Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = photoelectric microscope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5026 KiB  
Article
Insulation Ability and Morphological Effect of ZrO2 Spacer Layer in Carbon-Based Multiporous Layered Electrode Perovskite Solar Cells
by Takaya Shioki, Naonari Izumoto, Fumitaka Iwakura, Ryuki Tsuji and Seigo Ito
Processes 2025, 13(7), 2264; https://doi.org/10.3390/pr13072264 - 16 Jul 2025
Viewed by 360
Abstract
Fully printable carbon-based multiporous layered electrode perovskite solar cells (MPLE−PSCs) are close to being commercialized due to their excellent stability, their ability to easily be scaled up, and their amenability to mass production via non-vacuum fabrication processes. To improve their efficiency, it is [...] Read more.
Fully printable carbon-based multiporous layered electrode perovskite solar cells (MPLE−PSCs) are close to being commercialized due to their excellent stability, their ability to easily be scaled up, and their amenability to mass production via non-vacuum fabrication processes. To improve their efficiency, it is important that detailed studies of the morphologies of mesoporous electrodes be carried out. In this study, we prepared five types of ZrO2 spacer layers for MPLE−PSCs, and the morphology of ZrO2 and device performance were evaluated using a scanning electron microscope, nitrogen adsorption/desorption measurements, electrode resistance measurements, UV-visible light reflectance measurements, and current density–voltage measurements. The results reveal that the adequate specific surface area and pore size distribution of mesoporous ZrO2 provided high insulation ability when used as spacers between electrodes and light absorbance, resulting in a 10.92% photoelectric conversion efficiency with a 23.22 mA cm−2 short-circuit current density. This information can serve as a guideline for designing morphologies useful for producing high-efficiency devices. Full article
(This article belongs to the Special Issue Sustainability of Perovskite Solar Cells)
Show Figures

Figure 1

13 pages, 8814 KiB  
Article
Structural, Optical and Electrical Properties of the Flexible, Asymmetric TiO2/Cu/Ag/ZnS and ZnS/Cu/Ag/TiO2 Films Deposited via Magnetron Sputtering
by Qingping Li, Kai Tao, Jiayi Zhang, Yazhe Ren and Zhiyong Liu
Coatings 2025, 15(6), 650; https://doi.org/10.3390/coatings15060650 - 28 May 2025
Viewed by 407
Abstract
The structural, optical and electrical properties of the flexible, asymmetric TiO2/Cu/Ag/ZnS and ZnS/Cu/Ag/TiO2 transparent conductive films (TCFs) were studied. The multilayered TCFs were magnetron sputtered onto the flexible PET substrate layer-wise, with TiO2, ZnS, Cu and Ag targets. [...] Read more.
The structural, optical and electrical properties of the flexible, asymmetric TiO2/Cu/Ag/ZnS and ZnS/Cu/Ag/TiO2 transparent conductive films (TCFs) were studied. The multilayered TCFs were magnetron sputtered onto the flexible PET substrate layer-wise, with TiO2, ZnS, Cu and Ag targets. The atomic force microscope, scanning electronic microscope, X-ray diffractometer, ultraviolet-visible spectrophotometer and four-probe tester were utilized to characterize the samples. The photoelectric property of the multilayers varies with the adjustment in structural parameters. The ZnS/Cu/Ag/TiO2 samples demonstrate a more uniform surface morphology and better optical and electrical properties than the TiO2/Cu/Ag/ZnS counterparts. The optimal sheet resistance and average transmittance of the ZnS/Cu/Ag/TiO2 films are 5.56 Ω/sq and 88.46% in the visible spectrum, with the corresponding figure of merit reaching 52.76 × 10−3 Ω−1. The bottom ZnS layer reveals superior percolation function for the bimetallic layer, forming with good continuity and homogeneity, although the original surface roughness is higher than that of TiO2. The top TiO2 layer demonstrates a smooth morphology and dense structure, beneficial to the high transparency and stability of the multilayer. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

16 pages, 9027 KiB  
Article
The Application of Ultrasound Pre-Treatment in Low-Temperature Synthesis of Zinc Oxide Nanorods
by Anna Drabczyk, Magda Ciężkowska, Katarzyna Kałahurska, Adam Zięba, Wojciech Bulowski, Katarzyna Bucka, Patryk Kasza, Krzysztof Zbroja, Grzegorz Putynkowski and Robert P. Socha
Materials 2024, 17(20), 4980; https://doi.org/10.3390/ma17204980 - 11 Oct 2024
Viewed by 1718
Abstract
Zinc oxide, due to its unique physicochemical properties, including dual piezoelectric and semiconductive ones, demonstrates a high application potential in various fields, with a particular focus on nanotechnology. Among ZnO nanoforms, nanorods are gaining particular interest. Due to their ability to efficiently transport [...] Read more.
Zinc oxide, due to its unique physicochemical properties, including dual piezoelectric and semiconductive ones, demonstrates a high application potential in various fields, with a particular focus on nanotechnology. Among ZnO nanoforms, nanorods are gaining particular interest. Due to their ability to efficiently transport charge carriers and photoelectric properties, they demonstrate significant potential in energy storage and conversion, as well as photovoltaics. They can be prepared via various methods; however, most of them require large energy inputs, long reaction times, or high-cost equipment. Hence, new methods of ZnO nanorod fabrication are currently being sought out. In this paper, an ultrasound-supported synthesis of ZnO nanorods with zinc acetate as a zinc precursor has been described. The fabrication of nanorods included the treatment of the precursor solution with ultrasounds, wherein various sonication times were employed to verify the impact of the sonication process on the effectiveness of ZnO nanorod synthesis and the sizes of the obtained nanostructures. The morphology of the obtained ZnO nanorods was imaged via a scanning electron microscope (SEM) analysis, while the particle size distribution within the precursor suspensions was determined by means of dynamic light scattering (DLS). Additionally, the dynamic viscosity of precursor suspensions was also verified. It was demonstrated that ultrasounds positively affect ZnO nanorod synthesis, yielding longer nanostructures through even reactant distribution. Longer nanorods were obtained as a result of short sonication (1–3 min), wherein prolonged treatment with ultrasounds (4–5 min) resulted in obtaining shorter nanorods. Importantly, the application of ultrasounds increased particle homogeneity within the precursor suspension by disintegrating particle agglomerates. Moreover, it was demonstrated that ultrasonic treatment reduces the dynamic viscosity of precursor suspension, facilitating faster particle diffusion and promoting a more uniform growth of longer ZnO nanorods. Hence, it can be concluded that ultrasounds constitute a promising solution in obtaining homogeneous ZnO nanorods, which is in line with the principles of green chemistry. Full article
(This article belongs to the Special Issue Development of Advanced Materials for Energy Conversion)
Show Figures

Graphical abstract

11 pages, 4530 KiB  
Article
Investigation of Persistent Photoconductivity of Gallium Nitride Semiconductor and Differentiation of Primary Neural Stem Cells
by Yu Meng, Xiaowei Du, Shang Zhou, Jiangting Li, Rongrong Feng, Huaiwei Zhang, Qianhui Xu, Weidong Zhao, Zheng Liu and Haijian Zhong
Molecules 2024, 29(18), 4439; https://doi.org/10.3390/molecules29184439 - 19 Sep 2024
Viewed by 1724
Abstract
A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, [...] Read more.
A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, it was found that the photogenerated free charge carriers of the GaN substrate, as an exogenous stimulus, served to promote neural stem cells (NSCs) to differentiate into neurons. This was observed through the systematic investigation of the effect of the persistent photoconductivity (PPC) of GaN on the differentiation of primary NSCs from the embryonic rat cerebral cortex. NSCs were directly cultured on the GaN surface with and without ultraviolet (UV) irradiation, with a control sample consisting of tissue culture polystyrene (TCPS) in the presence of fetal bovine serum (FBS) medium. Through optical microscopy, the morphology showed a greater number of neurons with the branching structures of axons and dendrites on GaN with UV irradiation. The immunocytochemical results demonstrated that GaN with UV irradiation could promote the NSCs to differentiate into neurons. Western blot analysis showed that GaN with UV irradiation significantly upregulated the expression of two neuron-related markers, βIII-tubulin (Tuj-1) and microtubule-associated protein 2 (MAP-2), suggesting that neurite formation and the proliferation of NSCs during differentiation were enhanced by GaN with UV irradiation. Finally, the results of the Kelvin probe force microscope (KPFM) experiments showed that the NSCs cultured on GaN with UV irradiation displayed about 50 mV higher potential than those cultured on GaN without irradiation. The increase in cell membrane potential may have been due to the larger number of photogenerated free charges on the GaN surface with UV irradiation. These results could benefit topical research and the application of GaN as a biomedical material integrated into neural interface systems or other bioelectronic devices. Full article
Show Figures

Graphical abstract

21 pages, 5975 KiB  
Article
High-Precision Measurement of Microscales Based on Optoelectronics and Image Integration Method
by Yanlong Zhu, Yinbao Cheng, Hongtang Gao, Shuanghua Sun, Xudong Zhang, Liang Xue, Jiangwen Tang and Yingqi Tang
Micromachines 2024, 15(9), 1162; https://doi.org/10.3390/mi15091162 - 17 Sep 2024
Cited by 1 | Viewed by 1240
Abstract
Currently, there are various types of microscales and the conventional line detection system usually has only one detection method, which is difficult to adapt to the diverse calibration needs of microscales. This article investigates the high-precision measurement method of a microscale based on [...] Read more.
Currently, there are various types of microscales and the conventional line detection system usually has only one detection method, which is difficult to adapt to the diverse calibration needs of microscales. This article investigates the high-precision measurement method of a microscale based on optoelectronics and the image integration method to solve the diversified calibration needs of microscales. The automatic measurement and processing system integrates two methods: the photoelectric signal measurement method and the photoelectric image measurement method. This article studies the smooth motion method based on ordinary linear guides, investigates the method of reducing the cosine error of a small-range interference length measurement, proposes an image-based line positioning method, and studies the edge and center recognition algorithms of the line. According to the experimental data, the system’s measurement accuracy was analyzed using the photoelectric signal measurement method to measure the 1 mm microscale, the maximum difference from the reference value was 0.105 μm, the standard uncertainty was 0.068 μm, and the absolute value of normalized error was less than 1. The accuracy of the image measurement method to measure the 1 mm microscale was consistent with that of the photoelectric signal method. The results show good consistency in the measurement results between the two methods of the integrated measurement system. The photoelectric signal method has the technical characteristics of high measurement efficiency and high accuracy, while the pixel-based measurement of the image method has two-dimensional measurement characteristics, which can realize measurements that cannot be realized by the photoelectric signal method; therefore, the measurement system of optoelectronics and image integration is characterized by high precision and a wide range of measurement adaptations. Full article
(This article belongs to the Special Issue Precision Optical Manufacturing and Processing)
Show Figures

Figure 1

14 pages, 3649 KiB  
Article
A Rapid Nanofocusing Method for a Deep-Sea Gene Sequencing Microscope Based on Critical Illumination
by Ming Gao, Fengfeng Shu, Wenchao Zhou, Huan Li, Yihui Wu, Yue Wang, Shixun Zhao and Zihan Song
Sensors 2024, 24(15), 5010; https://doi.org/10.3390/s24155010 - 2 Aug 2024
Viewed by 1473
Abstract
In the deep-sea environment, the volume available for an in-situ gene sequencer is severely limited. In addition, optical imaging systems are subject to real-time, large-scale defocusing problems caused by ambient temperature fluctuations and vibrational perturbations. To address these challenges, we propose an edge [...] Read more.
In the deep-sea environment, the volume available for an in-situ gene sequencer is severely limited. In addition, optical imaging systems are subject to real-time, large-scale defocusing problems caused by ambient temperature fluctuations and vibrational perturbations. To address these challenges, we propose an edge detection algorithm for defocused images based on grayscale gradients and establish a defocus state detection model with nanometer resolution capabilities by relying on the inherent critical illumination light field. The model has been applied to a prototype deep-sea gene sequencing microscope with a 20× objective. It has demonstrated the ability to focus within a dynamic range of ±40 μm with an accuracy of 200 nm by a single iteration within 160 ms. By increasing the number of iterations and exposures, the focusing accuracy can be refined to 78 nm within a dynamic range of ±100 μm within 1.2 s. Notably, unlike conventional photoelectric hill-climbing, this method requires no additional hardware and meets the wide dynamic range, speed, and high-accuracy autofocusing requirements of deep-sea gene sequencing in a compact form factor. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 3037 KiB  
Article
Peptide-Coated Bacteriorhodopsin-Based Photoelectric Biosensor for Detecting Rheumatoid Arthritis
by Hsiu-Mei Chen, Yi-Hsuan Tsai, Chien-Yi Hsu, Yong-Yi Wang, Cheng-En Hsieh, Jin-Hua Chen, Yu-Sheng Chang and Ching-Yu Lin
Biosensors 2023, 13(10), 929; https://doi.org/10.3390/bios13100929 - 16 Oct 2023
Cited by 5 | Viewed by 5371
Abstract
An effective early diagnosis is important for rheumatoid arthritis (RA) management. This study reveals a novel RA detection method using bacteriorhodopsin as a photoelectric transducer, a light-driven proton pump in purple membranes (PMs). It was devised by covalently conjugating a PM monolayer-coated electrode [...] Read more.
An effective early diagnosis is important for rheumatoid arthritis (RA) management. This study reveals a novel RA detection method using bacteriorhodopsin as a photoelectric transducer, a light-driven proton pump in purple membranes (PMs). It was devised by covalently conjugating a PM monolayer-coated electrode with a citrullinated-inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3)542–556 peptide that recognizes the serum RA-associated autoantibodies. The direct serum coating decreased the photocurrents in the biosensor, with the reduction in the photocurrent caused by coating with an RA-patient serum that is significantly larger than that with a healthy-control serum (38.1% vs. 20.2%). The difference in the reduction in the photocurrent between those two serum groups widened after the serum-coated biosensor was further labeled with gold nanoparticle (AuNP)-conjugated anti-IgA (anti-IgA-AuNP) (53.6% vs. 30.6%). Both atomic force microscopic (AFM) and Raman analyses confirmed the sequential peptide, serum, and anti-IgA-AuNP coatings on the PM-coated substrates. The reductions in the photocurrent measured in both the serum and anti-IgA-AuNPs coating steps correlated well with the results using commercial enzyme-linked immunosorbent assay kits (Spearman rho = 0.805 and 0.787, respectively), with both a sensitivity and specificity close to 100% in both steps. It was shown that an RA diagnosis can be performed in either a single- or two-step mode using the developed biosensor. Full article
(This article belongs to the Special Issue Immunoassays and Biosensing)
Show Figures

Figure 1

12 pages, 2182 KiB  
Article
Fabrication of β-Ga2O3 Nanotubes via Sacrificial GaSb-Nanowire Templates
by Lei Shangguan, Long-Bing He, Sheng-Pan Dong, Yu-Tian Gao, Qian Sun, Jiong-Hao Zhu, Hua Hong, Chao Zhu, Zai-Xing Yang and Li-Tao Sun
Nanomaterials 2023, 13(20), 2756; https://doi.org/10.3390/nano13202756 - 13 Oct 2023
Cited by 3 | Viewed by 2163
Abstract
β-Ga2O3 nanostructures are attractive wide-band-gap semiconductor materials as they exhibit promising photoelectric properties and potential applications. Despite the extensive efforts on β-Ga2O3 nanowires, investigations into β-Ga2O3 nanotubes are rare since the [...] Read more.
β-Ga2O3 nanostructures are attractive wide-band-gap semiconductor materials as they exhibit promising photoelectric properties and potential applications. Despite the extensive efforts on β-Ga2O3 nanowires, investigations into β-Ga2O3 nanotubes are rare since the tubular structures are hard to synthesize. In this paper, we report a facile method for fabricating β-Ga2O3 nanotubes using pre-synthesized GaSb nanowires as sacrificial templates. Through a two-step heating-treatment strategy, the GaSb nanowires are partially oxidized to form β-Ga2O3 shells, and then, the residual inner parts are removed subsequently in vacuum conditions, yielding delicate hollow β-Ga2O3 nanotubes. The length, diameter, and thickness of the nanotubes can be customized by using different GaSb nanowires and heating parameters. In situ transmission electron microscopic heating experiments are performed to reveal the transformation dynamics of the β-Ga2O3 nanotubes, while the Kirkendall effect and the sublimation process are found to be critical. Moreover, photoelectric tests are carried out on the obtained β-Ga2O3 nanotubes. A photoresponsivity of ~25.9 A/W and a detectivity of ~5.6 × 1011 Jones have been achieved with a single-β-Ga2O3-nanotube device under an excitation wavelength of 254 nm. Full article
Show Figures

Figure 1

14 pages, 4478 KiB  
Article
Evaluation of Solar Conversion Efficiency in Dye-sensitized Solar Cells Using Natural Dyes Extracted from Alpinia purpurata and Alstroemeria Flower Petals as Novel Photosensitizers
by Leonardo Ricardo Bernardes da Conceição, Higor Oliveira da Cunha, Arcano Matheus Bragança Leite, Rajendran Suresh Babu, Sebastian Raja, Caue Ribeiro and Ana Lucia Ferreira de Barros
Colorants 2023, 2(4), 618-631; https://doi.org/10.3390/colorants2040032 - 10 Oct 2023
Cited by 20 | Viewed by 3228
Abstract
Herein, we evaluate the conversion efficiency of dye-sensitized solar cells (DSSCs) photosensitized using two different natural dyes extracted from Alpinia purpurata and Alstroemeria flower petals. The appreciable absorption capacity of the extracts in the visible light region was examined through absorption spectroscopy. The [...] Read more.
Herein, we evaluate the conversion efficiency of dye-sensitized solar cells (DSSCs) photosensitized using two different natural dyes extracted from Alpinia purpurata and Alstroemeria flower petals. The appreciable absorption capacity of the extracts in the visible light region was examined through absorption spectroscopy. The functional groups of the corresponding pigments were identified through Fourier transform spectroscopy (FTIR) technique thus indicating the presence of cyanidin 3-glycosides and piperine in the flowers of Alstroemeria and Alpinia purpurata. The extracted dyes were immobilized on TiO2 on transparent conducting FTO glass, which were used as photoanode. The dye-coated TiO2 photoanode, pt photocathode and iodide/triiodide redox electrolyte assembled into a cell module was illuminated by a light source intensity 100 mW/cm2 to measure the photovoltaic conversion efficiency of DSSCs. The TiO2 anode and Pt counter electrode surface roughness and morphological studies were evaluated using atomic force microscope (AFM) and field emission scanning electron microscopy (FESEM), respectively. Through the photoelectric characterizations, it was promising to verify that the solar conversion efficiency was calculated with the photovoltaic cell sensitized by Alstroemeria and Alpinia purpurata. This was achieved with a yield (η) of 1.74% and 0.65%, with an open-circuit voltage (Voc) of 0.39 and 0.53 V, short-circuit current density (Jsc) of 2.04 and 0.49 mA/cm2, fill factor (FF) of 0.35 and 0.40, and Pmax of 0.280 and 0.100 mW/cm2, respectively. The results are promising and demonstrate the importance of the search for new natural dyes to be used in organic solar cells for the development of devices that generate electricity in a sustainable way. Full article
(This article belongs to the Special Issue Recent Progress on Functional Dyes and Their Applications)
Show Figures

Figure 1

11 pages, 7755 KiB  
Article
Homogeneous Nanostructured VO2@SiO2 as an Anti-Reflecting Layer in the Visible/Near Infrared Wavelength
by Shuxia Wang, Jiajun He and Panxu Sun
Materials 2023, 16(17), 6035; https://doi.org/10.3390/ma16176035 - 2 Sep 2023
Cited by 2 | Viewed by 1613
Abstract
Low reflectivity is of great significance to photoelectric devices, optical displays, solar cells, photocatalysis and other fields. In this paper, vanadium oxide is deposited on pattern SiO2 via atomic layer deposition and then annealed to characterize and analyze the anti-reflection effect. Scanning [...] Read more.
Low reflectivity is of great significance to photoelectric devices, optical displays, solar cells, photocatalysis and other fields. In this paper, vanadium oxide is deposited on pattern SiO2 via atomic layer deposition and then annealed to characterize and analyze the anti-reflection effect. Scanning electron microscope (SEM) images indicate that the as-deposited VOx film has the advantages of uniformity and controllability. After annealing treatment, the VO2@pattern SiO2 has fewer crevices compared with VO2 on the accompanied planar SiO2 substrate. Raman results show that there is tiny homogeneous stress in the VO2 deposited on pattern SiO2, which dilutes the shrinkage behavior of the crystallization process. The optical reflection spectra indicate that the as-deposited VOx@pattern SiO2 has an anti-reflection effect due to the combined mechanism of the trapping effect and the effective medium theory. After annealing treatment, the weighted average reflectance diminished to 1.46% in the visible near-infrared wavelength range of 650–1355 nm, in which the absolute reflectance is less than 2%. Due to the multiple scattering effect caused by the tiny cracks generated through annealing, the anti-reflection effect of VO2@pattern SiO2 is superior to that of VOx@pattern SiO2. The ultra-low reflection frequency domain amounts to 705 nm, and the lowest absolute reflectance emerges at 1000 nm with an astonishing value of 0.86%. The prepared anti-reflective materials have significant application prospects in the field of intelligent optoelectronic devices due to the controllability of atomic layer deposition (ALD) and phase transition characteristics of VO2. Full article
Show Figures

Figure 1

13 pages, 7746 KiB  
Article
Gangue Source Reduction Technology and Process Optimization Based on Underground Coal Gangue Photoelectric Separation
by Wei Zhou, Wanghao Xia, Liangliang Liu, Liansheng Li, Qiuyu Zeng, Shujie Wang and Jinbo Zhu
Processes 2023, 11(9), 2519; https://doi.org/10.3390/pr11092519 - 22 Aug 2023
Cited by 2 | Viewed by 1822
Abstract
The precise identification of damp, sticky coal gangue; efficient jet nozzle separation; and process layout in a narrow, restricted space are essential technologies for gangue source reduction based on underground gangue photoelectric separation, which is critical for the long-term growth of coal mines. [...] Read more.
The precise identification of damp, sticky coal gangue; efficient jet nozzle separation; and process layout in a narrow, restricted space are essential technologies for gangue source reduction based on underground gangue photoelectric separation, which is critical for the long-term growth of coal mines. In this paper, the X-ray absorption fine structure (XAFS) method was used to identify the X-ray absorption law of different atoms in coal-based minerals and explore the differences in the microscopic crystal properties of coal gangue; the numerical simulation calculation of four commonly used nozzles—namely, flat, convergent, flat–convergent, and streamline—was carried out using Fluent software for coal gangue jet separation to optimize the nozzle morphology and parameters. The technical characteristics of the underground layout of the photoelectric separation system for coal gangue were expounded, and the technological layout of the separation system was explored. The results showed that the absorption coefficients μ(E) of Al and Si atoms in minerals to X-rays are significantly different, and the XAFS method has the ability to identify coal, gangue, and other minerals. The streamlined nozzle has a long jet core area, slow decay of jet velocity, low gas consumption per unit time, and better performance than the other three types of nozzles. Based on the development and mining system of the Renjiazhuang Coal Mine, three kinds of photoelectric separation system layout schemes of coal gangue were designed, namely centralized layout, distributed layout, and mobile layout. The advantages and disadvantages of each scheme were compared, which enriched the technical means of gangue source reduction. Full article
(This article belongs to the Special Issue Technological Processes for Chemical and Related Industries)
Show Figures

Figure 1

20 pages, 13135 KiB  
Review
Advanced Microscopy Techniques for Molecular Biophysics
by Laura Barsanti, Lorenzo Birindelli, Francesca Sbrana, Giovanni Lombardi and Paolo Gualtieri
Int. J. Mol. Sci. 2023, 24(12), 9973; https://doi.org/10.3390/ijms24129973 - 9 Jun 2023
Cited by 4 | Viewed by 3427
Abstract
Though microscopy is most often intended as a technique for providing qualitative assessment of cellular and subcellular properties, when coupled with other instruments such as wavelength selectors, lasers, photoelectric devices and computers, it can perform a wide variety of quantitative measurements, which are [...] Read more.
Though microscopy is most often intended as a technique for providing qualitative assessment of cellular and subcellular properties, when coupled with other instruments such as wavelength selectors, lasers, photoelectric devices and computers, it can perform a wide variety of quantitative measurements, which are demanding in establishing relationships between the properties and structures of biological material in all their spatial and temporal complexities. These combinations of instruments are a powerful approach to improve non-destructive investigations of cellular and subcellular properties (both physical and chemical) at a macromolecular scale resolution. Since many subcellular compartments in living cells are characterized by structurally organized molecules, this review deals with three advanced microscopy techniques well-suited for these kind of investigations, i.e., microspectrophotometry (MSP), super-resolution localization microscopy (SRLM) and holotomographic microscopy (HTM). These techniques can achieve an insight view into the role intracellular molecular organizations such as photoreceptive and photosynthetic structures and lipid bodies play in many cellular processes as well as their biophysical properties. Microspectrophotometry uses a set-up based on the combination of a wide-field microscope and a polychromator, which allows the measurement of spectroscopic features such as absorption spectra. Super resolution localization microscopy combines dedicated optics and sophisticated software algorithms to overcome the diffraction limit of light and allow the visualization of subcellular structures and dynamics in greater detail with respect to conventional optical microscopy. Holotomographic microscopy combines holography and tomography techniques into a single microscopy set-up, and allows 3D reconstruction by means of the phase separation of biomolecule condensates. This review is organized in sections, which for each technique describe some general aspects, a peculiar theoretical aspect, a specific experimental configuration and examples of applications (fish and algae photoreceptors, single labeled proteins and endocellular aggregates of lipids). Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biophysics 2023)
Show Figures

Figure 1

16 pages, 7809 KiB  
Article
Calcium Oxalates in Soils within Disturbed Landscapes and Rock on the Territory of Yakutia (Russia), Formation Conditions in a Sharply Continental Cryoarid Climate
by Tatiana I. Vasileva and Yana B. Legostaeva
Minerals 2023, 13(5), 659; https://doi.org/10.3390/min13050659 - 10 May 2023
Viewed by 2141
Abstract
The formation of oxalates in soils and rocks under conditions of cryoarid climate, permafrost and taiga vegetation was studied. Whewellite and weddellite were found in four areas associated with the mining industry: on the kimberlite deposit of the Daldyn territory, in the lower [...] Read more.
The formation of oxalates in soils and rocks under conditions of cryoarid climate, permafrost and taiga vegetation was studied. Whewellite and weddellite were found in four areas associated with the mining industry: on the kimberlite deposit of the Daldyn territory, in the lower reaches of the Markha River of the Central Yakut Plain, and on the coastal outcrop of the Allah-Yun Sellah-Khotun ore cluster. Whewellite was found in the upper organic horizon of Skeletic Cryosol (Thixotropic) (sample 151) and as a film on the surface of plant remains of Humic Fluvisols (sample 1663). Weddellite was found as an extensive encrustation on the surface of the soil and vegetation cover of Stagnic Cryosols Reductaquic (sample 984) and on a siltstone outcrop (sample KM-6-21). Calcium oxalates were identified by X-ray phase analysis, photographs of the samples were taken on a polarizing microscope, and the crystal morphology was studied on a scanning electron microscope. To determine the chemical composition of soils and rocks, the classical wet-chemical method was used; the physical properties of the studied samples were studied using a pH meter, the photoelectric colorimetric method, and a synchrotron thermal analysis device. The source of calcium for the formation of salts is the parent layers of the studied soils, represented by carbonate and carbonate clastic rocks, which cause neutral and slightly alkaline environments. High humidity, which is provided by the seasonal thawing of the permafrost, has a key role in the formation of the studied oxalates in Yakutia with a sharply continental cryoarid climate. Based on the studies, it was found that the first two samples are the products of lichen activity, and the third and fourth are at the stage of initial soil formation by micromycetes. In addition, the formation of these oxalates, in our opinion, is the result of the protective function of vegetation, in the first two cases, with a sharp increase in the load on lichens under technogenic impact, and in the second and third cases, when favorable conditions arise for initial soil formation, but under conditions of toxic content of heavy metals and arsenic. Full article
Show Figures

Graphical abstract

13 pages, 3639 KiB  
Article
Electrohydrodynamic Printing of PCL@CsPbBr3 Composite Fibers with High Luminescence for Flexible Displays
by Maolin Liu, Changqing Lin, Weicheng Ou, Han Wang, Chunyang Pan, Yuchen Ji and Hehui Zheng
Coatings 2023, 13(3), 500; https://doi.org/10.3390/coatings13030500 - 24 Feb 2023
Cited by 3 | Viewed by 1978
Abstract
Metal halide perovskite quantum dots (PQDs) are widely used in the display field due to their excellent photoelectric properties, such as ultra-narrow half-peak widths and ultra-pure luminescence color purity. Inkjet printing, laser direct writing and electrospinning are all common methods for PQDs printing [...] Read more.
Metal halide perovskite quantum dots (PQDs) are widely used in the display field due to their excellent photoelectric properties, such as ultra-narrow half-peak widths and ultra-pure luminescence color purity. Inkjet printing, laser direct writing and electrospinning are all common methods for PQDs printing to prepare micropattern displays. In order to produce large-scale and high-resolution PQDs micropatterns, electrohydrodynamic (EHD) printing technology is capable of large-scale deposition of highly oriented nanofibers on rigid or pliable, flat or bent substrates with the advantages of real-time regulation and single control. Therefore, it has a lot of potential in the fabrication of pliable electronic devices for one-dimensional ordered light-emitting fibers. Polycaprolactone (PCL) as an EHD printing technology polymer material has the advantages of superior biocompatibility, a low melting point, saving energy and easy degradation. By synthesizing CsPbBr3 quantum dots (QDs) and PCL composite spinning stock solution, we used the self-built EHD printing platform to prepare the PCL@CsPbBr3 composite light-emitting optical fiber and realized the flexible display of high-resolution micropatterns in polydimethylsiloxane (PDMS) packaging. An x-ray diffractometer (XRD), scanning electron microscope (SEM) and photoluminescence (PL) were used to characterize and analyze the fiber’s morphology, phase and spectral characteristics. EHD printing technology may open up interesting possibilities for flexible display applications based on metal halide PQDs. Full article
Show Figures

Figure 1

14 pages, 5915 KiB  
Article
Fabrications of Electrospun Mesoporous TiO2 Nanofibers with Various Amounts of PVP and Photocatalytic Properties on Methylene Blue (MB) Photodegradation
by Sun-Ho Yoo, Han-Sol Yoon, HyukSu Han, Kyeong-Han Na and Won-Youl Choi
Polymers 2023, 15(1), 134; https://doi.org/10.3390/polym15010134 - 28 Dec 2022
Cited by 2 | Viewed by 2265
Abstract
The superior chemical and electrical properties of TiO2 are considered to be suitable material for various applications, such as photoelectrodes, photocatalysts, and semiconductor gas sensors; however, it is difficult to commercialize the applications due to their low photoelectric conversion efficiency. Various solutions [...] Read more.
The superior chemical and electrical properties of TiO2 are considered to be suitable material for various applications, such as photoelectrodes, photocatalysts, and semiconductor gas sensors; however, it is difficult to commercialize the applications due to their low photoelectric conversion efficiency. Various solutions have been suggested and among them, the increase of active sites through surface modification is one of the most studied methods. A porous nanostructure with a large specific surface area is an attractive solution to increasing active sites, and in the electrospinning process, mesoporous nanofibers can be obtained by controlling the composition of the precursor solution. This study successfully carried out surface modification of TiO2 nanofibers by mixing polyvinylpyrrolidone with different molecular weights and using diisopropyl azodicarboxylate (DIPA). The morphology and crystallographic properties of the TiO2 samples were analyzed using a field emission electron microscope and X-ray diffraction method. The specific surface area and pore properties of the nanofiber samples were compared using the Brunauer-Emmett-Teller method. The TiO2 nanofibers fabricated by the precursor with K-30 polyvinyl pyrrolidone and diisopropyl azodicarboxylate were more porous than the TiO2 nanofibers without them. The modified nanofibers with K-30 and DIPA had a photocatalytic efficiency of 150% compared to TiO2 nanofibers. Their X-ray diffraction patterns revealed anatase peaks. The average crystallite size of the modified nanofibers was calculated to be 6.27–9.27 nm, and the specific surface area was 23.5–27.4 m2/g, which was more than 150% larger than the 17.2 m2/g of ordinary TiO2 nanofibers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

Back to TopTop