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Abstract: β-Ga2O3 nanostructures are attractive wide-band-gap semiconductor materials as they
exhibit promising photoelectric properties and potential applications. Despite the extensive efforts
on β-Ga2O3 nanowires, investigations into β-Ga2O3 nanotubes are rare since the tubular structures
are hard to synthesize. In this paper, we report a facile method for fabricating β-Ga2O3 nanotubes
using pre-synthesized GaSb nanowires as sacrificial templates. Through a two-step heating-treatment
strategy, the GaSb nanowires are partially oxidized to form β-Ga2O3 shells, and then, the residual
inner parts are removed subsequently in vacuum conditions, yielding delicate hollow β-Ga2O3

nanotubes. The length, diameter, and thickness of the nanotubes can be customized by using
different GaSb nanowires and heating parameters. In situ transmission electron microscopic heating
experiments are performed to reveal the transformation dynamics of the β-Ga2O3 nanotubes, while
the Kirkendall effect and the sublimation process are found to be critical. Moreover, photoelectric
tests are carried out on the obtained β-Ga2O3 nanotubes. A photoresponsivity of ~25.9 A/W and a
detectivity of ~5.6 × 1011 Jones have been achieved with a single-β-Ga2O3-nanotube device under an
excitation wavelength of 254 nm.

Keywords: β-Ga2O3; nanotube; nanowire template; Kirkendall effect; electrical property

1. Introduction

Ga2O3 nanostructures have attracted intense interest because of their promising appli-
cations as functional devices [1–11]. Among them, one-dimensional Ga2O3 nanocrystals
including nanowires, nanobelts, nanorods, and nanotubes are demonstrated to be the ideal
materials for high-performance electronic devices [12–14], sensors [15–17], solar-blind pho-
todetectors [16,18–20], and catalyzers [21,22], benefiting from their high surface-to-volume
ratios. For example, Delaunay et al. achieved a solar-blind photodetector based on the
β-Ga2O3 nanowires [5], and the device possesses a very fast decay time (<20 ms) and a
quite-low photocurrent fluctuation (<3%). The 250-to-280 nm rejection ratio of this device
is as high as ~2 × 103, exceeding that of the devices fabricated with bulk β-Ga2O3 single
crystals (with a 250-to-280 nm rejection ratio of ~20). Hu et al. achieved a photodetector
using β-Ga2O3 nanobelts [20]. The photodetector has a high photo-excited current of over
21 nA (with a dark current below 10−14 A), a high responsivity of around 851 A/W, and a
high external quantum efficiency of around 4.2 × 103. These performances are superior to
the photodetectors using materials such as In2Ge2O7 and Zn2GeO4. Lu et al. fabricated
a field-effect transistor based on Nb-doped β-Ga2O3 nanobelts [13]. The device shows
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excellent electrical performances such as an ultra-small cut-off current of around 10 fA and
a high on–off ratio over 108. These pioneering devices suggest that the β-Ga2O3 nanos-
tructures/arrays can provide more energetic surfaces and activated sites, which thereby
promote the device performances in comparison with their bulk counterparts.

Aside from nanowires and nanobelts, β-Ga2O3 nanotubes are another sort of one-
dimensional nanostructure which possess much higher surface-to-volume ratios. Their
hollow structures have intrinsic advantages as they provide an extra degree of freedom to
adjust the structure and property. Unfortunately, the development of β-Ga2O3 nanotubes is
severely hindered as the fabrication of tubular nanostructures is still challenging. Unlike the
β-Ga2O3 nanowires/nanobelts for which the fabrication methods such as chemical vapor
deposition [23–28], arc discharge [29], solution synthesis [30], and laser ablation [31] have
been proven to be feasible, the fabrication methods for β-Ga2O3 nanotubes are rare, while
tubular structures of β-Ga2O3 are seldom reported. Although some efforts have been made,
e.g., Cheng et al. tried the way of using porous anodized aluminum oxide as templates [32],
Chen et al. tried the high-temperature chemical vapor deposition approach [2], and Ding
et al. tried the top-down etching method [33], conclusions can be made that a high-quality
β-Ga2O3 nanotube is still difficult to obtain, which severely hinders the development of
β-Ga2O3 nanotube-based devices and applications. Upon this issue, we here report a new
facial method to fabricate β-Ga2O3 nanotubes using pre-synthesized GaSb nanowires as
sacrificial templates. Two-step thermal treatments are exerted on the GaSb nanowires to
control the oxidation process and the transformation to tubular structures. The nanotube
length, diameter, and shell thickness can be easily tuned with appropriate precursor tem-
plate nanowires and thermal treating parameters. Moreover, the atomistic structures and
optoelectronic properties of the achieved β-Ga2O3 nanotubes are characterized and tested.

2. Materials and Methods
2.1. Fabrication of β-Ga2O3 Nanotubes

The preparation of GaSb nanowires was reported elsewhere [34]. First, the GaSb
nanowires were put into a quartz-tube furnace and then heated to 500–800 ◦C with a
ramp rate of 4 ◦C/min in air conditions for 2–8 h. In this stage, the GaSb nanowires
are partially oxidized into core–shell structures. Multiple GaSb segments may remain
at this stage serving as the core parts. After heating, the furnace was cooled down to
room temperature, and the samples were transferred to a vacuum quartz-tube furnace
for the second-step heating treatment. The temperatures were set to 600–950 ◦C with a
ramp rate of 10 ◦C/min for 3 h. In this stage, the inner GaSb cores were mostly removed
via decomposition/sublimation, while the outer shells were transformed into β-Ga2O3
nanotubes. Since β-Ga2O3 is stable at this temperature, these treatments thereby lead to
tubular structures rather than porous structures.

2.2. Characterizations and In Situ TEM Heating Experiments

The morphology, crystalline structure, and composition of the GaSb nanowires and
the Ga2O3 nanotubes were characterized using the FEI Titan 80-300 TEM (ThermoFisher
Scientific, Waltham, MA, USA) and the Talos F200X TEM (ThermoFisher Scientific, Waltham,
MA, USA). For SEM characterization, the images were collected using the Helios 5 CX
DualBeam SEM (ThermoFisher Scientific, Waltham, MA, USA) and the FEI Quanta 200
SEM (ThermoFisher Scientific, Waltham, MA, USA). Raman spectra of the GaSb nanowires
and the Ga2O3 nanotubes were collected using the RAM-PRO-785E spectrometer (Agiltron,
Woburn, MA, USA) with a 785 nm laser. XPS data were collected using the ESCA-3400
spectrometer (Shimadzu, Kyoto, Japan). The in situ heating experiments were performed
using the Fusion 350ST heating holder combined with the micro-fabricated chips from
Protochips Company, Morrisville, NC, USA. In a typical heating experiment, the GaSb
nanowires were heated to a target temperature (e.g., 450 ◦C) with a ramp rate of 5 ◦C/s.
Then, the temperature was increased step-by-step with a step size of 1 ◦C until sublimation
occurred. The structure evolution was monitored via TEM or STEM mode in real-time.
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2.3. Photoelectric Tests of the β-Ga2O3 Nanotubes

I–V curves were measured by sweeping the voltage from −5 V to 5 V using Keithley
4200A combined with a probe station. Lamps with 254 nm or near-infrared wide-spectrum
source (waveband of 0.75~5 µm with a band peak at around 4 µm) were used as illumi-
nation. In the I–V tests of multiple β-Ga2O3 nanotubes, the samples were dispersed in
ethyl alcohol and dripped on a chip with interdigital electrodes. In the I–V tests of a single
β-Ga2O3 nanotube, an individual nanotube was marked and two square tungsten micro-
electrodes (side-length of 50 µm and thickness of 150 nm) were fabricated nearby using
focused ion beam deposition. Then, tungsten microwires (width of 1.5 µm and thickness
of 150 nm) were fabricated to connect the nanotube to the electrodes. Between the two
electrodes, an isolation groove (2 µm in width and 5 µm in depth) was sculpted by the
focused ion beam to avoid a potential short circuit.

3. Results and Discussion

Figure 1a shows the transmission electron microscopy (TEM) image of the template
GaSb nanowires. As can be seen, the GaSb nanowires have relatively uniform diameters.
The high-resolution TEM image in Figure 1b shows a typical individual GaSb nanowire with
a diameter of 26.7 nm and a measurable inter-planar spacing of 0.35 nm, corresponding
to the (111) crystalline planes [34]. Most of the GaSb nanowires have monocrystalline
structures and a preferential growth orientation along [111]. Figure 1c shows the dark-field
scanning-TEM (STEM) image of a GaSb nanowire acquired using a high-angle annular
detector. The energy dispersive spectrum (EDS) of the nanowire at the point position
marked by the green cross (Figure S1) shows that the elemental fraction ratio of Ga to Sb is
roughly around 1:1, corroborating the result obtained by the high-resolution TEM images.
In some cases, nanoparticles may be retained at the ends of some GaSb nanowires (e.g., the
yellow dashed box in Figure 1c). These nanoparticles are Au catalysts (Figure S2) used for
the growth of GaSb nanowires and will not influence the further evolution of the GaSb
nanowires to β-Ga2O3 nanotubes. Figure 1d–f show the typical products obtained after
thermally treating the GaSb nanowires. The solid nanowires are all turned into tubular
structures with different thicknesses from 2.9 nm to 10.3 nm relating to different oxidation
times. The oxidation times for the nanotubes in Figure 1d, 1e and 1f are 0.1 h, 2 h, and 4 h
at 500 ◦C, respectively.

The critical points of the two-step thermal treatments are the precise control of surface
oxidation and the subsequent removal of the residual core parts. As the determinant of
controlling the shell thickness, the first-step thermal treatments are carefully examined and
shown in Figure 2. Figure 2a(i–iii) shows the morphologies of the products after heating at
500 ◦C for 2 h in atmospheric conditions. As can be seen, even in this stage, the incipient
tubular structures can be identified. However, multi-segments are still encapsulated inside
the tubular structures, as marked by the yellow dotted boxes. The STEM image and EDS
mappings in Figure 2a(iv–vii) demonstrate that the tubular outer shell (the gray part)
mainly consists of Ga and O elements, while the inner multi-segments (the bright parts)
are mainly Ga and Sb elements. It indicates that in this thermal treatment stage, tubular
structures should be formed via the Kirkendall oxidation process [35–37]. According to the
literature [38], pristine GaSb nanowires are frequently covered by ultrathin oxide shells
(generally smaller than 4 nm at room temperature in air conditions). The oxide shells
consist of both Ga2O3 and Sb2O3 and prevent the inner GaSb core from further oxidation.
In the experiments here, the oxidation of the GaSb nanowires is also very slow when the
heating temperature is lower than 200 ◦C (Figure S3). Thus, raising the heating temperature
to enable the secondary oxidation of Sb2O3 to Sb2O4 [39,40] allows for the inward diffusion
of oxygen and outward diffusion of GaSb known as the Kirkendall effect. Eventually, the
Ga2O3 shells continuously grow at the expense of depleting the inner GaSb.
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Figure 1. Characterizations of the template GaSb nanowires and the obtained β-Ga2O3 nanotubes.
(a) TEM image showing the morphology of the pre-synthesized GaSb nanowires. (b) High-resolution
TEM image of a typical individual GaSb nanowire. The inset shows the fast Fourier transform pattern
of the crystalline structure. (c) STEM image of a typical GaSb nanowire. The EDS data are acquired at
the cross point marked in green and shown in Figure S1 in the Supplementary Materials. The yellow
dashed box indicates the residual Au catalysts. (d–f) STEM and TEM images of the morphologies of
the obtained β-Ga2O3 nanotubes after two-step thermal treatments.
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Figure 2. Characterizations of the products obtained in different thermal treating conditions.
(a–c) Morphologies and elemental distributions of the nanostructures which are obtained by heating
the template GaSb nanowires in air at 500 ◦C for 2 h, 4 h, and 8 h, respectively. (d–f) Morphologies
and elemental distributions of the nanostructures which are obtained by heating the template GaSb
nanowires in air for 2 h at 650 ◦C, 700 ◦C, and 800 ◦C, respectively.
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Figure 2b(i–iii) shows the result of extending the heating time to 4 h at 500 ◦C. A longer
heating time tends to generate thicker oxidation shells together with fewer inner residual
GaSb segments. Aside from the increased shell thickness, it is interesting to find that small
nanoparticles will form on both the inner and the outer surfaces of the shell during TEM
imaging (Figure S4, Video S1). Figure 2b(iv) shows a typical STEM image comprising many
nanoparticles represented as bright dots. The EDS mappings shown in Figure 2b(v–vii)
indicate that these nanoparticles are Sb-rich, implying that the reaction of 2GaSb + Sb2O3
→ Ga2O3 + 4Sb has occurred under the energetic irradiation of high-energy electrons [38].
Furthermore, the existence of SbOx in the shell suggests that 4 h thermal heating at 500 ◦C is
insufficient to obtain pure Ga2O3. Nevertheless, compared with the result of 2 h heating, the
formed nanotubes have more porous structures, which can serve as the diffusion channels
facilitating further oxidation. Figure 2c(i–iii) shows the morphologies of the products
with a much longer heating time of 8 h. The STEM image and EDS mappings shown in
Figure 2c(iv–vii) further prove their porous structures and consistent element distributions.

To probe into the feasibility of removing SbOx at elevated temperatures, thermal
treatments at 650–800 ◦C have also been verified. Figure 2d(i–iii) shows the results after
thermal treatment at 650 ◦C for 2 h. Porous structures are observed with more holes
inside the nanowires. In some nanowires, SbOx nanoparticles can still be found at the
nanowire ends, as indicated by the cyan dashed boxes in Figure 2d(iv–vii). Figure 2e(i–iii)
shows the case of thermal treatment at 700 ◦C for 2 h. The nanowires transformed into
a “stem-thorn” configuration with a broken tubular structure as “stem” and nanorods
as “thorns”. The STEM image and EDS mappings in Figure 2e(iv–vii) prove that the
“thorns” are mainly GaSbxOy and possibly formed by the activated regrowth at this high
temperature (Figure S5). As for the case at 800 ◦C, the results are similar to those at 700 ◦C,
as shown in Figure 2f(i–vii).

Apparently, long-time heating and higher temperatures in air conditions are no longer
beneficial for the formation of tubular structures as the GaSbxOy is hard to remove or
convert into tubular Ga2O3 (Figure S6). This implies that after certain oxidization of
the template GaSb nanowires, the sculpting of the residual core parts requires delicate
treatments. To achieve this, the second-step thermal heating is performed in vacuum
conditions to avoid further reaction and regrowth. Herein, two conditions are verified
on the template GaSb nanowires, which have already been heated at 500 ◦C for 2 h in air
conditions. One sample is further heated in vacuum conditions at 950 ◦C for 3 h (referred
to as Sample-1 hereafter), while the other sample is treated at 600 ◦C for 3 h in vacuum
(referred to as Sample-2 hereafter). Figure 3a,b show scanning electron microscope (SEM)
and TEM images of the morphology of Sample-1. As can be seen, the residual GaSb cores
after the first-step thermal treatment have been successfully removed with nanotubes
left. Unfortunately, the nanotubes are quite porous (Figure 3b,c), possibly due to the
excessive heating temperature in vacuum conditions. The EDS result shown in the inset of
Figure 3c shows that most of the Sb element disappears (Figure S7). The EDS mappings
in Figure 3d,e suggest that the resulting nanotubes are mainly Ga2O3. For Sample-2, as
shown in Figure 3f,g, the obtained nanotubes have much more even structures, indicating
that a temperature of 600 ◦C is safe to preserve the Ga2O3 shell and sufficient to remove
the GaSb cores. Thereby, nearly complete Ga2O3 nanotubes can be successfully achieved.
The STEM image and EDS data in Figure 3h–j indicate that the residual Sb element is less
than 4% in the atom fraction (Figure S7) and the tubular structures corroborate Ga2O3.
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Figure 3. Characterizations of the obtained nanostructures after second-step thermal treatments.
(a,b) SEM and TEM images showing the morphology of Sample-1. (c–e) STEM image and EDS
mappings of a typical nanotube in Sample-1. The inset shows the EDS results in atom fraction.
(f,g) SEM and TEM images showing the morphology of Sample-2. The inset shows the magnified
image. (h–j) STEM image and EDS mappings of a typical nanotube in Sample-2. The inset shows
the EDS results in atom fraction. (k) Raman spectra of the initial sample, Sample-1, and Sample-2,
respectively. (l–o) XPS measurements of Sample-2.

To reveal the crystal type of the products after thermal treatments, Raman measure-
ments are performed and shown in Figure 3k. Raman spectra are acquired on each sample,
i.e., the initial sample which stands for the template GaSb nanowires after the first thermal
treatment at 500 ◦C for 2 h in air conditions (black line), Sample-1 which undergoes a second
thermal treatment at 950 ◦C for 3 h in vacuum (blue line), and Sample-2 which undergoes
a second thermal treatment at 600 ◦C for 3 h in vacuum (red line). It can be seen that the
GaSb peak at 226 cm−1 of the initial sample is clear due to the existence of GaSb cores,
while this peak almost disappears in Sample-1 and Sample-2 as GaSb decomposes and
sublimates in vacuum conditions (Figure S8) [41]. The featured Raman peaks at 111 cm−1,
150 cm−1, and 660 cm−1 of Sample-1 and Sample-2 indicate that the obtained nanotubes
are all β-Ga2O3 [42]. Moreover, Figure 3l–o show the X-ray photoelectron spectroscopy
(XPS) measurements of Sample-2. The XPS result in Figure 3l confirms the existence of
Ga, Sb, and O elements. The characteristic binding energy peak of Ga 3d at ~20.3 eV in
Figure 3n is ascribed to β-Ga2O3 [43,44]. The binding energy peaks of Sb 3d2/3 and Sb
3d2/5 at 539.9 eV and 530.5 eV in Figure 3o correspond to that of Sb2O4 very well [45]. This
evidence confirms that the structures of Sample-2 are β-Ga2O3 nanotubes.

The second-step heating treatment in vacuum conditions well avoids the complex
reactions observed in air conditions during the first-step heating treatment. This implies
that the residual core parts after the first-step thermal treatment should undergo a physical
evolution like sublimation or evaporation. To understand this process and the mechanism
lying behind it, in situ TEM heating experiments are performed to reveal the dynamic
evolution process. Figure 4a shows a dark-field image of in situ heating of the GaSb
nanowires, which have been exposed to air for oxidation for a while in advance. When the
heating temperature is increased to around 500 ◦C, sublimation of the GaSb nanowires can
be observed (Video S2). Figure 4b–e show some typical image sequences of the sublimation
process. The continuous decrease in the GaSb segments indicates that all the unoxidized
GaSb parts can be completely removed. Figure 4f,g show the atomistic structures of two
GaSb nanowires during sublimation. It can be seen that the GaSb nanowires maintain their
crystalline structures, but lose substances like sublimating/evaporating liquids. Figure 4h,i
give a STEM image and the EDS result of the GaSb nanowires when sublimation is halted.
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The Ga and Sb elements are found to be Ga:Sb = 1.38:1 in the atom fraction. The slight
deviation of the ratio from 1:1 may possibly be caused by the preferential sublimation of Sb,
which has a higher vapor pressure than Ga under this temperature [46]. Thereby, GaSb may
vanish via both decomposition and sublimation. Figure 4j–l show the achieved nanotubes
when all the GaSb parts are depleted. It can be seen that the slight pre-oxidation in air
only yields very thin nanotubes. The EDS result in Figure 4m shows that Sb can hardly be
found, differing from the results in Figure 3o where residual Sb still can be observed. It
should be pointed out that the removal of Sb elements relies on the formed oxide shells
to some extent. Generally, the Sb element is hard to be completely removed once thick
oxide shells are formed. This may be due to the confinement of the oxide shells which
inhibit further sublimation. In the cases where only thin oxide shells are formed, the inner
GaSb cores are easily removed to form pure thin β-Ga2O3 nanotubes/nanowires. The
high-resolution TEM images in Figure 4n,o, as well as the fast Fourier transform pattern,

reveal a featured crystalline plane corresponding to the (
–
201) of β-Ga2O3. This largely

interprets the formation mechanism of β-Ga2O3 nanotubes in the aforementioned second-
step thermal treatments. Noticeably, in a few nanowires where antimony oxide is formed,
it is hard to remove it with in situ thermal heating. One typical residual antimony oxide is
shown in Figure 4p,q. The crystalline plane is found to correspond to the (301) of Sb2O3.
Nevertheless, this issue can be solved by properly increasing the heating temperature.
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Figure 4. Revealing the dynamic process of nanotube formation in situ. (a) STEM image of template
GaSb nanowires heated at 500 ◦C. (b–e) STEM image sequences of GaSb nanowires during subli-
mation. All scale bars are 50 nm. (f,g) High-resolution TEM images of the atomistic structures of
GaSb nanowires during sublimation. (h,i) STEM image and EDS result of a GaSb nanowire during
sublimation. (j,k) STEM images of the obtained nanotubes after sublimation. (l,m) STEM image
and EDS result of an obtained nanotube in its final state. (n,o) TEM images showing the obtained
β-Ga2O3 nanotubes. (p,q) TEM images showing the residual Sb2O3 nanostructures.
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To uncover the photoelectric properties of the obtained β-Ga2O3 nanotubes, micro-
electrodes are fabricated to perform I–V tests under illumination on the nanotubes. Figure 5a
shows the illustration of the setup of the photoelectric test. The I–V curves in dark condition
(black line), under 254 nm illumination (purple line), and under near-infrared illumination
(red line) are plotted together in Figure 5b. It can be seen that the dark current is higher than
the photocurrents generated by either 254 nm or near-infrared illumination. The randomly
distributed composite structures possibly comprise both β-Ga2O3 nanotubes and residual
GaSb. This makes the photoelectric test complicated and hard to interpret. Moreover, the
negative photoconductivity effect may also play a critical role [47,48]. In order to suppress
such interference, a single β-Ga2O3 nanotube was constructed to perform a test, as shown
in Figure 5c. The inset shows an SEM image of the as-fabricated configuration of the elec-
trodes and the β-Ga2O3 nanotube (yellow dotted box) (Figure S9). Similar I–V tests in dark
conditions (black line), under 254 nm illumination (purple line), and under near-infrared
illumination (red line) are carried out and plotted in Figure 5d. It can be seen that the
measured photocurrent at a voltage of 5 V is 14 pA in the dark condition, while this value
increases to 577 pA in the case of 254 nm illumination. Generally, the photoresponsivity Rλ

is given by

Rλ =
Iphoto − Idark

PλS
(1)

where the Iphoto and Idark are the photocurrent and dark current, respectively, Pλ is the power
density of the light, and S is the effective illuminated area. In our experiments, the diameter
and length of the single β-Ga2O3 nanotube are 35 nm and 3.8 µm, respectively. The effective
illuminated area is calculated to be ~2.09 × 10−9 cm2. Pλ is 10.4 mW/cm2. Therefore, the
photoresponsivity Rλ is calculated to be ~25.9 A/W. In addition, the detectivity D* can be
obtained through the equation

D∗ =
Rλ√

2e× Idark/S
(2)

where e is the electron charge (1.6× 10−19 C). In our case, D* is calculated to be ~5.6× 1011 Jones.
These results indicate that the obtained nanotubes possess striking photoelectric properties.
Moreover, when the nanotube is illuminated by a near-infrared light source, the photocur-
rent is measured to be 11.3 nA at 5 V, showing a response ratio (Iphoto/Idark) as high as 807.
As the dark current in Figure 5d (black line in the inset) is relatively low, the noise caused by
the dark current of this device is thus not discussed here. Furthermore, the leakage current
of the device is measured to be at the level of 5 pA under a voltage of 5 V (Figure S10). It is
a rather small value and thereby ignored. The high photo-responses at both the ultraviolet
band and the near-infrared band imply a complex result of the nanotube. One possible
reason is that some tiny GaSb segments may still be retained inside the β-Ga2O3 nanotube
but can be hardly seen using SEM characterization. Hence, the nanotube shows unexpected
responses under the excitation of a near-infrared light source. Further optimization of the
preparation method is still required to achieve pure β-Ga2O3 nanotubes. Also, the intrinsic
photoelectric property of β-Ga2O3 nanotubes should be further investigated with GaSb
influences completely excluded.
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Figure 5. Photoelectric test of the obtained β-Ga2O3 nanotubes. (a) Schematic illustration of the I–V
test of multiple β-Ga2O3 nanotubes using a chip with interdigital micro-electrodes. (b) I–V curves of
multiple β-Ga2O3 nanotubes measured in dark condition (black line), under 254 nm illumination
(purple line), and under near-infrared illumination (red line), respectively. (c) Schematic illustration of
the setup for measuring a single β-Ga2O3 nanotube. The inset shows an SEM image of the experiment.
(d) I–V curves of the single β-Ga2O3 nanotube measured in dark condition (black line), under 254 nm
illumination (purple line), and under near-infrared illumination (red line), respectively. The inset
shows the magnified region marked by the green dashed box.

4. Conclusions

In summary, β-Ga2O3 nanotubes are successfully prepared using a simple two-step
heating method using GaSb nanowires as sacrificial templates. The characteristics of the
β-Ga2O3 nanotubes including length, diameter, and shell thickness can be tuned easily by
regulating the GaSb-nanowires templates and the heating parameters. Kirkendall oxidation
and sublimation are revealed to be critical determinants for the formation of β-Ga2O3
nanotubes. And this mechanism is further evidenced via in situ TEM heating experiments.
Moreover, the photoelectric properties of the obtained β-Ga2O3 nanotubes have been
investigated. With a 254 nm ultraviolet illumination, a photoresponsivity of ~25.9 A/W
and a detectivity of ~5.6 × 1011 Jones are achieved on a single-β-Ga2O3 nanotube device.
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products obtained by heating GaSb nanowires; Figure S6: Characterization of the products obtained
by heating GaSb nanowires; Figure S7: Characterization of the nanotubes in Sample-1 and Sample-2;
Figure S8: Raman peaks revealing the disappearance of GaSb. Figure S9: Enlarged SEM image of the
device. Figure S10: The leakage current of the device shown in Figure 5c. Video S1: Formation process
of Sb-rich nanoparticles when exposed to the high energy electron beam; Video S2: Sublimation
process of GaSb nanowires at 500 ◦C.
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