Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (916)

Search Parameters:
Keywords = photodegradation studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 28667 KB  
Article
Electrochemical and Optical Insights into Interfacial Connection for Fast Pollutant Removal: Experimental Study of g-C3N4/BiOCl Heterojunction for Rhb and MO Photodegradation
by Hadja Kaka Abanchime Zenaba, Mi Long, Xue Liu, Mengying Xu, Wen Luo and Tian Zhang
Coatings 2026, 16(1), 138; https://doi.org/10.3390/coatings16010138 - 21 Jan 2026
Abstract
Developing efficient heterojunction photocatalysts is essential to address the challenge of degrading persistent organic pollutants. In this study, a multi-scale characterization strategy was employed to investigate the implications of interfacial connectivity between synthesized graphitic carbon nitride (g-C3N4) /bismuth oxychloride [...] Read more.
Developing efficient heterojunction photocatalysts is essential to address the challenge of degrading persistent organic pollutants. In this study, a multi-scale characterization strategy was employed to investigate the implications of interfacial connectivity between synthesized graphitic carbon nitride (g-C3N4) /bismuth oxychloride (BiOCl)e removal of Rhodamine B (RhB) and Methyl Orange (MO). Morpho-structural characterizations, including Scanning/Transmission Electron Microscopy (SEM/TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and N2 physisorption (Brunauer–Emmett–Teller (BET)) analyses, confirmed the successful construction of an intimate interfacial contact between g-C3N4 and BiOCl. The optimized composite (15% g-C3N4/BiOCl), prepared via a one-step hydrothermal method, exhibited enhanced photocatalytic performance following pseudo-first-order kinetics described by the Langmuir–Hinshelwood model, with apparent rate constants of 0.166 min−1 for MO and 0.519 min−1 for RhB. Under visible-light irradiation, degradation efficiencies of 98% for MO (120 min) and 99% for RhB (35 min) were achieved, outperforming the pristine components. Complementary optical and electrochemical analyses indicate improved light absorption and charge-separation efficiency in the heterojunction system. In addition, the photocatalyst demonstrated good operational stability over four consecutive cycles, maintaining 91.70% activity for MO and 99.76% for RhB. Overall, this work highlights the synergistic photocatalytic g-C3N4/BiOCl heterojunction and provides a valuable insight to guide the design of advanced materials for pollutant remediation. Full article
(This article belongs to the Special Issue Coatings for Batteries and Energy Storage)
Show Figures

Figure 1

16 pages, 2524 KB  
Article
Degradation of Some Polymeric Materials of Bioreactors for Growing Algae
by Ewa Borucińska-Parfieniuk, Ewa Górecka, Jakub Markiewicz, Urszula Błaszczak, Krzysztof J. Kurzydlowski and Izabela B. Zglobicka
Materials 2026, 19(2), 384; https://doi.org/10.3390/ma19020384 - 18 Jan 2026
Viewed by 120
Abstract
Transparent polymeric materials such as poly(methyl methacrylate) (PMMA), polycarbonate (PC), and polyethylene terephthalate (PET) are widely used as glass alternatives in algal bioreactors, where optical clarity and mechanical stability are crucial. However, their long-term use is limited by surface degradation processes. Photodegradation, hydrolysis, [...] Read more.
Transparent polymeric materials such as poly(methyl methacrylate) (PMMA), polycarbonate (PC), and polyethylene terephthalate (PET) are widely used as glass alternatives in algal bioreactors, where optical clarity and mechanical stability are crucial. However, their long-term use is limited by surface degradation processes. Photodegradation, hydrolysis, and biofilm accumulation can reduce light transmission in the 400–700 nm range essential for photosynthesis. This study examined the aging of PMMA, PC, and PET under bioreactor conditions. Samples were exposed for 70 days to illumination, culture medium, and aquatic environments. Changes in their optical transmittance, surface roughness, and wettability were analyzed. All polymers exhibited measurable surface degradation, characterized by an average 15% loss in transparency, significant increases in surface roughness, and reduced contact angles. PMMA demonstrated the highest optical stability, maintaining strong transmission in key blue and red spectral regions, while PET performed the worst, showing low initial clarity and the steepest decline. The most severe surface degradation occurred in areas exposed to the receding liquid interface, highlighting the need for targeted cleaning and/or a reduction in the size of the liquid–vapor transition zone. Overall, the results identify PMMA and recycled PMMA (PMMAR) as durable, cost-effective materials for transparent bioreactor walls. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

25 pages, 5522 KB  
Article
Green Synthesis of ZnO Nanoparticles: Effect of Synthesis Conditions on Their Size and Photocatalytic Activity
by Veronika Yu. Kolotygina, Arkadiy Yu. Zhilyakov, Maria A. Bukharinova, Ekaterina I. Khamzina and Natalia Yu. Stozhko
ChemEngineering 2026, 10(1), 15; https://doi.org/10.3390/chemengineering10010015 - 14 Jan 2026
Viewed by 150
Abstract
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles [...] Read more.
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles with the desired properties. This study shows that the antioxidant activity of the plant extracts used is a key parameter influencing the properties of the resulting ZnO nanoparticles. This conclusion is based on the results of nanoparticle synthesis with the use of various plant extracts. The antioxidant activity of the extracts increases in the following order: plum–gooseberry–black currant–strawberry–sea buckthorn. The synthesized ZnO nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The catalytic properties of ZnO nanoparticles were tested under the degradation of a synthetic methylene blue dye after exposure to UV light. We found that with an increase in the AOA of plant extracts, the size of the nanoparticles decreases, while their photocatalytic activity increases. The smallest (d = 13 nm), most uniform in size (polydispersity index 0.1), and most catalytically active ZnO nanoparticles with a small band gap (2.85 eV) were obtained using the sea buckthorn extract with the highest AOA, pH 10 of the reaction mixture and 0.1 M Zn(CH3COO)2∙2H2O as a precursor salt. ZnO nanoparticles synthesized in the sea buckthorn extract demonstrated the highest dye photodegradation efficiency (96.4%) compared with other nanoparticles. The established patterns demonstrate the “antioxidant activity–size–catalytic activity” triad can be considered as a practical guide for obtaining ZnO nanoparticles of a given size and with given properties for environmental remediation applications. Full article
Show Figures

Graphical abstract

23 pages, 6056 KB  
Article
Production and Characterization of Novel Photocatalytic Materials Derived from the Sustainable Management of Agro-Food By-Products
by Christina Megetho Gkaliouri, Eleftheria Tsampika Laoudikou, Zacharias Ioannou, Sofia Papadopoulou, Vasiliki Anastasia Giota and Dimitris Sarris
Molecules 2026, 31(2), 300; https://doi.org/10.3390/molecules31020300 - 14 Jan 2026
Viewed by 181
Abstract
Porous photocatalysts from agricultural waste, i.e., apricot and peach shell, with titanium dioxide were prepared by a carbonaceous method, the adsorption and photocatalytic degradation and its kinetics about methylene blue (MB) were studied systematically. The properties of the prepared composite sorbents were characterized [...] Read more.
Porous photocatalysts from agricultural waste, i.e., apricot and peach shell, with titanium dioxide were prepared by a carbonaceous method, the adsorption and photocatalytic degradation and its kinetics about methylene blue (MB) were studied systematically. The properties of the prepared composite sorbents were characterized using Brunauer–Emmett–Teller, surface area, scanning electron microscopy, and energy dispersive spectroscopy analyses. Several key factors, including radiation, pH, temperature, initial MB concentration, contact time, and sorbent dosage, as well as photocatalytic activity were investigated. All the waste-TiO2 adsorbents showed improved adsorption and photodegradation performance compared to commercial charchoal-TiO2. The produced materials presented high specific surface areas especially those derived from apricot shell-TiO2 with a combination of type I and IV adsorption isotherms with a hysteresis loop indicating micro and mesopore structures. In addition, under UV radiation, the composite sorbents exhibited greater MB removal efficiency than non-radiated composite sorbents. The examined conditions have shown the best MB adsorption results at pH greater than 7.5, temperature 30 °C, contact time 120 min, initial concentration 0.5 mg/L MB, and sorbent dosage equal to 2.0 g/L C/MB. The total removal rate of MB is 98.5%, while the respective amount of commercial charcoal-TiO2 is equal to 75.0%. The kinetic model that best describes the experimental data of MB degradation from the photocatalytic materials is the pseudo-second order model. In summary, this work highlights the effectiveness and feasibility of transforming agricultural waste into carbonaceous composite sorbent for the removal of cationic dyes from wastewater. Future work will involve scaling up the synthesis of the catalyst and evaluating its performance using bed reactors for industrial processes. Full article
Show Figures

Graphical abstract

18 pages, 4759 KB  
Article
Construction of S-Scheme BiVO4/Bi2O2S Heterojunction for Highly Effective Photocatalysis of Antibiotic Pollutants
by Dongdong Chen, Siting Hu, Zhenzhen Jia, Yang Zhang, Bo Zhang, Shasha Liu and Xiang Li
Molecules 2026, 31(1), 136; https://doi.org/10.3390/molecules31010136 - 30 Dec 2025
Viewed by 266
Abstract
Photocatalytic processes have emerged as an efficacious strategy for the removal of organic pollutants from wastewater. In the present investigation, a BiVO4 nanorod supported on Bi2O2S nanosheet catalyst (referred to as BiVO4/Bi2O2S) [...] Read more.
Photocatalytic processes have emerged as an efficacious strategy for the removal of organic pollutants from wastewater. In the present investigation, a BiVO4 nanorod supported on Bi2O2S nanosheet catalyst (referred to as BiVO4/Bi2O2S) was meticulously synthesized via a straightforward synthetic approach, aimed explicitly at the photodegradation of tetracycline (TC). The optimized BiVO4/Bi2O2S composite, with a theoretical weight ratio of BiVO4 to Bi2O2S at 2:1 (designated as 2BVO/BOS), demonstrated a significant improvement in tetracycline degradation efficiency, achieving up to 82.9% under visible light irradiation for 90 min. This result stands in stark contrast to the relatively low degradation rates of 42.9% and 50.7% observed for pure BiVO4 and Bi2O2S, respectively. Furthermore, the apparent reaction rate of 2BVO/BOS (approximately 0.01894 min−1) was 3.19-fold and 2.66-fold higher than those of BiVO4 (0.00594 min−1) and Bi2O2S (0.00713 min−1), respectively. This significant improvement in photocatalytic efficacy can be ascribed to the composite’s superior capacity for visible light absorption, as well as its remarkable proficiency in charge carrier separation and transfer. Comprehensive experimental analyses, corroborated by extensive characterization techniques, revealed the formation of a distinctive S-scheme charge transfer mechanism at the interface between BiVO4 and Bi2O2S. This mechanism effectively suppresses charge recombination and optimizes the redox potentials of the photogenerated carriers, thereby enhancing the overall photocatalytic performance. The current study underscores the remarkable potential and promising application of BiVO4/Bi2O2S composite in the realm of wastewater treatment. Full article
Show Figures

Figure 1

22 pages, 887 KB  
Review
Advancing Identification of Transformation Products and Predicting Their Environmental Fate: The Current State of Machine Learning and Artificial Intelligence in Antibiotic Photolysis
by Sultan K. Alharbi
Appl. Sci. 2026, 16(1), 267; https://doi.org/10.3390/app16010267 - 26 Dec 2025
Viewed by 511
Abstract
The environmental persistence of antibiotic residues in aquatic systems represents a critical global challenge, with photolysis serving as a primary abiotic degradation pathway. Traditional approaches to studying antibiotic photodegradation and transformation product (TP) identification face significant limitations, including complex reaction mechanisms, multiple concurrent [...] Read more.
The environmental persistence of antibiotic residues in aquatic systems represents a critical global challenge, with photolysis serving as a primary abiotic degradation pathway. Traditional approaches to studying antibiotic photodegradation and transformation product (TP) identification face significant limitations, including complex reaction mechanisms, multiple concurrent pathways, and analytical challenges in characterizing unknown metabolites. The integration of artificial intelligence (AI) and machine learning (ML) technologies has begun to transform this field, offering new capabilities for predicting photodegradation kinetics, elucidating transformation pathways, and identifying novel metabolites. This comprehensive review examines current applications of AI/ML in antibiotic photolysis research, analyzing developments from 2020 to 2025. Key advances include quantitative structure–activity relationship (QSAR) models for photodegradation prediction, deep learning approaches for automated mass spectrometry interpretation, and hybrid computational–experimental frameworks. Machine learning algorithms, particularly Random Forests, support vector machines, and Neural Networks, have demonstrated capabilities in handling multi-dimensional environmental datasets across diverse antibiotic classes, including fluoroquinolones, β-lactams, tetracyclines, and sulfonamides. Despite progress in this field, challenges remain in model interpretability, standardization of datasets, validation protocols, and integration with regulatory frameworks. Future directions include machine-learning-enhanced quantum dynamics for improving mechanistic understanding, real-time AI-guided experimental design, and predictive tools for environmental risk assessment. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

24 pages, 5004 KB  
Article
Nb-Kaolinite and Nb-TiO2-Kaolinite for Emerging Organic Pollutant Removal
by Larissa F. Bonfim, Lorrana V. Barbosa, Yan P. Vedovato, Suelen D. de Souza, Hugo F. M. dos Santos, Vinicius F. Lima, Marcus V. do Prado, Eduardo J. Nassar, Katia J. Ciuffi, Lucas A. Rocha, Liziane Marçal and Emerson H. de Faria
Minerals 2025, 15(12), 1322; https://doi.org/10.3390/min15121322 - 17 Dec 2025
Viewed by 393
Abstract
This study presents the synthesis and characterization of novel kaolinite niobium and kaolinite titanium niobium nanocomposites and their application as heterogeneous photocatalysts. Utilizing a hydrolytic sol–gel route, we combined kaolinite with isopropyl alcohol, acetic acid, titanium (IV) isopropoxide, and ammonium niobium oxalate, followed [...] Read more.
This study presents the synthesis and characterization of novel kaolinite niobium and kaolinite titanium niobium nanocomposites and their application as heterogeneous photocatalysts. Utilizing a hydrolytic sol–gel route, we combined kaolinite with isopropyl alcohol, acetic acid, titanium (IV) isopropoxide, and ammonium niobium oxalate, followed by heat treatment at 400, 700, and 1000 °C. X-ray diffraction confirmed the retention of kaolinite’s characteristic reflections, with basal spacings indicating the presence of semiconductors on the external surfaces and edges. Heating treatment not allowing the crystallization of anatase until 1000 °C reveals that Nb5+ could inhibit the transition to titanium crystalline phases (anatase and rutile). The bandgap energies decreased with clay mineral support, averaging 2.50 eV, and absorbing up to 650 nm. The model reaction of terephthalic acid hydroxylation accomplished by photoluminescence spectroscopy demonstrated that KaolTiNb400 presented a higher rate of *OH production, achieving 591 mmol L−1 min−1 compared to pure KaolNb400 173 mmol L−1 min−1. Photodegradation studies revealed significant photocatalytic activity, with the KaolTiNb400 nanocomposite achieving the highest efficiency, demonstrating 90% removal of methylene blue (combining adsorption and degradation) after 24 h of UV light irradiation. These materials also exhibited promising results for the degradation of the antibiotics Triaxon® (40%) and Loratadine (8%), highlighting their potential for organic pollutants’ removal. In both cases the presence of byproducts is detected. Full article
(This article belongs to the Special Issue Advances in Kaolinite Group Clay Minerals and Their Applications)
Show Figures

Figure 1

16 pages, 1167 KB  
Article
Vinyl Chloride Degradation Using Ozone-Based Advanced Oxidation Processes: Bridging Groundwater Treatment and Machine Learning for Smarter Solutions
by Jelena Molnar Jazić, Marko Arsenović, Tajana Simetić, Slaven Tenodi, Marijana Kragulj Isakovski, Aleksandra Tubić and Jasmina Agbaba
Molecules 2025, 30(24), 4737; https://doi.org/10.3390/molecules30244737 - 11 Dec 2025
Viewed by 435
Abstract
Water scarcity is fostering an urgent need to drive research into novel and synergistic water treatment approaches, with advanced oxidation processes (AOPs) emerging as a superior option for treating various contaminants. The spread of vinyl chloride (VC) through groundwater sources raises concerns for [...] Read more.
Water scarcity is fostering an urgent need to drive research into novel and synergistic water treatment approaches, with advanced oxidation processes (AOPs) emerging as a superior option for treating various contaminants. The spread of vinyl chloride (VC) through groundwater sources raises concerns for potable water production due to its toxic and carcinogenic properties. This study integrates ozone-based degradation experiments with data-driven modelling approaches to statistically characterize and predict VC removal under different water-matrix conditions. Ozonation alone enables partial removal of VC from two contaminated groundwater samples, while integration of O3/H2O2 treatment further enhances the degradation efficacy (70–97%). Decreasing VC concentration below the parametric value of 0.5 µg/L requires application of the peroxone process or photodegradation by O3/H2O2/UV for groundwater with higher levels of interfering compounds. Advanced machine learning models and ensemble methods were also tested to enhance predictive accuracy for target molecule degradation, considering water characteristics and treatment parameters as input features. An ensemble of Random Forest and Neural Network predictions yielded the best performance (R2 = 0.99; Mean Squared Error = 10.8), demonstrating the effectiveness of ensemble approaches for complex chemical prediction tasks and highlighting areas for further refinement to improve interpretability and predictive consistency of AOP treatment outcomes. This study not only aligns with the current momentum in AI-assisted AOP research but also advances it by delivering a generalizable, reproducible, and interpretable ensemble model trained on experimentally diverse datasets. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

17 pages, 3061 KB  
Article
The Effect of UV Exposure on Selected Surface Parameters of Wood Containing Graphene Oxide
by Izabela Betlej, Aneta Bombalska, Karolina Lipska, Miron Kaliszewski and Piotr Borysiuk
Molecules 2025, 30(24), 4730; https://doi.org/10.3390/molecules30244730 - 10 Dec 2025
Viewed by 336
Abstract
The study aimed to investigate the effect of UV radiation on the chemical and physical changes in pine and birch wood surfaces impregnated with graphene oxide. The samples were exposed to UV radiation with an intensity of 550 W/m2 for 16, 32, [...] Read more.
The study aimed to investigate the effect of UV radiation on the chemical and physical changes in pine and birch wood surfaces impregnated with graphene oxide. The samples were exposed to UV radiation with an intensity of 550 W/m2 for 16, 32, and 48 h. FTIR analysis revealed photodegradation of lignin in both wood species. It was indicated that graphene oxide impregnation may slow down the rate of lignin oxidation. Graphene oxide impregnation also affected the change in the surface contact angle, with the differences being more pronounced in birch wood than in pine. Color measurements showed that graphene oxide impregnation significantly altered the initial color of the wood (darkening and a shift towards green and blue), and UV radiation intensified the color changes, especially in birch wood. Full article
Show Figures

Graphical abstract

19 pages, 2387 KB  
Article
Green Synthesis of Titanium Dioxide Nanoparticles: Characterization and Evaluation of Their Potential for Photocatalytic and Dielectric Applications
by Manal A. Awad, Khalid M. O. Ortashi, Wadha Alenazi, Fatimah S. Alfaifi and Asma A. Al-Huqail
Molecules 2025, 30(24), 4701; https://doi.org/10.3390/molecules30244701 - 8 Dec 2025
Viewed by 572
Abstract
This study investigated the dielectric and photocatalytic properties of green-synthesized titanium dioxide nanoparticles (TiO2 NPs), which are widely utilized semiconductor materials known for their excellent optical, structural, and electronic characteristics. The TiO2 NPs were synthesized via a green precipitation method from [...] Read more.
This study investigated the dielectric and photocatalytic properties of green-synthesized titanium dioxide nanoparticles (TiO2 NPs), which are widely utilized semiconductor materials known for their excellent optical, structural, and electronic characteristics. The TiO2 NPs were synthesized via a green precipitation method from the aqueous extract of Cymbopogon proximus. A comprehensive set of analytical techniques—UV–Vis spectroscopy, XRD, FTIR, TEM, EDX, and DLS—was employed to determine their optical response, crystalline structure, functional groups, morphology, elemental composition, and particle size distribution. UV–Vis analysis revealed a characteristic absorption peak at 327 nm, and the band gap energy, calculated via the Tauc plot method, was 3.16 eV. The XRD results confirmed the formation of a tetragonal TiO2 phase with an average crystallite size of approximately 4 nm. TEM images further supported the spherical to quasitetragonal morphology and revealed that the aggregated clusters formed conjoint nanostructures. The photocatalytic activity of the TiO2 NPs was evaluated using a 0.5 mM RhB dye solution under UV–visible irradiation. The synthesized nanoparticles achieved a photodegradation efficiency of 97% after 50 h, with a corresponding rate constant of 0.073402 h−1, indicating their potential for effective photocatalytic pollutant removal. Furthermore, the dielectric behavior of the TiO2 NPs was examined at room temperature. The material exhibited a high dielectric constant at low frequencies due to interfacial (Maxwell–Wagner) polarization, along with frequency-dependent AC conductivity attributed to charge-carrier hopping mechanisms. These dielectric properties, combined with strong photocatalytic performance, underscore the suitability of green-synthesized TiO2 NPs for applications in environmental remediation, energy-storage devices, and advanced technologies. Full article
Show Figures

Figure 1

26 pages, 3256 KB  
Article
Facile Hydrothermal Synthesis of a Graphene Oxide–Cerium Oxide Nanocomposite: A Highly Efficient Catalyst for Azo Dye Degradation
by Abdur Rauf, M. I. Khan, Muhammad Ismail, Mohamed Shaban, Nada Alfryyan, Hind Alshaikh, Saima Gul, Asif Nawaz and Sher Bahadar Khan
Catalysts 2025, 15(12), 1097; https://doi.org/10.3390/catal15121097 - 21 Nov 2025
Viewed by 692
Abstract
The pervasive discharge of synthetic dyes into aquatic ecosystems poses a significant threat due to their chemical stability, low biodegradability, and carcinogenicity. Conventional dye remediation methods—such as biological treatments, coagulation, and adsorption—have demonstrated limited efficiency and poor reusability, particularly against resilient azo dyes. [...] Read more.
The pervasive discharge of synthetic dyes into aquatic ecosystems poses a significant threat due to their chemical stability, low biodegradability, and carcinogenicity. Conventional dye remediation methods—such as biological treatments, coagulation, and adsorption—have demonstrated limited efficiency and poor reusability, particularly against resilient azo dyes. Cerium oxide (CeO2) nanoparticles have gained traction as photocatalysts owing to their redox-active surfaces and oxygen storage capabilities; however, issues like particle agglomeration and rapid charge recombination restrict their catalytic performance. To address these challenges, this study presents the novel synthesis of a graphene oxide–cerium oxide (GO-CeO2) nanocomposite via a facile in situ hydrothermal approach, using graphite from lead pencils as a sustainable precursor. The composite was structurally characterized using UV–visible spectroscopy, XRD, FTIR, and TEM. The GO matrix not only facilitates uniform dispersion of CeO2 nanoparticles but also enhances interfacial electron mobility and active site availability. The nanocomposite demonstrated exceptional photocatalytic degradation efficiencies for methyl orange (94%), methyl red (98%), congo red (96%), and 4-nitrophenol (85.6%) under sunlight irradiation, with first-order rate constants significantly exceeding those of pure CeO2. Notably, GO–CeO2 retained strong catalytic activity over four degradation cycles, confirming its recyclability and structural stability. Total organic carbon (TOC) analysis revealed 79% mineralization of methyl orange, outperforming CeO2 (45%), indicating near-complete conversion into benign byproducts. This work contributes a scalable, low-cost, and highly active heterogeneous photocatalyst for wastewater treatment, combining green synthesis principles with improved photodegradation kinetics. Its modular architecture and reusability make it a promising candidate for future environmental remediation technologies and integrated photocatalytic systems. Full article
(This article belongs to the Special Issue Cutting-Edge Catalytic Strategies for Organic Pollutant Mitigation)
Show Figures

Graphical abstract

16 pages, 1960 KB  
Article
Photodynamic Inactivation Enhances Antibiotic Efficacy Without Affecting Drug Stability: Insights into Photosensitizer–Antibiotic Combination Therapies
by Rocío B. Acosta, Edgardo N. Durantini and Mariana B. Spesia
Int. J. Mol. Sci. 2025, 26(23), 11267; https://doi.org/10.3390/ijms262311267 - 21 Nov 2025
Viewed by 559
Abstract
Photodynamic inactivation (PDI) represents a promising strategy to overcome bacterial resistance by combining light, oxygen, and a photosensitizer (PS) to generate reactive oxygen species (ROS) that damage essential cellular components. Combining PDI with conventional antibiotics (ATBs) may further enhance bacterial eradication through complementary [...] Read more.
Photodynamic inactivation (PDI) represents a promising strategy to overcome bacterial resistance by combining light, oxygen, and a photosensitizer (PS) to generate reactive oxygen species (ROS) that damage essential cellular components. Combining PDI with conventional antibiotics (ATBs) may further enhance bacterial eradication through complementary mechanisms. In this study, the tetracationic 5,10,15,20-tetra(4-N,N,N-trimethylammoniophenyl)porphyrin (TMAP4+) was evaluated in combination with ATBs: ampicillin (AMP) and rifampicin (RIF) against Staphylococcus aureus and cephalexin (CFX) against Escherichia coli. The photostability of all agents was assessed under the experimental irradiation conditions, and no evidence of physical interaction between TMAP4+ and the ATBs was detected. AMP and CFX remained photostable, while RIF exhibited only minimal photodegradation under white light, confirming its stability during PDI treatments. The antimicrobial assays revealed that irradiation significantly enhanced the bactericidal activity of TMAP4+. When combined with ATBs, photoactivated TMAP4+ led to a pronounced reduction in the minimum inhibitory concentration (MIC) values of AMP and RIF for S. aureus and of CFX for E. coli, indicating additive effects. Growth curve analyses corroborated these results, showing delayed bacterial growth and decreased maximal optical densities in the combined treatments compared to single agents. Overall, these findings demonstrate that the photodynamic process can potentiate the antimicrobial effect of conventional ATBs without compromising their stability, supporting the potential of PS–ATB combination therapies as a valuable approach to improve antibacterial efficacy and mitigate ATB resistance. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

21 pages, 3224 KB  
Review
Organophosphate Esters in Marine Environments: Source, Transport and Distribution
by Xuemin Xu, Meng Pan, Yingying Wang, Bin Shen, Peng Fang, Jiajia Yang and Hailong Lu
J. Mar. Sci. Eng. 2025, 13(11), 2162; https://doi.org/10.3390/jmse13112162 - 16 Nov 2025
Viewed by 524
Abstract
Organophosphorus esters (OPEs), widely utilized as flame retardants and plasticizers, are physically incorporated into those products and exhibit semi-volatility, resulting in release throughout their lifecycle. The ocean serves as a significant sink and plays a pivotal role in the global distribution and environmental [...] Read more.
Organophosphorus esters (OPEs), widely utilized as flame retardants and plasticizers, are physically incorporated into those products and exhibit semi-volatility, resulting in release throughout their lifecycle. The ocean serves as a significant sink and plays a pivotal role in the global distribution and environmental fate of OPEs. However, the OPEs’ behavior and ecological effects in marine systems are not well understood. This review systematically examines recent advances in the sources, transport pathways, transformation mechanisms, and distributions of OPEs in the marine environment, and it also addresses current research limitations and suggests directions for future work. It is found that OPEs predominantly enter the marine environment through terrestrial input and in situ release; the transportation means include river input, long-range atmospheric transport, air–sea exchange, and oceanic circulation; and the degradation processes of OPEs are recognized as hydrolysis, photodegradation, and biodegradation. The distributions of OPEs in marine environments vary in different media, with their concentrations observed to range from pg m−3 to ng m−3 in marine air, ng L−1 to hundreds of ng L−1 in seawater, and pg g−1 dw to ng g−1 dw in sediments. The distributions of different species of OPEs are affected by many factors, such as compound properties, environmental conditions, and policy regulations. Comparisons between different regions and different seasons need to be further studied, and predictive models should be developed to better assess ecological risks and exposure pathways of OPEs. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

13 pages, 2733 KB  
Article
The Domination of Penicillin G Degradation in Natural Surface Water: Effect of Calcium Ion and Biological Dissolved Organic Matter
by Feng Sheng, Jingyi Ling, Na Mi, Jixing Wan, Lu Yang, Ming Li, Chao Wang and Jiaqi Shi
Antibiotics 2025, 14(11), 1144; https://doi.org/10.3390/antibiotics14111144 - 11 Nov 2025
Viewed by 666
Abstract
Background: Although hydrolysis and photolysis are important pathways for penicillin antibiotics degradation in aquatic ecosystems, the degradation mechanism of penicillin antibiotics in real natural waters is rarely reported. Furthermore, the dominant factors influencing this process are poorly understood. Methods: Therefore, five natural waters [...] Read more.
Background: Although hydrolysis and photolysis are important pathways for penicillin antibiotics degradation in aquatic ecosystems, the degradation mechanism of penicillin antibiotics in real natural waters is rarely reported. Furthermore, the dominant factors influencing this process are poorly understood. Methods: Therefore, five natural waters were selected to simulate both the hydrolysis and photolysis processes of penicillin G (PG) in aqueous environments. Results: Our results demonstrated that the half-life of PG hydrolysis ranged from 44 h to 141 h in natural water, and aqueous Ca2+ ion was the most important factor controlling the hydrolytic degradation of PG. Moreover, several biological dissolved organic matter (DOM, microbial by-product compounds) could also promote the PG hydrolysis reaction. Direct photolysis of PG is dominated in natural water, for which half-life photodegradation rates were 6 h in both blank and natural water, suggesting that salinity and DOM have little influence on penicillin photolysis. The hydrolysis reaction mainly involved the cleavage of the ester bond in the β-lactam ring and a decarboxylation process, while photolysis degradation principally included the hydroxylation of the benzene ring and destruction of the thiazole ring. Conclusions: This study demonstrates the significant factors influencing hydrolysis and photolysis of penicillin antibiotics in an aquatic ecosystem, which can improve the estimates of ecological risk of antibiotic pharmaceuticals in a realistic environment. Full article
Show Figures

Figure 1

15 pages, 2614 KB  
Article
Methylene Blue Photodegradation onto TiO2 Thin Films Sensitized with Curcumin: DFT and Experimental Study
by William Vallejo, Maria Meza, Freider Duran, Carlos Diaz-Uribe, Cesar Quiñones, Eduardo Schott and Ximena Zarate
Chemistry 2025, 7(6), 177; https://doi.org/10.3390/chemistry7060177 - 6 Nov 2025
Viewed by 936
Abstract
Titanium dioxide (TiO2) thin films sensitized with curcumin were fabricated to investigate the influence of sensitization on their spectroscopic, optical, and photocatalytic properties. TiO2 films were prepared using different curcumin concentrations and characterized by FTIR, UV–Vis, and diffuse reflectance spectroscopy [...] Read more.
Titanium dioxide (TiO2) thin films sensitized with curcumin were fabricated to investigate the influence of sensitization on their spectroscopic, optical, and photocatalytic properties. TiO2 films were prepared using different curcumin concentrations and characterized by FTIR, UV–Vis, and diffuse reflectance spectroscopy (DRS). The adsorption kinetics of curcumin on TiO2 were analyzed, and the photocatalytic performance was evaluated through methylene blue (MB) photodegradation under visible-light irradiation. FTIR spectra confirmed the successful anchoring of curcumin onto the TiO2 surface, while optical characterization revealed a significant enhancement in visible-light absorption. The band gap decreased from 3.2 eV (pure TiO2) to 1.8 eV (curcumin-sensitized TiO2). Furthermore, the curcumin adsorption onto semiconductor data fitted the pseudo-second-order kinetic model, yielding a maximum adsorption capacity of 12.0 mg·g−1. Density Functional Theory (DFT) calculations indicated that ligand-to-metal charge transfer (LMCT) transitions are responsible for the improved visible-light response. Photocatalytic tests demonstrated that all curcumin-sensitized TiO2 films were active under visible irradiation, confirming curcumin as an effective natural sensitizer for enhancing TiO2-based photocatalytic coatings. Full article
Show Figures

Figure 1

Back to TopTop