Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = photo-actuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5782 KiB  
Article
Gamma Irradiation-Induced Synthesis of Nano Au-PNiPAAm/PVA Bi-Layered Photo-Thermo-Responsive Hydrogel Actuators with a Switchable Bending Motion
by Nikolina Radojković, Jelena Spasojević, Ivana Vukoje, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić and Aleksandra Radosavljević
Polymers 2025, 17(13), 1774; https://doi.org/10.3390/polym17131774 - 26 Jun 2025
Viewed by 422
Abstract
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel [...] Read more.
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel nanocomposites provide the unique ability to exhibit controlled motion upon light exposure, indicating that the above systems possess the capability of photo–thermal energy conversion. The chosen synthesis approach is a combination of chemical production of gold nanoparticles (AuNPs) followed by gamma radiation formation of crosslinked polymer networks around them, as the final step, which also allows for sterilization in a single technological step. According to the TEM analysis, the gold nanospheres (AuNSs) with mean diameters of around 17 and 30 nm, as well as nanorods (AuNRs) with an aspect ratio of around 4.5, were synthesized and used as nanofillers in the formation of nanocomposites. Their stability within the polymer matrix was confirmed by UV–Vis spectral studies, by the presence of local surface plasmon resonance (LSPR) bands, typical for nanoparticles of various shapes and sizes. Morphological studies (FE-SEM) of hydrogels revealed the formation of a porous structure with PNiPAAm hydrogel as an active layer and PVA hydrogel as a passive layer, as well as a stable interfacial layer with a thickness of around 80 μm. The synthesized bi-layered photoactuators showed a photo–thermal response upon exposure to irradiation of green lasers and lamps that simulate sunlight, resulting in bending motion. This bending response reveals the huge potential of the obtained materials as soft actuators, which are more flexible than rigid systems, making them effective for specific applications where controlled movement and flexibility are essential. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

46 pages, 3258 KiB  
Review
Organic Bioelectronics in Microphysiological Systems: Bridging the Gap Between Biological Systems and Electronic Technologies
by Pauline Coquart, Andrea El Haddad, Dimitrios A. Koutsouras and Johanna Bolander
Biosensors 2025, 15(4), 253; https://doi.org/10.3390/bios15040253 - 16 Apr 2025
Viewed by 1847
Abstract
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology [...] Read more.
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology due to the mixed ionic–electronic conduction and tissue-mimetic mechanical properties of conducting polymers (CPs). These materials enable seamless integration with biological systems across different levels of complexity, from monolayers to complex 3D models, microfluidic chips, and even clinical applications. CPs can be processed into diverse formats, including thin films, hydrogels, 3D scaffolds, and electrospun fibers, allowing the fabrication of advanced bioelectronic devices such as multi-electrode arrays, transistors (EGOFETs, OECTs), ion pumps, and photoactuators. This review examines the integration of CP-based bioelectronics in vivo and in in vitro microphysiological systems, focusing on their ability to monitor key biological events, including electrical activity, metabolic changes, and biomarker concentrations, as well as their potential for electrical, mechanical, and chemical stimulation. We highlight the versatility and biocompatibility of CPs and their role in advancing personalized medicine and regenerative therapies and discuss future directions for organic bioelectronics to bridge the gap between biological systems and electronic technologies. Full article
Show Figures

Figure 1

21 pages, 23995 KiB  
Article
A Hybrid Dual-Axis Solar Tracking System: Combining Light-Sensing and Time-Based GPS for Optimal Energy Efficiency
by Muhammad Hammas, Hassen Fituri, Ali Shour, Ashraf Ali Khan, Usman Ali Khan and Shehab Ahmed
Energies 2025, 18(1), 217; https://doi.org/10.3390/en18010217 - 6 Jan 2025
Cited by 1 | Viewed by 2672
Abstract
Fixed solar panels face significant energy loss as they cannot consistently capture optimal sunlight. Because of that, the overall efficiency of the PV panel will be reduced, and the installation requires larger land space to generate appropriate power; this stems from the use [...] Read more.
Fixed solar panels face significant energy loss as they cannot consistently capture optimal sunlight. Because of that, the overall efficiency of the PV panel will be reduced, and the installation requires larger land space to generate appropriate power; this stems from the use of a dual-axis solar tracking system, which can significantly increase overall energy production. The system is based on the combination of two approaches to precisely track the sunlight: first, using multiple LDRs (light-dependent resistors) as photo sensors to track the position of the sun by balancing the resistivity using a proportional integral deprival (PID) controller, and the second approach using the time-based control for cloudy days when sunlight is diffused, getting the time GPS coordinates and time to calculate the accurate position of the sun by determining the azimuth and altitude angle. This dual system significantly improves energy production by 33.23% compared to fixed systems and eliminates errors during shaded conditions while reducing unnecessary energy use from continuous GPS activation. The prototype uses two linear actuators for both angles and a 100-watt solar panel mounted on the dual-axis platform. Full article
(This article belongs to the Special Issue Power Quality and Hosting Capacity in the Microgrids)
Show Figures

Figure 1

35 pages, 2583 KiB  
Review
A Review of Soft Robotic Actuators and Their Applications in Bioengineering, with an Emphasis on HASEL Actuators’ Future Potential
by Osura Perera, Ranjith Liyanapathirana, Gaetano Gargiulo and Upul Gunawardana
Actuators 2024, 13(12), 524; https://doi.org/10.3390/act13120524 - 18 Dec 2024
Cited by 5 | Viewed by 5800
Abstract
This review will examine the rapidly growing field of soft robotics, with a special emphasis on soft robotic actuators and their applications in bioengineering. Bioengineering has increasingly utilized soft robotics due to their mechanical adaptability and flexibility, with applications including drug delivery, assistive [...] Read more.
This review will examine the rapidly growing field of soft robotics, with a special emphasis on soft robotic actuators and their applications in bioengineering. Bioengineering has increasingly utilized soft robotics due to their mechanical adaptability and flexibility, with applications including drug delivery, assistive and wearable devices, artificial organs, and prosthetics. Soft robotic applications, as well as the responsive mechanisms employed in soft robotics, include electrical, magnetic, thermal, photo-responsive, and pressure-driven actuators. Special attention is given to hydraulically amplified self-healing electrostatic (HASEL) actuators due to their biomimetic properties and innovative combination of dielectric elastomer actuators (DEAs) and hydraulic actuators, which eliminates the limitations of each actuator while introducing capabilities such as self-healing. HASEL actuators combine the fast response and self-sensing features of DEAs, as well as the force generation and adaptability of hydraulic systems. Their self-healing ability from electrical damage not only makes HASELs a unique technology among others but also makes them promising for long-term bioengineering applications. A key contribution of this study is the comparative analysis of the soft actuators, presented in detailed tables. The performance of soft actuators is assessed against a common set of critical parameters, including specific power, strain, maximum actuation stress, energy efficiency, cycle life, and self-healing capabilities. This study has also identified some important research gaps and potential areas where soft robotics may still be developed in the future. Future research should focus on improvements in power supply design, long-term material durability, and enhanced energy efficiency. This review will serve as an intermediate reference for researchers and system designers, guiding the next generation of advancements in soft robotics within bioengineering. Full article
(This article belongs to the Special Issue Soft Robotics in Biomedical Application)
Show Figures

Figure 1

27 pages, 5833 KiB  
Review
All-Visible-Light-Activated Diarylethene Photoswitches
by Ruiji Li, Tao Ou, Li Wen, Yehao Yan, Wei Li, Xulong Qin and Shouxin Wang
Molecules 2024, 29(21), 5202; https://doi.org/10.3390/molecules29215202 - 3 Nov 2024
Cited by 2 | Viewed by 3503
Abstract
Photochromic compounds have attracted much attention for their potential applications in photo-actuators, optoelectronic devices and optical recording techniques. This interest is driven by their key photochemical and photophysical properties, which can be reversibly modulated by light irradiation. Among them, diarylethene compounds have garnered [...] Read more.
Photochromic compounds have attracted much attention for their potential applications in photo-actuators, optoelectronic devices and optical recording techniques. This interest is driven by their key photochemical and photophysical properties, which can be reversibly modulated by light irradiation. Among them, diarylethene compounds have garnered extensive investigation due to their excellent thermal stability of both open- and closed-form isomers, robust fatigue resistance, high photocyclization quantum yield and good photochromic performance in both solution and solid phases. However, a notable limitation in expanding the utility of diarylethene compounds is the necessity for ultraviolet light to induce their photochromism. This requirement poses challenges, as ultraviolet light can be detrimental to biological tissues, and its penetration is often restricted in various media. This review provides an overview of design strategies employed in the development of visible-light-responsive diarylethene compounds. These design strategies serve as a guideline for molecular design, with the potential to significantly broaden the applications of all-visible-light-activated diarylethene compounds in the realms of materials science and biomedical science. Full article
(This article belongs to the Special Issue Materials Chemistry in China—Second Edition)
Show Figures

Figure 1

13 pages, 2076 KiB  
Article
Stereolithography 3D Printing of Stimuli-Responsive Spin Crossover@Polymer Nanocomposites with Optimized Actuating Properties
by Onkar Kulkarni, Alejandro Enriquez-Cabrera, Xinyu Yang, Julie Foncy, Liviu Nicu, Gábor Molnár and Lionel Salmon
Nanomaterials 2024, 14(15), 1243; https://doi.org/10.3390/nano14151243 - 24 Jul 2024
Cited by 3 | Viewed by 1949
Abstract
We used stereolithography to print polymer nanocomposite samples of stimuli-responsive spin crossover materials in the commercial photo-curable printing resins DS3000 and PEGDA-250. The thermomechanical analysis of the SLA-printed objects revealed not only the expected reinforcement of the polymer resins by the introduction of [...] Read more.
We used stereolithography to print polymer nanocomposite samples of stimuli-responsive spin crossover materials in the commercial photo-curable printing resins DS3000 and PEGDA-250. The thermomechanical analysis of the SLA-printed objects revealed not only the expected reinforcement of the polymer resins by the introduction of the stiffer SCO particles, but also a significant mechanical damping, as well as a sizeable linear strain around the spin transition temperatures. For the highest accessible loads (ca. 13–15 vol.%) we measured transformation strains in the range of 1.2–1.5%, giving rise to peaks in the coefficient of thermal expansion as high as 10−3 °C−1, which was exploited in 3D printed bilayer actuators to produce bending movement. The results pave the way for integrating these advanced stimuli-responsive composites into mechanical actuators and 4D printing applications. Full article
Show Figures

Figure 1

37 pages, 21294 KiB  
Review
Shape-Memory Polymers Based on Carbon Nanotube Composites
by Mariana Martins da Silva, Mariana Paiva Proença, José António Covas and Maria C. Paiva
Micromachines 2024, 15(6), 748; https://doi.org/10.3390/mi15060748 - 1 Jun 2024
Cited by 9 | Viewed by 3261
Abstract
For the past two decades, researchers have been exploring the potential benefits of combining shape-memory polymers (SMP) with carbon nanotubes (CNT). By incorporating CNT as reinforcement in SMP, they have aimed to enhance the mechanical properties and improve shape fixity. However, the remarkable [...] Read more.
For the past two decades, researchers have been exploring the potential benefits of combining shape-memory polymers (SMP) with carbon nanotubes (CNT). By incorporating CNT as reinforcement in SMP, they have aimed to enhance the mechanical properties and improve shape fixity. However, the remarkable intrinsic properties of CNT have also opened up new paths for actuation mechanisms, including electro- and photo-thermal responses. This opens up possibilities for developing soft actuators that could lead to technological advancements in areas such as tissue engineering and soft robotics. SMP/CNT composites offer numerous advantages, including fast actuation, remote control, performance in challenging environments, complex shape deformations, and multifunctionality. This review provides an in-depth overview of the research conducted over the past few years on the production of SMP/CNT composites with both thermoset and thermoplastic matrices, with a focus on the unique contributions of CNT to the nanocomposite’s response to external stimuli. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in 'Materials and Processing' 2024)
Show Figures

Figure 1

26 pages, 5185 KiB  
Review
Bioinspired Stimuli-Responsive Materials for Soft Actuators
by Zhongbao Wang, Yixin Chen, Yuan Ma and Jing Wang
Biomimetics 2024, 9(3), 128; https://doi.org/10.3390/biomimetics9030128 - 21 Feb 2024
Cited by 13 | Viewed by 6759
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial [...] Read more.
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries. Full article
(This article belongs to the Special Issue Bioinspired Interfacial Materials)
Show Figures

Graphical abstract

23 pages, 7659 KiB  
Article
Controlling the Morphology in Electrostatic Self-Assembly via Light
by Mohit Agarwal, Alexander Zika, Ralf Schweins and Franziska Gröhn
Polymers 2024, 16(1), 50; https://doi.org/10.3390/polym16010050 - 22 Dec 2023
Cited by 1 | Viewed by 1958
Abstract
Electrostatic self-assembly of macroions is an emerging area with great potential in the development of nanoscale functional objects, where photo-irradiation responsiveness can either elevate or suppress the self-assembly. The ability to control the size and shape of macroion assemblies would greatly facilitate the [...] Read more.
Electrostatic self-assembly of macroions is an emerging area with great potential in the development of nanoscale functional objects, where photo-irradiation responsiveness can either elevate or suppress the self-assembly. The ability to control the size and shape of macroion assemblies would greatly facilitate the fabrication of desired nano-objects that can be harnessed in various applications such as catalysis, drug delivery, bio-sensors, and actuators. Here, we demonstrate that a polyelectrolyte with a size of 5 nm and multivalent counterions with a size of 1 nm can produce well-defined nanostructures ranging in size from 10–1000 nm in an aqueous environment by utilizing the concept of electrostatic self-assembly and other intermolecular non-covalent interactions including dipole–dipole interactions. The pH- and photoresponsiveness of polyelectrolytes and azo dyes provide diverse parameters to tune the nanostructures. Our findings demonstrate a facile approach to fabricating and manipulating self-assembled nanoparticles using light and neutron scattering techniques. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

20 pages, 4589 KiB  
Article
A Printable Magnetic-Responsive Iron Oxide Nanoparticle (ION)-Gelatin Methacryloyl (GelMA) Ink for Soft Bioactuator/Robot Applications
by Han-Wen Yang, Nien-Tzu Yeh, Tzu-Ching Chen, Yu-Chun Yeh, I-Chi Lee and Yi-Chen Ethan Li
Polymers 2024, 16(1), 25; https://doi.org/10.3390/polym16010025 - 20 Dec 2023
Cited by 3 | Viewed by 2292
Abstract
The features or actuation behaviors of nature’s creatures provide concepts for the development of biomimetic soft bioactuators/robots with stimuli-responsive capabilities, design convenience, and environmental adaptivity in various fields. Mimosa pudica is a mechanically responsive plant that can convert pressure to the motion of [...] Read more.
The features or actuation behaviors of nature’s creatures provide concepts for the development of biomimetic soft bioactuators/robots with stimuli-responsive capabilities, design convenience, and environmental adaptivity in various fields. Mimosa pudica is a mechanically responsive plant that can convert pressure to the motion of leaves. When the leaves receive pressure, the occurrence of asymmetric turgor in the extensor and flexor sides of the pulvinus from redistributing the water in the pulvinus causes the bending of the pulvinus. Inspired by the actuation of Mimosa pudica, designing soft bioactuators can convert external stimulations to driving forces for the actuation of constructs which has been receiving increased attention and has potential applications in many fields. 4D printing technology has emerged as a new strategy for creating versatile soft bioactuators/robots by integrating printing technologies with stimuli-responsive materials. In this study, we developed a hybrid ink by combining gelatin methacryloyl (GelMA) polymers with iron oxide nanoparticles (IONs). This hybrid ION-GelMA ink exhibits tunable rheology, controllable mechanical properties, magnetic-responsive behaviors, and printability by integrating the internal metal ion-polymeric chain interactions and photo-crosslinking chemistries. This design offers the inks a dual crosslink mechanism combining the advantages of photocrosslinking and ionic crosslinking to rapidly form the construct within 60 s of UV exposure time. In addition, the magnetic-responsive actuation of ION-GelMA constructs can be regulated by different ION concentrations (0–10%). Furthermore, we used the ION-GelMA inks to fabricate a Mimosa pudica-like soft bioactuator through a mold casting method and a direct-ink-writing (DIW) printing technology. Obviously, the pinnule leaf structure of printed constructs presents a continuous reversible shape transformation in an air phase without any liquid as a medium, which can mimic the motion characteristics of natural creatures. At the same time, compared to the model casting process, the DIW printed bioactuators show a more refined and biomimetic transformation shape that closely resembles the movement of the pinnule leaf of Mimosa pudica in response to stimulation. Overall, this study indicates the proof of concept and the potential prospect of magnetic-responsive ION-GelMA inks for the rapid prototyping of biomimetic soft bioactuators/robots with untethered non-contact magneto-actuations. Full article
(This article belongs to the Special Issue Biodegradable Polymers for Controlled Drug Release and Delivery)
Show Figures

Figure 1

9 pages, 1615 KiB  
Communication
Rational Structural Design of Polymer Pens for Energy-Efficient Photoactuation
by Zhongjie Huang, Le Li, Taishan Yin, Keith A. Brown and YuHuang Wang
Polymers 2023, 15(17), 3595; https://doi.org/10.3390/polym15173595 - 29 Aug 2023
Cited by 2 | Viewed by 1432
Abstract
Photoactuated pens have emerged as promising tools for expedient, mask-free, and versatile nanomanufacturing. However, the challenge of effectively controlling individual pens in large arrays for high-throughput patterning has been a significant hurdle. In this study, we introduce novel generations of photoactuated pens and [...] Read more.
Photoactuated pens have emerged as promising tools for expedient, mask-free, and versatile nanomanufacturing. However, the challenge of effectively controlling individual pens in large arrays for high-throughput patterning has been a significant hurdle. In this study, we introduce novel generations of photoactuated pens and explore the impact of pen architecture on photoactuation efficiency and crosstalk through simulations and experiments. By introducing a thermal insulating layer and incorporating an air ap in the architecture design, we have achieved the separation of pens into independent units. This new design allowed for improved control over the actuation behavior of individual pens, markedly reducing the influence of neighboring pens. The results of our research suggest novel applications of photoactive composite films as advanced actuators across diverse fields, including lithography, adaptive optics, and soft robotics. Full article
Show Figures

Figure 1

16 pages, 4129 KiB  
Article
Fully Room Temperature Reprogrammable, Recyclable, and Photomobile Soft Actuators from Physically Cross-Linked Main-Chain Azobenzene Liquid Crystalline Polymers
by Shengkui Ma, Lei Wang, Yan Zhou and Huiqi Zhang
Molecules 2023, 28(10), 4174; https://doi.org/10.3390/molecules28104174 - 18 May 2023
Cited by 8 | Viewed by 2057
Abstract
Fully room temperature three-dimensional (3D) shape-reprogrammable, recyclable, and photomobile azobenzene (azo) polymer actuators hold much promise in many photoactuating applications, but their development is challenging. Herein, we report on the efficient synthesis of a series of main-chain azo liquid crystalline polymers (LCPs) with [...] Read more.
Fully room temperature three-dimensional (3D) shape-reprogrammable, recyclable, and photomobile azobenzene (azo) polymer actuators hold much promise in many photoactuating applications, but their development is challenging. Herein, we report on the efficient synthesis of a series of main-chain azo liquid crystalline polymers (LCPs) with such performances via Michael addition polymerization. They have both ester groups and two kinds of hydrogen bond-forming groups (i.e., amide and secondary amino groups) and different flexible spacer length in the backbones. Such poly(ester-amide-secondary amine)s (PEAsAs) show low glass transition temperatures (Tg ≤ 18.4 °C), highly ordered smectic liquid crystalline phases, and reversible photoresponsivity. Their uniaxially oriented fibers fabricated via the melt spinning method exhibit good mechanical strength and photoinduced reversible bending/unbending and large stress at room temperature, which are largely influenced by the flexible spacer length of the polymers. Importantly, all these fibers can be easily reprogrammed under strain at 25 °C into stable fiber springs capable of showing a totally different photomobile mode (i.e., unwinding/winding), mainly owing to the presence of low Tg and both dynamic hydrogen bonding and stable crystalline domains (induced by the uniaxial drawing during the fiber formation). They can also be recycled from a solution at 25 °C. This work not only presents the first azo LCPs with 3D shape reprogrammability, recyclability, and photomobility at room temperature, but also provides some important knowledge of their structure–property relationship, which is useful for designing more advanced photodeformable azo polymers. Full article
Show Figures

Figure 1

8 pages, 2213 KiB  
Article
Development of a Quartz-Based Photo-Mobile Polymer Film for Controlled Motion Triggered by Light or Heat
by Riccardo Castagna, Cristiano Riminesi, Maria Savina Pianesi, Simona Sabbatini, Andrea Di Donato, Gautam Singh, Oriano Francescangeli, Emma Cantisani, Paolo Castellini and Daniele Eugenio Lucchetta
Materials 2023, 16(8), 3046; https://doi.org/10.3390/ma16083046 - 12 Apr 2023
Cited by 1 | Viewed by 1669
Abstract
We have developed a photo-mobile polymer film, that combines organic and inorganic materials, to allow for controlled motion that can be triggered by light or heat. Our film is made using recycled quartz and consists of two layers: a multi-acrylate polymer layer and [...] Read more.
We have developed a photo-mobile polymer film, that combines organic and inorganic materials, to allow for controlled motion that can be triggered by light or heat. Our film is made using recycled quartz and consists of two layers: a multi-acrylate polymer layer and a layer containing oxidized 4-amino-phenol and N-Vinyl-1-Pyrrolidinone. The use of quartz in our film also gives it a high temperature resistance of at least 350 °C. When exposed to heat, the film moves in a direction that is independent of the heat source, due to its asymmetrical design. Once the heat source is removed, the film returns to its original position. ATR-FTIR measurements confirm this asymmetrical configuration. This technology may have potential applications in energy harvesting, due to the piezoelectric properties of quartz. Full article
(This article belongs to the Special Issue Advances in Photomobile Materials and Systems)
Show Figures

Figure 1

18 pages, 3440 KiB  
Article
Photo-Thermoelasticity Heat Transfer Modeling with Fractional Differential Actuators for Stimulated Nano-Semiconductor Media
by Sameh Askar, Ahmed E. Abouelregal, Marin Marin and Abdelaziz Foul
Symmetry 2023, 15(3), 656; https://doi.org/10.3390/sym15030656 - 6 Mar 2023
Cited by 22 | Viewed by 2060
Abstract
The term “optical thermoelasticity” is used to describe how the optical properties of a material change when it is heated or deformed mechanically. The issues of effective elastic and heat transfer symmetry are given particular focus. This study gives a new nonlocal theoretical [...] Read more.
The term “optical thermoelasticity” is used to describe how the optical properties of a material change when it is heated or deformed mechanically. The issues of effective elastic and heat transfer symmetry are given particular focus. This study gives a new nonlocal theoretical formulation for a thermo-optical elastic material that can be used to describe how thermomechanical waves and plasma waves relate to the symmetry of semiconductor materials such as silicon or germanium. The suggested model includes the idea of nonlocal elasticity and a modified Moore–Gibson–Thompson (MGT) heat conduction equation with nonsingular fractional derivative operators. The heat transfer equation has been converted and generalized into a nonsingular fractional form based on the concepts of Atangana and Baleanu (AB) using the Mittag–Leffler kernel. The developed model is used to examine the effect of thermal loading by ramp-type heating on a free plane of unbounded semiconductor material symmetries. Using the Laplace transform approach, we may analytically obtain linear solutions for the investigated thermo-photo-elastic fields, such as temperature. The Discussion section includes a set of graphs that were generated using Mathematica to evaluate the impact of the essential parameters. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

10 pages, 2031 KiB  
Communication
Localized Photoactuation of Polymer Pens for Nanolithography
by Zhongjie Huang, Shaopeng Li, Jiaqi Zhang, Huan Pang, Andrey Ivankin and Yuhuang Wang
Molecules 2023, 28(3), 1171; https://doi.org/10.3390/molecules28031171 - 25 Jan 2023
Cited by 8 | Viewed by 2656
Abstract
Localized actuation is an important goal of nanotechnology broadly impacting applications such as programmable materials, soft robotics, and nanolithography. Despite significant recent advances, actuation with high temporal and spatial resolution remains challenging to achieve. Herein, we demonstrate strongly localized photoactuation of polymer pens [...] Read more.
Localized actuation is an important goal of nanotechnology broadly impacting applications such as programmable materials, soft robotics, and nanolithography. Despite significant recent advances, actuation with high temporal and spatial resolution remains challenging to achieve. Herein, we demonstrate strongly localized photoactuation of polymer pens made of polydimethylsiloxane (PDMS) and surface-functionalized short carbon nanotubes based on a fundamental understanding of the nanocomposite chemistry and device innovations in directing intense light with digital micromirrors to microscale domains. We show that local illumination can drive a small group of pens (3 × 3 over 170 μm × 170 μm) within a massively two-dimensional array to attain an out-of-plane motion by more than 7 μm for active molecular printing. The observed effect marks a striking three-order-of-magnitude improvement over the state of the art and suggests new opportunities for active actuation. Full article
Show Figures

Figure 1

Back to TopTop