynamic therapy (PDT) and photothermal therapy (PTT). By evaluating various experimental approaches and their outcomes, we aim to elucidate the advantages of employing PDI dyes in clinical settings. The findings of this review suggest that perylene diimide dyes are not only capable of enhancing imaging contrast but also optimizing the therapeutic response in targeted phototherapy applications. Ultimately, this paper advocates for further research into the integration of PDI dyes in clinical practice, emphasizing their potential to significantly improve patient outcomes in cancer and other diseases requiring photoactive treatment modalities. Full article
Show Figures

Figure 1

12 pages, 2064 KiB  
Article
All-Day Freshwater Harvesting Using Solar Auto-Tracking Assisted Selective Solar Absorption and Radiative Cooling
by Jing Luo, Haining Ji, Runteng Luo, Xiangkai Zheng and Tianjian Xiao
Materials 2025, 18(13), 2967; https://doi.org/10.3390/ma18132967 - 23 Jun 2025
Viewed by 392
Abstract
The shortage of freshwater resources has become the core bottleneck of global sustainable development. Traditional freshwater harvesting technologies are restricted by geographical conditions and environmental limitations, making them increasingly difficult to satisfy the growing water demand. In this study, based on the synergistic [...] Read more.
The shortage of freshwater resources has become the core bottleneck of global sustainable development. Traditional freshwater harvesting technologies are restricted by geographical conditions and environmental limitations, making them increasingly difficult to satisfy the growing water demand. In this study, based on the synergistic coupling mechanism of photothermal conversion and radiative cooling, a solar auto-tracking assisted selective solar absorber and radiative cooling all-weather freshwater harvesting device was innovatively developed. The prepared selective solar absorber achieved a high absorptivity of 0.91 in the solar spectrum (0.3–2.5 μm) and maintained a low emissivity of 0.12 in the mid-infrared range (2.5–20 μm), significantly enhancing the photothermal conversion efficiency. The radiative cooling film demonstrated an average cooling effect of 7.62 °C during typical daytime hours (12:00–13:00) and 7.03 °C at night (22:00–23:00), providing a stable low-temperature environment for water vapor condensation. The experimental results showed that the experimental group equipped with the solar auto-tracking system collected 0.79 kg m−2 of freshwater in 24 h, representing a 23.4% increase compared to the control group without the solar auto-tracking system. By combining theoretical analysis with experimental validation, this study presents technical and economic advantages for emergency water and island freshwater supply, offering an innovative solution to mitigate the global freshwater crisis. Full article
(This article belongs to the Special Issue Advanced Materials for Solar Energy Utilization)
Show Figures

Graphical abstract

21 pages, 8141 KiB  
Article
Octahedral Fe3O4 Nanozymes Penetrate and Remove Biofilms on Implants via Photomagnetic Response
by Xingpu Yin, Bo Zhao, Lu Chen, Xuan Di, Baoe Li, Hongshui Wang, Donghui Wang and Chunyong Liang
Coatings 2025, 15(6), 728; https://doi.org/10.3390/coatings15060728 - 18 Jun 2025
Viewed by 460
Abstract
Dental implant papilla (DIP) is susceptible to bacterial adhesion and biofilm formation, and oral pathogenic biofilms can cause persistent oral infections. Enrichment of bacterial biofilms on implants can lead to soft tissue irritation and adjacent bone resorption, severely compromising dental health and potentially [...] Read more.
Dental implant papilla (DIP) is susceptible to bacterial adhesion and biofilm formation, and oral pathogenic biofilms can cause persistent oral infections. Enrichment of bacterial biofilms on implants can lead to soft tissue irritation and adjacent bone resorption, severely compromising dental health and potentially leading to periodontitis, implant loss and costly follow-up care. Nanozymes (NZs) are recently used in biofilm removal as they can induce the production of reactive oxygen species (ROS), which can kill bacteria. However, the short lifespan of ROS limits their diffusion distance, and affects their therapeutic efficacy. In this study, we prepared Fe3O4 nanoparticles (NZs) with different morphologies: flower-like (F-Fe3O4), hollow spherical (M-Fe3O4), octahedral (O-Fe3O4), and conventional nanoparticles (N-Fe3O4). The ferromagnetic properties of Fe3O4 NZs allow them to move and penetrate the biofilm under the action of a magnetic field. The saturation magnetic intensities of the four samples were as follows: F-Fe3O4 (23.1 emu g−1), M-Fe3O4 (73.34 emu g−1), O-Fe3O4 (96.06 emu g−1), and N-Fe3O4 (52.15 emu g−1). The synergistic combination of photothermal action and catalytic sterilization can effectively remove the biofilm. In addition, the prepared Fe3O4 nanozymes were able to maintain high biological activity on the implant surface with some osteogenic effect. Full article
(This article belongs to the Special Issue Bioactive Coatings on Elements Used in the Oral Cavity Environment)
Show Figures

Graphical abstract

42 pages, 2266 KiB  
Review
Innovative Approaches in Cancer Treatment: Emphasizing the Role of Nanomaterials in Tyrosine Kinase Inhibition
by Antónia Kurillová, Libor Kvítek and Aleš Panáček
Pharmaceutics 2025, 17(6), 783; https://doi.org/10.3390/pharmaceutics17060783 - 16 Jun 2025
Viewed by 845
Abstract
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge [...] Read more.
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge technologies, structure-based drug design, and personalized medicine, is critical for developing effective therapies, specifically anticancer treatments. Background/Objectives: One of the key drivers of cancer at the cellular level is the abnormal activity of protein enzymes, specifically serine, threonine, or tyrosine residues, through a process known as phosphorylation. While tyrosine kinase-mediated phosphorylation constitutes a minor fraction of total cellular phosphorylation, its dysregulation is critically linked to carcinogenesis and tumor progression. Methods: Small-molecule inhibitors, such as imatinib or erlotinib, are designed to halt this process, restoring cellular equilibrium and offering targeted therapeutic approaches. However, challenges persist, including frequent drug resistance and severe side effects associated with these therapies. Nanomedicine offers a transformative potential to overcome these limitations. Results: By leveraging the unique properties of nanomaterials, it is possible to achieve precise drug delivery, enhance accumulation at target sites, and improve therapeutic efficacy. Examples include nanoparticle-based delivery systems for TKIs and the combination of nanomaterials with photothermal or photodynamic therapies to enhance treatment effectiveness. Combining nanomedicine with traditional treatments holds promise and perspective for synergistic and more effective cancer management. Conclusions: This review delves into recent advances in understanding tyrosine kinase activity, the mechanisms of their inhibition, and the innovative integration of nanomedicine to revolutionize cancer treatment strategies. Full article
Show Figures

Graphical abstract

33 pages, 4970 KiB  
Review
A Review on the Recent Advancements of Polymer-Modified Mesoporous Silica Nanoparticles for Drug Delivery Under Stimuli-Trigger
by Madhappan Santhamoorthy, Perumal Asaithambi, Vanaraj Ramkumar, Natarajan Elangovan, Ilaiyaraja Perumal and Seong Cheol Kim
Polymers 2025, 17(12), 1640; https://doi.org/10.3390/polym17121640 - 13 Jun 2025
Cited by 1 | Viewed by 1276
Abstract
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly [...] Read more.
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly under stimuli-responsive settings. Polymer-modified MSNs provide increased stability, longer circulation times, and, most crucially, the capacity to respond to diverse internal (pH, redox potential, enzymes, and temperature) and external (light, magnetic field, and ultrasonic) stimuli. These systems allow for the site-specific, on-demand release of therapeutic molecules, increasing treatment effectiveness while decreasing off-target effects. This review presents a comprehensive analysis of recent advancements in the development and application of polymer-functionalized MSNs for stimuli-triggered drug delivery. Key polymeric modifications, including thermoresponsive, pH-sensitive, redox-responsive, and enzyme-degradable systems, are discussed in terms of their design strategies and therapeutic outcomes. The synergistic use of dual or multiple stimuli-responsive polymers is also highlighted as a promising avenue to enhance precision and control in complex biological environments. Moreover, the integration of targeting ligands and stealth polymers such as PEG further enables selective tumor targeting and immune evasion, broadening the potential clinical applications of these nanocarriers. Recent progress in stimuli-triggered MSNs for combination therapies such as chemo-photothermal and chemo-photodynamic therapy is also covered, emphasizing how polymer modifications enhance responsiveness and therapeutic synergy. Finally, the review discusses current challenges, including scalability, biosafety, and regulatory considerations, and provides perspectives on future directions to bridge the gap between laboratory research and clinical translation. Full article
Show Figures

Figure 1

13 pages, 3578 KiB  
Article
Prussian Blue Analogue-Derived p-n Junction Heterostructure for Photothermal Reverse Water–Gas Shift: Enhanced Activity and Selectivity via Synergistic Effects
by Shaorui Jia, Xinbo Zhang, Junhong Ma, Chaoyun Ma, Xue Yu and Yuanhao Wang
Nanomaterials 2025, 15(12), 904; https://doi.org/10.3390/nano15120904 - 11 Jun 2025
Viewed by 355
Abstract
Photothermal catalytic CO2 conversion into chemicals that provide added value represents a promising strategy for sustainable energy utilization, yet the development of highly efficient, stable, and selective catalysts remains a significant challenge. Herein, we report a rationally designed p-n junction heterostructure, T-CZ-PBA [...] Read more.
Photothermal catalytic CO2 conversion into chemicals that provide added value represents a promising strategy for sustainable energy utilization, yet the development of highly efficient, stable, and selective catalysts remains a significant challenge. Herein, we report a rationally designed p-n junction heterostructure, T-CZ-PBA (SC), synthesized via controlled pyrolysis of high crystalline Prussian blue analogues (PBA) precursor, which integrates CuCo alloy, ZnO, N-doped carbon (NC), and ZnII-CoIIIPBA into a synergistic architecture. This unique configuration offers dual functional advantages: (1) the abundant heterointerfaces provide highly active sites for enhanced CO2 and H2 adsorption/activation, and (2) the engineered energy band structure optimizes charge separation and transport efficiency. The optimized T-C3Z1-PBA (SC) achieves exceptional photothermal catalytic performance, demonstrating a CO2 conversion rate of 126.0 mmol gcat⁻1 h⁻1 with 98.8% CO selectivity under 350 °C light irradiation, while maintaining robust stability over 50 h of continuous operation. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) investigations have identified COOH* as a critical reaction intermediate and elucidated that photoexcitation accelerates charge carrier dynamics, thereby substantially promoting the conversion of key intermediates (CO2* and CO*) and overall reaction kinetics. This research provides insights for engineering high-performance heterostructured catalysts by controlling interfacial and electronic structures. Full article
Show Figures

Graphical abstract

20 pages, 6956 KiB  
Article
Chiral Growth of Gold Horns on Polyhedrons for SERS Identification of Enantiomers and Polarized Light-Induced Photothermal Sterilization
by Bowen Shang and Guijian Guan
Materials 2025, 18(11), 2627; https://doi.org/10.3390/ma18112627 - 4 Jun 2025
Viewed by 542
Abstract
The integration of chirality into nanomaterials holds significant potential for improving molecular recognition and biomedical technologies. In this work, we fabricated novel chiral horned gold nanostructures (HNS) by controlling the concentration of chiral ligands L-/D-cysteine (Cys). The unique three-dimensional morphology with horns-rotational arrangement [...] Read more.
The integration of chirality into nanomaterials holds significant potential for improving molecular recognition and biomedical technologies. In this work, we fabricated novel chiral horned gold nanostructures (HNS) by controlling the concentration of chiral ligands L-/D-cysteine (Cys). The unique three-dimensional morphology with horns-rotational arrangement enables synergistic optimization of chiral optical responses and surface-enhanced Raman scattering (SERS) performance. The proposed chiral HNSs can be used to recognize amino acid enantiomers, in which homochiral amino acid has distinct affinities to the chiral HNSs of homogeneous handedness. The 4-mercaptobenzoic acid (4-MPBA)-modified D-HNS demonstrates significantly enhanced targeting affinity for D-amino acids in the Escherichia coli (E. coli) cell wall, enabling successful amplification of SERS signals and advancing bacterial detection methodologies. By demonstrating the rotation-selective interaction between chiral HNSs and circularly polarized light (CPL), D-HNS exhibits excellent photothermal conversion efficiency under right-handed circularly polarized light (RCP) irradiation. This enables the synergistic combination of targeted physical disruption and photothermal sterilization, which leads to efficient eradication of E. coli. The D-HNS hydrogel composite system further expands the practical application of photothermal sterilization. Altogether, chiral HNSs have achieved SERS detection of bacteria and efficient polarization photothermal sterilization, which helps further develop applications based on chiral nanomaterials. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

24 pages, 1538 KiB  
Review
Multifunctional Hydrogels for Advanced Cancer Treatment: Diagnostic Imaging and Therapeutic Modalities
by Kyung Kwan Lee, Kwangmo Go, Eonjin Lee, Hongki Kim, Seonwook Kim, Ji-Hyun Kim, Min Suk Chae and Jin-Oh Jeong
Gels 2025, 11(6), 426; https://doi.org/10.3390/gels11060426 - 1 Jun 2025
Cited by 2 | Viewed by 1303
Abstract
Multifunctional hydrogels represent an emerging technological advancement in cancer therapeutics, integrating diagnostic imaging capabilities with therapeutic modalities into comprehensive, multifunctional systems. These hydrogels exhibit exceptional biocompatibility, biodegradability, high water retention capacity, and tunable mechanical properties, enabling precise drug delivery while minimizing systemic side [...] Read more.
Multifunctional hydrogels represent an emerging technological advancement in cancer therapeutics, integrating diagnostic imaging capabilities with therapeutic modalities into comprehensive, multifunctional systems. These hydrogels exhibit exceptional biocompatibility, biodegradability, high water retention capacity, and tunable mechanical properties, enabling precise drug delivery while minimizing systemic side effects. Recent innovations in stimuli-responsive components facilitate intelligent, controlled drug release mechanisms triggered by various stimuli, including changes in pH, temperature, magnetic fields, and near-infrared irradiation. Incorporating diagnostic imaging agents, such as magnetic nanoparticles, fluorescent dyes, and radiolabeled isotopes, substantially improves tumor visualization and real-time therapeutic monitoring. Multifunctional hydrogels effectively integrate chemotherapy, photothermal therapy, photodynamic therapy, immunotherapy, and their synergistic combinations, demonstrating superior therapeutic outcomes compared to conventional methods. Particularly, injectable and in situ-forming hydrogels provide sustained local drug delivery postoperatively, effectively reducing tumor recurrence. However, challenges persist, including initial burst release, mechanical instability, regulatory barriers, and scalability concerns. Current research emphasizes advanced nanocomposite formulations, biofunctionalization strategies, and innovative manufacturing technologies like 3D bioprinting to facilitate clinical translation. This review comprehensively summarizes recent advancements, clinical applications, and future perspectives of multifunctional hydrogel systems for enhanced cancer treatment, underscoring their potential to revolutionize personalized oncology. Full article
Show Figures

Figure 1

14 pages, 2354 KiB  
Article
Design of a Superhydrophobic Photothermal Shape-Memory Material Based on Carbon-Nanotubes-Doped Resin for Anti-Icing/De-Icing Applications
by Yingcheng Zhao, Pei Tian, Xinlin Li, Di Gai and Wei Tong
Materials 2025, 18(11), 2540; https://doi.org/10.3390/ma18112540 - 28 May 2025
Viewed by 474
Abstract
Icing on power lines and wings can cause serious economic damage and safety hazards. While superhydrophobic materials show promise for anti-icing applications, their passive anti-icing mechanisms require external energy activation, highlighting the need for the development of active de-icing materials with energy-to-heat conversion [...] Read more.
Icing on power lines and wings can cause serious economic damage and safety hazards. While superhydrophobic materials show promise for anti-icing applications, their passive anti-icing mechanisms require external energy activation, highlighting the need for the development of active de-icing materials with energy-to-heat conversion capabilities. Here, we developed three photothermal superhydrophobic shape-memory polymers with anti-icing performance (PSSPs), with 3%, 5%, and 7% CNT doping ratios, through a two-step process: resin preparation and laser-processing modification. The results showed that all samples presented good superhydrophobic properties. In addition, the tested materials demonstrated good shape-memory performance (recovery rates were close to 100%). They also showed excellent de-icing performance. Owing to the simplicity of the fabrication process, the material is suitable for mass production. The synergistic interplay between superhydrophobicity and photothermal activation endows the material with dual-functional icephobic performance, demonstrating practical applicability in industrial cryogenic environments. Full article
Show Figures

Figure 1

10 pages, 2488 KiB  
Article
Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black g-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein
by Xiyuan Gao, Pengnian Shan, Weilong Shi and Feng Guo
Catalysts 2025, 15(5), 504; https://doi.org/10.3390/catal15050504 - 21 May 2025
Cited by 1 | Viewed by 545
Abstract
The development of photothermal-assisted photocatalytic systems with broad-spectrum solar utilization and high charge separation efficiency remains a critical challenge for antibiotic degradation. Herein, we report novel black g-C3N4 (BCN) materials synthesized via a one-step thermal copolymerization strategy using C/N precursors [...] Read more.
The development of photothermal-assisted photocatalytic systems with broad-spectrum solar utilization and high charge separation efficiency remains a critical challenge for antibiotic degradation. Herein, we report novel black g-C3N4 (BCN) materials synthesized via a one-step thermal copolymerization strategy using C/N precursors and tetrachlorofluorescein. After the introduction of tetrachlorofluorescein, the color of the sample changes, which gives BCN enhanced light absorption and a significant photothermal effect for poorly heating-assisted photocatalysis. The synergistic coupling of photothermal and photocatalytic processes enabled the optimal BCN-U sample to achieve exceptional degradation efficiency (89% within 120 min) for a typical antibiotic (e.g., tetracycline) under an LED lamp as the visible light source, outperforming conventional yellow g-C3N4 (YCN-U) by a factor of 1.37. Mechanistic studies revealed that the photothermal effect facilitates carrier separation via thermal-driven electron excitation while accelerating reactive oxygen species (•OH and •O2) generation. The synergistic interplay between photocatalysis and photothermal effects, which improved mass transfer, ensures robust stability, which provides new insights into designing dual-functional carbon nitride-based materials for sustainable environmental remediation. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Pollutants in Wastewater)
Show Figures

Figure 1

33 pages, 10641 KiB  
Review
Recent Advances in Nano-Drug Delivery Strategies for Chalcogen–Based Therapeutic Agents in Cancer Phototherapy
by Subhrakant Jena and Abderrazzak Douhal
Int. J. Mol. Sci. 2025, 26(10), 4819; https://doi.org/10.3390/ijms26104819 - 17 May 2025
Viewed by 821
Abstract
Chalcogen–containing therapeutic agents (TAs), which include sulfur (S), selenium (Se), and tellurium (Te) atoms, have recently emerged as a promising class of photosensitizers (PSs) and photothermal agents (PTAs) for cancer phototherapy. The incorporation of heavier chalcogens into organic chromophores leads to visible–to–near–infrared (VIS–NIR) [...] Read more.
Chalcogen–containing therapeutic agents (TAs), which include sulfur (S), selenium (Se), and tellurium (Te) atoms, have recently emerged as a promising class of photosensitizers (PSs) and photothermal agents (PTAs) for cancer phototherapy. The incorporation of heavier chalcogens into organic chromophores leads to visible–to–near–infrared (VIS–NIR) light absorption, efficient triplet harvesting, and adequate heat and energy transfer efficiency, all of which are paramount for photodynamic therapy (PDT) and photothermal therapy (PTT). However, chalcogen–based PSs/PTAs suffer from photostability, bioavailability, and targeted delivery issues, which minimize their PDT/PTT performances. Nevertheless, significant progress in the rational design of nanoencapsulation strategies has been achieved to overcome the challenges of chalcogen–based TAs for effective phototherapeutic cancer treatment. This review highlights the recent advances (within the last five years) in nano-drug delivery approaches adapted for chalcogen–substituted PSs/PTAs for PDT, PTT, or synergistic PDT/PTT, integrating imaging and treatment. The PSs/PTAs described in this review are classified into three classes: (i) sulfur, (ii) selenium, and (iii) tellurium–containing TAs used in phototherapy applications. This review offers a comprehensive perspective on the design of chalcogen–substituted photosensitizers (PSs) and photothermal agents (PTAs), covering spectroscopic and computational characterization, nanoformulation strategies, and their roles in enhancing reactive oxygen species (ROS) generation and photothermal conversion efficiency for improved in vitro and in vivo performance. We hope this work will encourage further research into nanotechnological strategies designed to enhance the phototherapeutic efficacy of chalcogen–containing therapeutic agents. Full article
Show Figures

Graphical abstract

Back to TopTop