Bioinspired Stimuli-Responsive Materials for Soft Actuators
Abstract
:1. Introduction
2. Stimuli-Responsive Principles of Soft Actuators
2.1. Fluidic Stimuli
2.2. Electrical Stimuli
2.3. Thermal Stimuli
2.4. Magnetic Stimuli
2.5. Light Stimuli
2.6. Chemical Stimuli
3. Stimuli-Responsive Materials for Soft Actuators
3.1. Electroactive Polymers
3.2. Magnetic Soft Composites
3.3. Stimuli-Responsive Hydrogels and Liquid Crystal Elastomers
3.4. Shape Memory Alloys
3.5. Chemical-Responsive Materials
3.6. Multiple Stimuli Responsive Composites
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shin, Y.C.; Than, N.; Min, S.; Shin, W.; Kim, H.J. Modelling host–microbiome interactions in organ-on-a-chip platforms. Nat. Rev. Bioeng. 2024, 2, 175–191. [Google Scholar] [CrossRef]
- Cao, T.X.; Jin, J.P. Evolution of Flight Muscle Contractility and Energetic Efficiency. Front. Physiol. 2020, 11, 1038. [Google Scholar] [CrossRef]
- Deng, T.; Gao, D.; Song, X.; Zhou, Z.; Zhou, L.; Tao, M.; Jiang, Z.; Yang, L.; Luo, L.; Zhou, A.; et al. A natural biological adhesive from snail mucus for wound repair. Nat. Commun. 2023, 14, 396. [Google Scholar] [CrossRef]
- Sitti, M. Miniature soft robots—Road to the clinic. Nat. Rev. Mater. 2018, 3, 74–75. [Google Scholar] [CrossRef]
- Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153. [Google Scholar] [CrossRef]
- Wallin, T.J.; Pikul, J.; Shepherd, R.F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100. [Google Scholar] [CrossRef]
- Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 2016, 1, eaah3690. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, J.; Lu, B.; Gu, G. 3D-printed PEDOT:PSS for soft robotics. Nat. Rev. Mater. 2023, 8, 604–622. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef]
- Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft Robotic Grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Ng, C.J.X.; Chen, Z.; Zhang, W.; Panjwani, S.; Kowsari, K.; Yang, H.Y.; Ge, Q. Miniature Pneumatic Actuators for Soft Robots by High-Resolution Multimaterial 3D Printing. Adv. Mater. Technol. 2019, 4, 1900427. [Google Scholar] [CrossRef]
- Liu, Y.H.; Luo, K.; Wang, S.; Song, X.D.; Zhang, Z.J.; Tian, Q.; Hu, H.Y. A Soft and Bistable Gripper with Adjustable Energy Barrier for Fast Capture in Space. Soft Robot. 2023, 10, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Mirfakhrai, T.; Madden, J.D.W.; Baughman, R.H. Polymer artificial muscles. Mater. Today 2007, 10, 30–38. [Google Scholar] [CrossRef]
- Christianson, C.; Goldberg, N.N.; Deheyn, D.D.; Cai, S.Q.; Tolley, M.T. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 2018, 3, eaat1893. [Google Scholar] [CrossRef]
- Hines, L.; Petersen, K.; Lum, G.Z.; Sitti, M. Soft Actuators for Small-Scale Robotics. Adv. Mater. 2017, 29, 1603483. [Google Scholar] [CrossRef]
- Feng, M.; Yang, D.Z.; Ren, L.; Wei, G.W.; Gu, G.Y. X-crossing pneumatic artificial muscles. Sci. Adv. 2023, 9, eadi7133. [Google Scholar] [CrossRef]
- Xie, Z.X.; Yuan, F.Y.; Liu, J.Q.; Tian, L.F.; Chen, B.H.; Fu, Z.Q.; Mao, S.Z.; Jin, T.T.; Wang, Y.; He, X.; et al. Octopus-inspired sensorized soft arm for environmental interaction. Sci. Robot. 2023, 8, eadh7852. [Google Scholar] [CrossRef]
- Van Meerbeek, I.M.; De Sa, C.M.; Shepherd, R.F. Soft optoelectronic sensory foams with proprioception. Sci. Robot. 2018, 3, eaau2489. [Google Scholar] [CrossRef]
- Bai, H.D.; Li, S.; Barreiros, J.; Tu, Y.Q.; Pollock, C.R.; Shepherd, R.F. Stretchable distributed fiber-optic sensors. Science 2020, 370, 848–852. [Google Scholar] [CrossRef]
- Shih, B.; Shah, D.; Li, J.X.; Thuruthel, T.G.; Park, Y.L.; Iida, F.; Bao, Z.A.; Kramer-Bottiglio, R.; Tolley, M.T. Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 2020, 5, eaaz9239. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.Y.; Deswal, S.; Christou, A.; Sandamirskaya, Y.; Kaboli, M.; Dahiya, R. Neuro-inspired electronic skin for robots. Sci. Robot. 2022, 7, eabl7344. [Google Scholar] [CrossRef]
- Justus, K.B.; Hellebrekers, T.; Lewis, D.D.; Wood, A.; Ingham, C.; Majidi, C.; Leduc, P.R.; Tan, C. A biosensing soft robot: Autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci. Robot. 2019, 4, eaax0765. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Parada, G.A.; Liu, S.D.; Zhao, X.H. Ferromagnetic soft continuum robots. Sci. Robot. 2019, 4, eaax7329. [Google Scholar] [CrossRef] [PubMed]
- Son, D.; Gilbert, H.; Sitti, M. Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy. Soft Robot. 2020, 7, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Han, M.D.; Chen, L.; Aras, K.; Liang, C.M.; Chen, X.X.; Zhao, H.B.; Li, K.; Faye, N.R.; Sun, B.H.; Kim, J.H.; et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nat. Biomed. Eng. 2020, 4, 997–1009. [Google Scholar] [CrossRef]
- Gu, G.Y.R.; Zhang, N.B.; Xu, H.P.; Lin, S.T.; Yu, Y.; Chai, G.H.; Ge, L.S.; Yang, H.L.; Shao, Q.W.; Sheng, X.J.; et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. 2023, 7, 589–598. [Google Scholar] [CrossRef]
- Pal, A.; Restrepo, V.; Goswami, D.; Martinez, R.V. Exploiting Mechanical Instabilities in Soft Robotics: Control, Sensing, and Actuation. Adv. Mater. 2021, 33, 2006939. [Google Scholar] [CrossRef]
- Ma, K.Y.; Chirarattananon, P.; Fuller, S.B.; Wood, R.J. Controlled Flight of a Biologically Inspired, Insect-Scale Robot. Science 2013, 340, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.Y.; Hu, W.Q.; Dong, X.G.; Sitti, M. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 2019, 10, 2703. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. Soft Robotics. Angew. Chem. Int. Ed. 2018, 57, 4258–4273. [Google Scholar] [CrossRef]
- Gu, G.Y.; Zou, J.; Zhao, R.K.; Zhao, X.H.; Zhu, X.Y. Soft wall-climbing robots. Sci. Robot. 2018, 3, eaat2874. [Google Scholar] [CrossRef]
- Cao, J.W.; Qin, L.; Liu, J.; Ren, Q.Y.; Foo, C.C.; Wang, H.Q.; Lee, H.P.; Zhu, J. Untethered soft robot capable of stable locomotion using soft electrostatic actuators. Extreme Mech. Lett. 2018, 21, 9–16. [Google Scholar] [CrossRef]
- Graule, M.A.; Chirarattananon, P.; Fuller, S.B.; Jafferis, N.T.; Ma, K.Y.; Spenko, M.; Kornbluh, R.; Wood, R.J. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science 2016, 352, 978–982. [Google Scholar] [CrossRef]
- Ji, X.B.; Liu, X.C.; Cacucciolo, V.; Imboden, M.; Civet, Y.; El Haitami, A.; Cantin, S.; Perriard, Y.; Shea, H. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 2019, 4, eaaz6451. [Google Scholar] [CrossRef]
- De Volder, M.; Reynaerts, D. Pneumatic and hydraulic microactuators: A review. J. Micromech. Microeng. 2010, 20, 043001. [Google Scholar] [CrossRef]
- Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd, R.F.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C.J.; Whitesides, G.M. Pneumatic Networks for Soft Robotics that Actuate Rapidly. Adv. Funct. Mater. 2014, 24, 2163–2170. [Google Scholar] [CrossRef]
- Shepherd, R.F.; Ilievski, F.; Choi, W.; Morin, S.A.; Stokes, A.A.; Mazzeo, A.D.; Chen, X.; Wang, M.; Whitesides, G.M. Multigait soft robot. Proc. Natl. Acad. Sci. USA 2011, 108, 20400–20403. [Google Scholar] [CrossRef]
- Dye, D. SHAPE MEMORY ALLOYS Towards practical actuators. Nat. Mater. 2015, 14, 760–761. [Google Scholar] [CrossRef]
- Rodrigue, H.; Wang, W.; Han, M.W.; Kim, T.J.Y.; Ahn, S.H. An Overview of Shape Memory Alloy-Coupled Actuators and Robots. Soft Robot. 2017, 4, 3–15. [Google Scholar] [CrossRef]
- Seok, S.; Onal, C.D.; Cho, K.J.; Wood, R.J.; Rus, D.; Kim, S. Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators. IEEE/ASME Trans. Mechatron. 2013, 18, 1485–1497. [Google Scholar] [CrossRef]
- Aksoy, B.; Shea, H. Reconfigurable and Latchable Shape-Morphing Dielectric Elastomers Based on Local Stiffness Modulation. Adv. Funct. Mater. 2020, 30, 2001597. [Google Scholar] [CrossRef]
- Lima, M.D.; Li, N.; de Andrade, M.J.; Fang, S.L.; Oh, J.; Spinks, G.M.; Kozlov, M.E.; Haines, C.S.; Suh, D.; Foroughi, J.; et al. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles. Science 2012, 338, 928–932. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.K.; de Andrade, M.J.; Fang, S.L.; Wang, X.M.; Gao, E.L.; Li, N.; Kim, S.H.; Wang, H.Z.; Hou, C.Y.; Zhang, Q.H.; et al. Sheath-run artificial muscles. Science 2019, 365, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Kanik, M.; Orguc, S.; Varnavides, G.; Kim, J.; Benavides, T.; Gonzalez, D.; Akintilo, T.; Tasan, C.C.; Chandrakasan, A.P.; Fink, Y.; et al. Strain-programmable fiber-based artificial muscle. Science 2019, 365, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.K.; Neri, W.; Zakri, C.; Merzeau, P.; Kratz, K.; Lendlein, A.; Poulin, P. Shape memory nanocomposite fibers for untethered high-energy microengines. Science 2019, 365, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Haines, C.S.; Lima, M.D.; Li, N.; Spinks, G.M.; Foroughi, J.; Madden, J.D.W.; Kim, S.H.; Fang, S.L.; de Andrade, M.J.; Göktepe, F.; et al. Artificial Muscles from Fishing Line and Sewing Thread. Science 2014, 343, 868–872. [Google Scholar] [CrossRef]
- Wang, Z.B.; Wu, Y.G.; Wu, D.Z.; Sun, D.H.; Lin, L.W. Soft magnetic composites for highly deformable actuators by four-dimensional electrohydrodynamic printing. Compos. Part B Eng. 2022, 231, 109596. [Google Scholar] [CrossRef]
- Wang, Z.B.; Xu, Z.J.; Zhu, B.; Zhang, Y.; Lin, J.W.; Wu, Y.G.; Wu, D.Z. Design, fabrication and application of magnetically actuated micro/nanorobots: A review. Nanotechnology 2022, 33, 152001. [Google Scholar] [CrossRef]
- Wang, Z.B.; Wu, Y.G.; Zhu, B.; Chen, Q.X.; Wang, L.Y.; Zhao, Y.; Sun, D.H.; Zheng, J.Y.; Wu, D.Z. A magnetic soft robot with multimodal sensing capability by multimaterial direct ink writing. Addit. Manuf. 2023, 61, 103320. [Google Scholar] [CrossRef]
- Ju, Y.W.; Hu, R.; Xie, Y.; Yao, J.P.; Li, X.X.; Lv, Y.L.; Han, X.T.; Cao, Q.L.; Li, L. Reconfigurable magnetic soft robots with multimodal locomotion. Nano Energy 2021, 87, 106169. [Google Scholar] [CrossRef]
- Verra, M.; Firrincieli, A.; Chiurazzi, M.; Mariani, A.; Lo Secco, G.; Forcignanò, E.; Koulaouzidis, A.; Menciassi, A.; Dario, P.; Ciuti, G.; et al. Robotic-Assisted Colonoscopy Platform with a Magnetically-Actuated Soft-Tethered Capsule. Cancers 2020, 12, 2485. [Google Scholar] [CrossRef] [PubMed]
- Yim, S.; Sitti, M. Design and Rolling Locomotion of a Magnetically Actuated Soft Capsule Endoscope. IEEE Trans. Robot. 2012, 28, 183–194. [Google Scholar] [CrossRef]
- Wang, X.; Yang, B.S.; Tan, D.; Li, Q.; Song, B.; Wu, Z.S.; del Campo, A.; Kappl, M.; Wang, Z.K.; Gorb, S.N.; et al. Bioinspired footed soft robot with unidirectional all-terrain mobility. Mater. Today 2020, 35, 42–49. [Google Scholar] [CrossRef]
- Wang, W.; Xiang, C.X.; Zhu, Q.; Zhong, W.B.; Li, M.F.; Yan, K.L.; Wang, D. Multistimulus Responsive Actuator with GO and Carbon Nanotube/PDMS Bilayer Structure for Flexible and Smart Devices. ACS Appl. Mater. Inter. 2018, 10, 27215–27223. [Google Scholar] [CrossRef]
- Li, X.K.; Liu, J.Z.; Li, D.D.; Huang, S.Q.; Huang, K.; Zhang, X.X. Bioinspired Multi-Stimuli Responsive Actuators with Synergistic Color- and Morphing-Change Abilities. Adv. Sci. 2021, 8, 2101295. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.M.; Zhang, S.; Wei, Y.; He, X.M.; Wang, J.L.; Zhang, Y.Y.; Ji, Y. Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. Matter 2021, 4, 3354–3365. [Google Scholar] [CrossRef]
- Yarali, E.; Baniasadi, M.; Zolfagharian, A.; Chavoshi, M.; Arefi, F.; Hossain, M.; Bastola, A.; Ansari, M.; Foyouzat, A.; Dabbagh, A.; et al. Magneto-/electro-responsive polymers toward manufacturing, characterization, and biomedical/soft robotic applications. Appl. Mater. Today 2022, 26, 101306. [Google Scholar] [CrossRef]
- Gorissen, B.; Milana, E.; Baeyens, A.; Broeders, E.; Christiaens, J.; Collin, K.; Reynaerts, D.; De Volder, M. Hardware Sequencing of Inflatable Nonlinear Actuators for Autonomous Soft Robots. Adv. Mater. 2019, 31, 1804598. [Google Scholar] [CrossRef]
- Li, S.G.; Vogt, D.M.; Rus, D.; Wood, R.J. Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. USA 2017, 114, 13132–13137. [Google Scholar] [CrossRef]
- Siéfert, E.; Reyssat, E.; Bico, J.; Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 2019, 18, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.F.; Bodaghi, M. Direct Fused Deposition Modeling 4D Printing and Programming of Thermoresponsive Shape Memory Polymers with Autonomous 2D-to-3D Shape Transformations. Adv. Eng. Mater. 2023, 25, 2300334. [Google Scholar] [CrossRef]
- Mutlu, R.; Alici, G.; Li, W.H. A Soft Mechatronic Microstage Mechanism Based on Electroactive Polymer Actuators. IEEE/ASME Trans. Mechatron. 2016, 21, 1467–1478. [Google Scholar] [CrossRef]
- Hajiesmaili, E.; Clarke, D.R. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nat. Commun. 2019, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Chortos, A.; Hajiesmaili, E.; Morales, J.; Clarke, D.R.; Lewis, J.A. 3D Printing of Interdigitated Dielectric Elastomer Actuators. Adv. Funct. Mater. 2020, 30, 1907375. [Google Scholar] [CrossRef]
- Pelrine, R.; Kornbluh, R.; Pei, Q.B.; Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 2000, 287, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Duduta, M.; Hajiesmaili, E.; Zhao, H.; Wood, R.J.; Clarke, D.R. Realizing the potential of dielectric elastomer artificial muscles. Proc. Natl. Acad. Sci. USA 2019, 116, 2476–2481. [Google Scholar] [CrossRef]
- Kotikian, A.; Truby, R.L.; Boley, J.W.; White, T.J.; Lewis, J.A. 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order. Adv. Mater. 2018, 30, 1706164. [Google Scholar] [CrossRef]
- Jin, B.J.; Song, H.J.; Jiang, R.Q.; Song, J.Z.; Zhao, Q.; Xie, T. Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Sci. Adv. 2018, 4, eaao3865. [Google Scholar] [CrossRef]
- Chen, T.; Bilal, O.R.; Shea, K.; Daraio, C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl. Acad. Sci. USA 2018, 115, 5698–5702. [Google Scholar] [CrossRef]
- Kotikian, A.; McMahan, C.; Davidson, E.C.; Muhammad, J.M.; Weeks, R.D.; Daraio, C.; Lewis, J.A. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 2019, 4, eaax7044. [Google Scholar] [CrossRef]
- Wang, Y.S.; Huang, W.W.; Wang, Y.; Mu, X.; Ling, S.J.; Yu, H.P.; Chen, W.S.; Guo, C.C.; Watson, M.C.; Yu, Y.J.; et al. Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior. Proc. Natl. Acad. Sci. USA 2020, 117, 14602–14608. [Google Scholar] [CrossRef]
- Bai, R.B.; Bhattacharya, K. Photomechanical coupling in photoactive nematic elastomers. J. Mech. Phys. Solids 2020, 144, 104115. [Google Scholar] [CrossRef]
- Kim, Y.; Zhao, X.H. Magnetic Soft Materials and Robots. Chem. Rev. 2022, 122, 5317–5364. [Google Scholar] [CrossRef]
- Bastola, A.K.; Hossain, M. A review on magneto-mechanical characterizations of magnetorheological elastomers. Compos. Part B Eng. 2020, 200, 108348. [Google Scholar] [CrossRef]
- Bastola, A.K.; Hossain, M. The shape—Morphing performance of magnetoactive soft materials. Mater. Des. 2021, 211, 110172. [Google Scholar] [CrossRef]
- Pena-Francesch, A.; Zhang, Z.; Marks, L.; Cabanach, P.; Richardson, K.; Sheehan, D.; McCracken, J.; Shahsavan, H.; Sitti, M. Macromolecular radical networks for organic soft magnets. Matter 2024, 7, 1–14. [Google Scholar] [CrossRef]
- Lu, H.J.; Zhang, M.; Yang, Y.Y.; Huang, Q.; Fukuda, T.; Wang, Z.K.; Shen, Y.J. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 2018, 9, 3944. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.G.; Lum, G.Z.; Hu, W.Q.; Zhang, R.J.; Ren, Z.Y.; Onck, P.R.; Sitti, M. Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination. Sci. Adv. 2020, 6, eabc9323. [Google Scholar] [CrossRef]
- Lum, G.Z.; Ye, Z.; Dong, X.G.; Marvi, H.; Erin, O.; Hu, W.Q.; Sitti, M. Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. USA 2016, 113, E6007–E6015. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.R.; Boehler, Q.; Cui, H.Y.; Secchi, E.; Savorana, G.; De Marco, C.; Gervasoni, S.; Peyron, Q.; Huang, T.Y.; Pane, S.; et al. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 2020, 11, 2637. [Google Scholar] [CrossRef]
- Nelson, B.J.; Kaliakatsos, I.K.; Abbott, J.J. Microrobots for Minimally Invasive Medicine. Annu. Rev. Biomed. Eng. 2010, 12, 55–85. [Google Scholar] [CrossRef]
- Huang, H.W.; Uslu, F.E.; Katsamba, P.; Lauga, E.; Sakar, M.S.; Nelson, B.J. Adaptive locomotion of artificial microswimmers. Sci. Adv. 2019, 5, eaau1532. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jang, Y.; Choe, J.K.; Lee, S.; Song, H.; Lee, J.P.; Lone, N.; Kim, J. 3D-printed programmable tensegrity for soft robotics. Sci. Robot. 2020, 5, aay9024. [Google Scholar] [CrossRef]
- Cao, L.X.; Yu, D.H.; Xia, Z.S.; Wan, H.Y.; Liu, C.K.; Yin, T.; He, Z.Z. Ferromagnetic Liquid Metal Putty-Like Material with Transformed Shape and Reconfigurable Polarity. Adv. Mater. 2020, 32, 2000827. [Google Scholar] [CrossRef]
- Sitti, M.; Wiersma, D.S. Pros and Cons: Magnetic versus Optical Microrobots. Adv. Mater. 2020, 32, 1906766. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Xu, B.; Sun, S.T.; Wei, J.; Wu, L.M.; Yu, Y.L. Humidity- and Photo-Induced Mechanical Actuation of Cross-Linked Liquid Crystal Polymers. Adv. Mater. 2017, 29, 1604792. [Google Scholar] [CrossRef]
- Lancia, F.; Ryabchun, A.; Nguindjel, A.D.; Kwangmettatam, S.; Katsonis, N. Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat. Commun. 2019, 10, 4819. [Google Scholar] [CrossRef] [PubMed]
- Shahsavan, H.; Aghakhani, A.; Zeng, H.; Guo, Y.B.; Davidson, Z.S.; Priimagi, A.; Sitti, M. Bioinspired underwater locomotion of light-driven liquid crystal gels. Proc. Natl. Acad. Sci. USA 2020, 117, 5125–5133. [Google Scholar] [CrossRef] [PubMed]
- Kuenstler, A.S.; Kim, H.; Hayward, R.C. Liquid Crystal Elastomer Waveguide Actuators. Adv. Mater. 2019, 31, 1901216. [Google Scholar] [CrossRef]
- Yang, H.; Leow, W.R.; Wang, T.; Wang, J.; Yu, J.C.; He, K.; Qi, D.P.; Wan, C.J.; Chen, X.D. 3D Printed Photoresponsive Devices Based on Shape Memory Composites. Adv. Mater. 2017, 29, 1701627. [Google Scholar] [CrossRef]
- Liu, J.A.C.; Gillen, J.H.; Mishra, S.R.; Evans, B.A.; Tracy, J.B. Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics. Sci. Adv. 2019, 5, eaaw2897. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Y.; Wei, A.R.; Xiao, P.; Liang, Y.; Lu, W.; Chen, C.Y.; Zhang, C.; Yang, G.L.; Yao, H.M.; et al. Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics. Nat. Commun. 2020, 11, 4359. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Chang, J.K.; Aurelio, D.; Li, W.; Kim, B.J.; Kim, J.H.; Liscidini, M.; Rogers, J.A.; Omenetto, F.G. Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures. Nat. Commun. 2021, 12, 1651. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.F.; Ciou, J.H.; Liu, Y.Z.; Jiang, Y.; Lee, P.S. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 2019, 5, eaaw7956. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lau, G.C.; Yuan, H.; Aggarwal, A.; Dominguez, V.L.; Liu, S.P.; Sai, H.; Palmer, L.C.; Sather, N.A.; Pearson, T.J.; et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci. Robot. 2020, 5, eabb9822. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Iscen, A.; Sai, H.; Sato, K.; Sather, N.A.; Chin, S.M.; Alvarez, Z.; Palmer, L.C.; Schatz, G.C.; Stupp, S. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation. Nat. Mater. 2020, 19, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Zhang, R.; Mou, L.L.; de Andrade, M.J.; Hu, X.Y.; Yu, K.Q.; Sun, J.; Jia, T.J.; Dou, Y.Y.; Chen, H.; et al. Photothermal Bimorph Actuators with In-Built Cooler for Light Mills, Frequency Switches, and Soft Robots. Adv. Funct. Mater. 2019, 29, 1808995. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.Q.; Liu, Y.; Han, B.; Wang, H.; Han, D.D.; Wang, J.N.; Zhang, Y.L.; Sun, H.B. Direct Laser Writing of Superhydrophobic PDMS Elastomers for Controllable Manipulation via Marangoni Effect. Adv. Funct. Mater. 2017, 27, 1702946. [Google Scholar] [CrossRef]
- Li, M.T.; Wang, X.; Dong, B.; Sitti, M. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator. Nat. Commun. 2020, 11, 3988. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.L.; Du, C.; Dai, Y.H.; Daab, M.; Matejdes, M.; Breu, J.; Hong, W.; Zheng, Q.; Wu, Z.L. Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation. Nat. Commun. 2020, 11, 5166. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Xuan, C.; Qian, X.S.; Alsaid, Y.; Hua, M.T.; Jin, L.H.; He, X.M. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 2019, 4, eaax7112. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Chen, A.P.; Naidu, A.; Napier, B.S.; Li, W.Y.; Rodriguez, C.L.; Crooker, S.A.; Omenetto, F.G. Flexible magnetic composites for light-controlled actuation and interfaces. Proc. Natl. Acad. Sci. USA 2018, 115, 8119–8124. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Kim, T.; Guidetti, G.; Wang, Y.; Omenetto, F.G. Optomechanically Actuated Microcilia for Locally Reconfigurable Surfaces. Adv. Mater. 2020, 32, 2004147. [Google Scholar] [CrossRef] [PubMed]
- Han, D.D.; Zhang, Y.L.; Ma, J.N.; Liu, Y.Q.; Han, B.; Sun, H.B. Light-Mediated Manufacture and Manipulation of Actuators. Adv. Mater. 2016, 28, 8328–8343. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yang, J.J.; Zhang, X.; Feng, Y.Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: Design, fabrication, and properties. Mater. Horiz. 2021, 8, 728–757. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Chen, Z.D.; Han, D.D.; Mao, J.W.; Ma, J.N.; Zhang, Y.L.; Sun, H.B. Bioinspired Soft Robots Based on the Moisture-Responsive Graphene Oxide. Adv. Sci. 2021, 8, 2002464. [Google Scholar] [CrossRef]
- Lin, H.J.; Zhang, S.Y.; Xiao, Y.; Zhang, C.J.; Zhu, J.X.; Dunlop, J.W.C.; Yuan, J.Y. Organic Molecule-Driven Polymeric Actuators. Macromol. Rapid Commun. 2019, 40, 1800896. [Google Scholar] [CrossRef]
- Tan, H.Y.; Liang, S.M.; Yu, X.N.; Song, X.D.; Huang, W.; Zhang, L.D. Controllable kinematics of soft polymer actuators induced by interfacial patterning. J. Mater. Chem. C 2019, 7, 5410–5417. [Google Scholar] [CrossRef]
- Zhang, L.D.; Naumov, P.; Du, X.M.; Hu, Z.G.; Wang, J. Vapomechanically Responsive Motion of Microchannel-Programmed Actuators. Adv. Mater. 2017, 29, 1702231. [Google Scholar] [CrossRef]
- Bi, Y.H.; Du, X.X.; He, P.P.; Wang, C.Y.; Liu, C.; Guo, W.W. Smart Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film Actuators Exhibiting Programmable Responsive and Reversible Macroscopic Shape Deformations. Small 2020, 16, 1906998. [Google Scholar] [CrossRef]
- Wang, H.S.; Cho, J.; Song, D.S.; Jang, J.H.; Jho, J.Y.; Park, J.H. High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer Metal Composites with Nanodispersed Metal Electrodes. ACS Appl. Mater. Inter. 2017, 9, 21998–22005. [Google Scholar] [CrossRef]
- Yan, Y.S.; Santaniello, T.; Bettini, L.G.; Minnai, C.; Bellacicca, A.; Porotti, R.; Denti, I.; Faraone, G.; Merlini, M.; Lenardi, C.; et al. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes. Adv. Mater. 2017, 29, 1606109. [Google Scholar] [CrossRef]
- Barpuzary, D.; Ham, H.; Park, D.; Kim, K.; Park, M.J. Smart Bioinspired Actuators: Crawling, Linear, and Bending Motions through a Multilayer Design. ACS Appl. Mater. Inter. 2021, 13, 50381–50391. [Google Scholar] [CrossRef]
- Zhao, H.C.; Hussain, A.M.; Duduta, M.; Vogt, D.M.; Wood, R.J.; Clarke, D.R. Compact Dielectric Elastomer Linear Actuators. Adv. Funct. Mater. 2018, 28, 1804328. [Google Scholar] [CrossRef]
- Chortos, A.; Mao, J.; Mueller, J.; Hajiesmaili, E.; Lewis, J.A.; Clarke, D.R. Printing Reconfigurable Bundles of Dielectric Elastomer Fibers. Adv. Funct. Mater. 2021, 31, 2010643. [Google Scholar] [CrossRef]
- Haider, H.; Yang, C.H.; Zheng, W.J.; Yang, J.H.; Wang, M.X.; Yang, S.; Zrínyi, M.; Osada, Y.; Suo, Z.G.; Zhang, Q.Q.; et al. Exceptionally tough and notch-insensitive magnetic hydrogels. Soft Matter 2015, 11, 8253–8261. [Google Scholar] [CrossRef] [PubMed]
- Schmauch, M.M.; Mishra, S.R.; Evans, B.A.; Velevt, O.D.; Tracy, J.B. Chained Iron Microparticles for Directionally Controlled Actuation of Soft Robots. ACS Appl. Mater. Inter. 2017, 9, 11895–11901. [Google Scholar] [CrossRef]
- Hu, W.Q.; Lum, G.Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85. [Google Scholar] [CrossRef]
- Kim, Y.; Yuk, H.; Zhao, R.K.; Chester, S.A.; Zhao, X.H. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018, 558, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.L.; Su, Y.X.; Yin, H.; Li, C.; Zhu, M.Q. Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano Energy 2021, 85, 105965. [Google Scholar] [CrossRef]
- Gao, Y.; Han, X.Y.; Chen, J.J.; Pan, Y.D.; Yang, M.; Lu, L.H.; Yang, J.; Suo, Z.G.; Lu, T.Q. Hydrogel-mesh composite for wound closure. Proc. Natl. Acad. Sci. USA 2021, 118, e2103457118. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.S.; Zhao, Y.S.; Alsaid, Y.; Wang, X.; Hua, M.T.; Galy, T.; Gopalakrishna, H.; Yang, Y.Y.; Cui, J.S.; Liu, N.; et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 2019, 14, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- He, Q.G.; Wang, Z.J.; Wang, Y.; Wang, Z.J.; Li, C.H.; Annapooranan, R.; Zeng, J.; Chen, R.K.; Cai, S.Q. Electrospun liquid crystal elastomer microfiber actuator. Sci. Robot. 2021, 6, eabi9704. [Google Scholar] [CrossRef] [PubMed]
- Song, C.J.; Zhang, Y.H.; Bao, J.Y.; Wang, Z.Z.; Zhang, L.Y.; Sun, J.; Lan, R.C.; Yu, Z.; Zhu, S.Q.; Yang, H. Light-Responsive Programmable Shape-Memory Soft Actuator Based on Liquid Crystalline Polymer/Polyurethane Network. Adv. Funct. Mater. 2023, 33, 2213771. [Google Scholar] [CrossRef]
- Zheng, K.; Gao, E.L.; Tian, B.; Liang, J.; Liu, Q.; Xue, E.B.; Shao, Q.; Wu, W. Modularized Paper Actuator Based on Shape Memory Alloy, Printed Heater, and Origami. Adv. Intell. Syst. 2022, 4, 2200194. [Google Scholar] [CrossRef]
- Ma, J.N.; Zhang, Y.L.; Han, D.D.; Mao, J.W.; Chen, Z.D.; Sun, H.B. Programmable deformation of patterned bimorph actuator swarm. Natl. Sci. Rev. 2020, 7, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Kang, D.; Lee, H.; Koh, W.G. Multi-stimuli responsive and reversible soft actuator engineered by layered fibrous matrix and hydrogel micropatterns. Chem. Eng. J. 2022, 427, 130879. [Google Scholar] [CrossRef]
- Kim, O.; Kim, S.J.; Park, M.J. Low-voltage-driven soft actuators. Chem. Commun. 2018, 54, 4895–4904. [Google Scholar] [CrossRef]
- Park, M.; Chun, Y.; Kim, S.; Sohn, K.Y.; Jeon, M. Effects of Hexagonal Boron Nitride Insulating Layers on the Driving Performance of Ionic Electroactive Polymer Actuators for Light-Weight Artificial Muscles. Int. J. Mol. Sci. 2022, 23, 4981. [Google Scholar] [CrossRef]
- Yang, D.; Kong, X.X.; Ni, Y.F.; Ren, Z.W.; Li, S.Y.; Nie, J.H.; Chen, X.Y.; Zhang, L.Q. Ionic polymer-metal composites actuator driven by the pulse current signal of triboelectric nanogenerator. Nano Energy 2019, 66, 104139. [Google Scholar] [CrossRef]
- Ma, S.Q.; Zhang, Y.P.; Liang, Y.H.; Ren, L.; Tian, W.J.; Ren, L.Q. High-Performance Ionic-Polymer-Metal Composite: Toward Large-Deformation Fast-Response Artificial Muscles. Adv. Funct. Mater. 2020, 30, 1908508. [Google Scholar] [CrossRef]
- Cheng, Z.Y.; Zhang, Q.M. Field-activated electroactive polymers. MRS Bull. 2008, 33, 183–187. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, E.; Plamthottam, R.; Pei, Q.B. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations. Acc. Chem. Res. 2019, 52, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.G.; Liu, L.W.; Liu, Y.J.; Leng, J.S. Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Adv. Intell. Syst. 2021, 3, 2000282. [Google Scholar] [CrossRef]
- Sun, W.J.; Li, B.; Zhang, F.; Fang, C.L.; Lu, Y.J.; Gao, X.; Cao, C.J.; Chen, G.M.; Zhang, C.; Wang, Z.L. TENG-Bot: Triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer. Nano Energy 2021, 85, 106012. [Google Scholar] [CrossRef]
- Youn, J.H.; Jeong, S.M.; Hwang, G.; Kim, H.; Hyeon, K.; Park, J.; Kyung, K.U. Dielectric Elastomer Actuator for Soft Robotics Applications and Challenges. Appl. Sci. 2020, 10, 640. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.S.; Luo, M.; Chen, H.L.; Yang, Z.C.; Li, D.C.; Li, P.F. A bio-inspired soft-rigid hybrid actuator made of electroactive dielectric elastomers. Appl. Mater. Today 2020, 21, 100814. [Google Scholar] [CrossRef]
- He, J.; Chen, Z.Q.; Xiao, Y.H.; Cao, X.N.; Mao, J.; Zhao, J.J.; Gao, X.; Li, T.F.; Luo, Y.W. Intrinsically Anisotropic Dielectric Elastomer Fiber Actuators. ACS Mater. Lett. 2022, 4, 472–479. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, B.W.; Li, X.L.; Dong, L.; Zhang, M.J.; Zou, J.; Gu, G.Y. Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design. Nat. Commun. 2023, 14, 5067. [Google Scholar] [CrossRef]
- Li, G.R.; Chen, X.P.; Zhou, F.H.; Liang, Y.M.; Xiao, Y.H.; Cao, X.; Zhang, Z.; Zhang, M.Q.; Wu, B.S.; Yin, S.Y.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66–71. [Google Scholar] [CrossRef]
- Song, H.N.; Shan, X.B.; Li, R.R.; Hou, C.W. Review on the Vibration Suppression of Cantilever Beam through Piezoelectric Materials. Adv. Eng. Mater. 2022, 24, 2200408. [Google Scholar] [CrossRef]
- Gao, X.Y.; Yang, J.K.; Wu, J.G.; Xin, X.D.; Li, Z.M.; Yuan, X.T.; Shen, X.Y.; Dong, S.X. Piezoelectric Actuators and Motors: Materials, Designs, and Applications. Adv. Mater. Technol. 2020, 5, 1900716. [Google Scholar] [CrossRef]
- Li, D.F.; Li, J.; Wu, P.C.; Zhao, G.Y.; Qu, Q.A.; Yu, X.E. Recent Advances in Electrically Driven Soft Actuators across Dimensional Scales from 2D to 3D. Adv. Intell. Syst. 2023, 2300070. [Google Scholar] [CrossRef]
- Zhong, J.W.; Ma, Y.; Song, Y.; Zhong, Q.Z.; Chu, Y.; Karakurt, I.; Bogy, D.B.; Lin, L.W. A Flexible Piezoelectret Actuator/Sensor Patch for Mechanical Human-Machine Interfaces. ACS Nano 2019, 13, 7107–7116. [Google Scholar] [CrossRef] [PubMed]
- Sharafkhani, S.; Kokabi, M. High performance flexible actuator: PVDF nanofibers incorporated with axially aligned carbon nanotubes. Compos. Part B Eng. 2021, 222, 109060. [Google Scholar] [CrossRef]
- Kumar, A.; Varghese, A.; Sharma, A.; Prasad, M.; Janyani, V.; Yadav, R.P.; Elgaid, K. Recent development and futuristic applications of MEMS based piezoelectric microphones. Sens. Actuators A Phys. 2022, 347, 113887. [Google Scholar] [CrossRef]
- Mishra, S.; Unnikrishnan, L.; Nayak, S.K.; Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromol. Mater. Eng. 2019, 304, 1800463. [Google Scholar] [CrossRef]
- Fath, A.; Xia, T.; Li, W. Recent Advances in the Application of Piezoelectric Materials in Microrobotic Systems. Micromachines 2022, 13, 1422. [Google Scholar] [CrossRef]
- Kim, D.; Han, S.A.; Kim, J.H.; Lee, J.H.; Kim, S.W.; Lee, S.W. Biomolecular Piezoelectric Materials: From Amino Acids to Living Tissues. Adv. Mater. 2020, 32, 1906989. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Yim, J.K.; Liang, J.M.; Shao, Z.C.; Qi, M.J.; Zhong, J.W.; Luo, Z.H.; Yan, X.J.; Zhang, M.; Wang, X.H.; et al. Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 2019, 4, eaax1594. [Google Scholar] [CrossRef]
- Liang, J.M.; Wu, Y.C.A.; Yim, J.K.; Chen, H.M.; Miao, Z.C.; Liu, H.X.; Liu, Y.; Liu, Y.X.; Wang, D.K.; Qiu, W.Y.; et al. Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Robot. 2021, 6, eabe7906. [Google Scholar] [CrossRef] [PubMed]
- Cezar, C.A.; Kennedy, S.M.; Mehta, M.; Weaver, J.C.; Gu, L.; Vandenburgh, H.; Mooney, D.J. Biphasic Ferrogels for Triggered Drug and Cell Delivery. Adv. Healthc. Mater. 2014, 3, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Zrinyi, M.; Barsi, L.; Buki, A. Deformation of ferrogels induced by nonuniform magnetic fields. J. Chem. Phys. 1996, 104, 8750–8756. [Google Scholar] [CrossRef]
- Kim, J.; Chung, S.E.; Choi, S.E.; Lee, H.; Kim, J.; Kwon, S. Programming magnetic anisotropy in polymeric microactuators. Nat. Mater. 2011, 10, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Erb, R.M.; Martin, J.J.; Soheilian, R.; Pan, C.Z.; Barber, J.R. Actuating Soft Matter with Magnetic Torque. Adv. Funct. Mater. 2016, 26, 3859–3880. [Google Scholar] [CrossRef]
- Roeder, L.; Bender, P.; Tschöpe, A.; Birringer, R.; Schmidt, A.M. Shear modulus determination in model hydrogels by means of elongated magnetic nanoprobes. J. Polym. Sci. Pol. Phys. 2012, 50, 1772–1781. [Google Scholar] [CrossRef]
- Lisjak, D.; Mertelj, A. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Prog. Mater. Sci. 2018, 95, 286–328. [Google Scholar] [CrossRef]
- Seifert, J.; Roitsch, S.; Schmidt, A.M. Covalent Hybrid Elastomers Based on Anisotropic Magnetic Nanoparticles and Elastic Polymers. ACS Appl. Polym. Mater. 2021, 3, 1324–1337. [Google Scholar] [CrossRef]
- Huang, Y.; Stogin, B.B.; Sun, N.; Wang, J.; Yang, S.K.; Wong, T.S. A Switchable Cross-Species Liquid Repellent Surface. Adv. Mater. 2017, 29, 1604641. [Google Scholar] [CrossRef]
- Bowen, L.; Springsteen, K.; Feldstein, H.; Frecker, M.; Simpson, T.W.; von Lockette, P. Development and Validation of a Dynamic Model of Magneto-Active Elastomer Actuation of the Origami Waterbomb Base. J. Mech. Robot. 2015, 7, 011010. [Google Scholar] [CrossRef]
- Crivaro, A.; Sheridan, R.; Frecker, M.; Simpson, T.W.; Von Lockette, P. Bistable compliant mechanism using magneto active elastomer actuation. J. Intel. Mater. Syst. Struct. 2016, 27, 2049–2061. [Google Scholar] [CrossRef]
- Ma, C.P.; Wu, S.; Ze, Q.J.; Kuang, X.; Zhang, R.D.; Qi, H.J.; Zhao, R.K. Magnetic Multimaterial Printing for Multimodal Shape Transformation with Tunable Properties and Shiftable Mechanical Behaviors. ACS Appl. Mater. Inter. 2021, 13, 12639–12648. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Z.; Wang, O.X.; Tian, Y.J.; Wang, M.Z.; Su, B.; Yan, C.Z.; Zhou, K.; Shi, Y.S. Selective Laser Sintering-Based 4D Printing of Magnetism-Responsive Grippers. ACS Appl. Mater. Inter. 2021, 13, 12679–12688. [Google Scholar] [CrossRef]
- Shcherbakov, V.P.; Winklhofer, M. Bending of magnetic filaments under a magnetic field. Phys. Rev. E 2004, 70, 061803. [Google Scholar] [CrossRef]
- Dzhezherya, Y.I.; Xu, W.; Cherepov, S.V.; Skirta, Y.B.; Kalita, V.M.; Bodnaruk, A.V.; Liedienov, N.A.; Pashchenko, A.V.; Fesych, I.V.; Liu, B.B.; et al. Magnetoactive elastomer based on superparamagnetic nanoparticles with Curie point close to room temperature. Mater. Des. 2021, 197, 109281. [Google Scholar] [CrossRef]
- Fahrni, F.; Prins, M.W.J.; van IJzendoorn, L.J. Magnetization and actuation of polymeric microstructures with magnetic nanoparticles for application in microfluidics. J. Magn. Magn. Mater. 2009, 321, 1843–1850. [Google Scholar] [CrossRef]
- Evans, B.A.; Fiser, B.L.; Prins, W.J.; Rapp, D.J.; Shields, A.R.; Glass, D.R.; Superfine, R. A highly tunable silicone-based magnetic elastomer with nanoscale homogeneity. J. Magn. Magn. Mater. 2012, 324, 501–507. [Google Scholar] [CrossRef]
- Cui, J.Z.; Huang, T.Y.; Luo, Z.C.; Testa, P.; Gu, H.R.; Chen, X.Z.; Nelson, B.J.; Heyderman, L.J. Nanomagnetic encoding of shape-morphing micromachines. Nature 2019, 575, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Alfadhel, A.; Kosel, J. Magnetic Nanocomposite Cilia Tactile Sensor. Adv. Mater. 2015, 27, 7888–7892. [Google Scholar] [CrossRef]
- Zhang, J.C.; Ren, Z.Y.; Hu, W.Q.; Soon, R.H.; Yasa, I.C.; Liu, Z.M.; Sitti, M. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 2021, 6, abf0112. [Google Scholar] [CrossRef]
- Kennedy, S.; Roco, C.; Déléris, A.; Spoerri, P.; Cezar, C.; Weaver, J.; Vandenburgh, H.; Mooney, D. Improved magnetic regulation of delivery profiles from ferrogels. Biomaterials 2018, 161, 179–189. [Google Scholar] [CrossRef]
- Le, X.X.; Lu, W.; Zhang, J.W.; Chen, T. Recent Progress in Biomimetic Anisotropic Hydrogel Actuators. Adv. Sci. 2019, 6, 1801584. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Tariq, A.; Hossain, M.; Umer, R. 3D printing of stimuli-responsive hydrogel materials: Literature review and emerging applications. Giant 2024, 17, 100209. [Google Scholar] [CrossRef]
- Tang, J.D.; Yin, Q.F.; Qiao, Y.C.; Wang, T.J. Shape Morphing of Hydrogels in Alternating Magnetic Field. ACS Appl. Mater. Inter. 2019, 11, 21194–21200. [Google Scholar] [CrossRef]
- Yang, H.; Ji, M.K.; Yang, M.; Shi, M.X.Z.; Pan, Y.D.; Zhou, Y.F.; Qi, H.J.; Suo, Z.G.; Tang, J.D. Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter 2021, 4, 1935–1946. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Zhang, X.H.; Yang, M.; Pan, Y.D.; Du, Z.J.; Blanchet, J.; Suo, Z.G.; Lu, T.Q. High-throughput experiments for rare-event rupture of materials. Matter 2022, 5, 654–665. [Google Scholar] [CrossRef]
- He, X.M.; Wang, S.B.; Zhou, J.H.; Zhang, D.; Xue, Y.T.; Yang, X.X.; Che, L.B.; Li, D.Y.; Xiao, S.W.; Liu, S.Q.; et al. Versatile and Simple Strategy for Preparing Bilayer Hydrogels with Janus Characteristics. ACS Appl. Mater. Inter. 2022, 14, 4579–4587. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.D.; Zhang, X.; Du, F.H.; Wu, Y.D.; Zhang, X.; Lei, Z.J.; Lu, W.; Zhang, F.Y.; Yang, G.; Wang, H.M.; et al. Self-regulated underwater phototaxis of a photoresponsive hydrogel-based phototactic vehicle. Nat. Nanotechnol. 2023, 19, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Y.; Ruan, Q.S.; Nasseri, R.; Zhang, H.N.; Xi, X.F.; Xia, H.; Xu, G.; Xie, Q.; Yi, C.J.; Sun, Z.M.; et al. Light-Fueled Hydrogel Actuators with Controlled Deformation and Photocatalytic Activity. Adv. Sci. 2022, 9, 2204730. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.Y.; Lu, Y.; Jiang, L.X.; Yu, Y.L. Liquid Crystal Soft Actuators and Robots toward Mixed Reality. Adv. Funct. Mater. 2021, 31, 2009835. [Google Scholar] [CrossRef]
- Bai, R.B.; Teh, Y.S.; Bhattacharya, K. Collective behavior in the kinetics and equilibrium of solid-state photoreaction. Extrem. Mech. Lett. 2021, 43, 101160. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, H.; Li, Y.F.; Liu, J.X.; Luo, D.; Priimagi, A.; Liu, Y.J. Light-Fueled Polymer Film Capable of Directional Crawling, Friction-Controlled Climbing, and Self-Sustained Motion on a Human Hair. Adv. Sci. 2022, 9, 2103090. [Google Scholar] [CrossRef]
- Shen, Z.Q.; Chen, F.F.; Zhu, X.Y.; Yong, K.T.; Gu, G.Y. Stimuli-responsive functional materials for soft robotics. J. Mater. Chem. B 2020, 8, 8972–8991. [Google Scholar] [CrossRef]
- Pang, X.L.; Lv, J.A.; Zhu, C.Y.; Qi, L.; Yu, Y.L. Photodeformable Azobenzene-Containing Liquid Crystal Polymers and Soft Actuators. Adv. Mater. 2019, 31, 1904224. [Google Scholar] [CrossRef]
- Chen, L.; Bisoyi, H.K.; Huang, Y.L.; Huang, S.; Wang, M.; Yang, H.; Li, Q. Healable and Rearrangeable Networks of Liquid Crystal Elastomers Enabled by Diselenide Bonds. Angew. Chem. Int. Ed. 2021, 60, 16394–16398. [Google Scholar] [CrossRef]
- Li, S.; Bai, H.D.; Liu, Z.; Zhang, X.Y.; Huang, C.Q.; Wiesner, E.N.R.; Silberstein, M.R.D.; Shepherd, R.O.E. Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Sci. Adv. 2021, 7, eabg3677. [Google Scholar] [CrossRef]
- Lv, P.F.; Yang, X.; Bisoyi, H.K.; Zeng, H.; Zhang, X.; Chen, Y.H.; Xue, P.; Shi, S.K.; Priimagi, A.; Wang, L.; et al. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. Mater. Horiz. 2021, 8, 2475–2484. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.C.; Xiao, Y.Y.; Tong, X.; Zhao, Y. Selective Decrosslinking in Liquid Crystal Polymer Actuators for Optical Reconfiguration of Origami and Light-Fueled Locomotion. Angew. Chem. Int. Ed. 2019, 58, 5332–5337. [Google Scholar] [CrossRef] [PubMed]
- Verpaalen, R.C.P.; da Cunha, M.P.; Engels, T.A.P.; Debije, M.G.; Schenning, A.P.H.J. Liquid Crystal Networks on Thermoplastics: Reprogrammable Photo-Responsive Actuators. Angew. Chem. Int. Ed. 2020, 59, 4532–4536. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Guo, Y.H.; Bae, J.; Choi, S.; Song, H.Y.; Park, S.; Hyun, K.; Ahn, S.K. 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators. Small 2021, 17, 2100910. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Xiao, Y.Y.; Cheng, R.D.; Hou, J.B.; Zhao, Y. Dynamic Liquid Crystalline Networks for Twisted Fiber and Spring Actuators Capable of Fast Light-Driven Movement with Enhanced Environment Adaptability. Chem. Mater. 2021, 33, 6541–6552. [Google Scholar] [CrossRef]
- Lee, H.T.; Seichepine, F.; Yang, G.Z. Microtentacle Actuators Based on Shape Memory Alloy Smart Soft Composite. Adv. Funct. Mater. 2020, 30, 2002510. [Google Scholar] [CrossRef]
- Liang, X.R.; Yuan, C.G.; Wan, C.Y.; Gao, X.L.; Bowen, C.; Pan, M. Soft Self-Healing Robot Driven by New Micro Two-Way Shape Memory Alloy Spring. Adv. Sci. 2023, 11, 2305163. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Y.; Fang, Q.Y.; Xu, Z.L.; Li, X.J.; Ma, W.X.; Chu, M.S.; Lim, J.H.; Chuang, K.C. Knitting Shape-Memory Alloy Wires for Riding a Robot: Constraint Matters for the Curvilinear Actuation. Adv. Intell. Syst. 2022, 4, 2200035. [Google Scholar] [CrossRef]
- Mulakkal, M.C.; Trask, R.S.; Ting, V.P.; Seddon, A.M. Responsive cellulose-hydrogel composite ink for 4D printing. Mater. Des. 2018, 160, 108–118. [Google Scholar] [CrossRef]
- Wang, Y.R.; Feng, P.P.; Liu, R.; Song, B.T. Rational design of a porous nanofibrous actuator with highly sensitive, ultrafast, and large deformation driven by humidity. Sens. Actuators B-Chem. 2021, 330, 129236. [Google Scholar] [CrossRef]
- Wei, J.; Jia, S.; Wei, J.; Ma, C.; Shao, Z.Q. Tough and Multifunctional Composite Film Actuators Based on Cellulose Nanofibers toward Smart Wearables. ACS Appl. Mater. Inter. 2021, 13, 38700–38711. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Zhang, Y.L.; Han, B.; Zhu, L.; Dong, B.; Sun, H.B. Gradient Assembly of Polymer Nanospheres and Graphene Oxide Sheets for Dual-Responsive Soft Actuators. ACS Appl. Mater. Inter. 2019, 11, 37130–37138. [Google Scholar] [CrossRef]
- Huang, B.; Zhu, G.; Wang, S.Z.; Li, Q.Y.; Viguié, J.; He, H.; Dufresne, A. A gradient poly(vinyl alcohol)/polysaccharides composite film towards robust and fast stimuli-responsive actuators by interface co-precipitation. J. Mater. Chem. A 2021, 9, 22973–22981. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Huang, H.; Wang, Y.; Zhu, J.; Yu, J.R.; Hu, Z.M. Poly (vinyl alcohol) based gradient cross-linked and reprogrammable humidity-responsive actuators. Sens. Actuators B-Chem. 2021, 349, 130735. [Google Scholar] [CrossRef]
- Ge, Y.H.; Cao, R.; Ye, S.J.; Chen, Z.; Zhu, Z.F.; Tu, Y.F.; Ge, D.T.; Yang, X.M. A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients. Chem. Commun. 2018, 54, 3126–3129. [Google Scholar] [CrossRef]
- Han, B.; Gao, Y.Y.; Zhang, Y.L.; Liu, Y.Q.; Ma, Z.C.; Guo, Q.; Zhu, L.; Chen, Q.D.; Sun, H.B. Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots. Nano Energy 2020, 71, 104578. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Wang, M.T.; Zhang, W.Z.; Liu, Y.X.; Li, Y.V.; Pan, K. An asymmetric graphene oxide film for developing moisture actuators. Nanoscale 2018, 10, 14060–14066. [Google Scholar] [CrossRef]
- Yim, J.E.; Lee, S.H.; Jeong, S.; Zhang, K.A.I.; Byun, J. Controllable porous membrane actuator by gradient infiltration of conducting polymers. J. Mater. Chem. A 2021, 9, 5007–5015. [Google Scholar] [CrossRef]
- Wang, P.L.; Zheng, G.Q.; Dai, K.; Liu, C.T.; Shen, C.Y. Programmable micropatterned surface for single-layer homogeneous-polymer Janus actuator. Chem. Eng. J. 2022, 430, 133052. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, Q.; Li, X.; Serpe, M.J. Stimuli-responsive polymers for sensing and actuation. Mater. Horiz. 2019, 6, 1774–1793. [Google Scholar] [CrossRef]
- Hu, L.; Wan, Y.; Zhang, Q.; Serpe, M.J. Harnessing the Power of Stimuli-Responsive Polymers for Actuation. Adv. Funct. Mater. 2020, 30, 1903471. [Google Scholar] [CrossRef]
- Kumpfer, J.R.; Rowan, S.J. Thermo-, Photo-, and Chemo-Responsive Shape-Memory Properties from Photo-Cross-Linked Metallo-Supramolecular Polymers. J. Am. Chem. Soc. 2011, 133, 12866–12874. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Jiang, X.; Wu, R.L.; Wang, W. Multi-stimuli responsive shape memory polymers synthesized by using reaction-induced phase separation. J. Appl. Polym. Sci. 2016, 133, 43534. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, L.; Xia, N.; Wang, Y.; Wang, S.J.; Yang, Z.X.; Jin, D.D.; Du, X.Z.; Yu, E.W.; Pan, C.F.; et al. Multi-stimuli-response programmable soft actuators with site-specific and anisotropic deformation behavior. Nano Energy 2021, 88, 106254. [Google Scholar] [CrossRef]
- Tang, Z.H.; Kang, H.L.; Wei, Q.Y.; Guo, B.C.; Zhang, L.Q.; Jia, D.M. Incorporation of graphene into polyester/carbon nanofibers composites for better multi-stimuli responsive shape memory performances. Carbon 2013, 64, 487–498. [Google Scholar] [CrossRef]
- Coates, G.W.; Getzler, Y.D.Y.L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 2020, 5, 501–516. [Google Scholar] [CrossRef]
- Bai, R.B.; Yang, J.W.; Suo, Z.G. Fatigue of hydrogels. Eur. J. Mech.-A/Solids 2019, 74, 337–370. [Google Scholar] [CrossRef]
- Wang, J.; Wu, B.Y.; Dhyani, A.; Repetto, T.; Gayle, A.J.; Cho, T.H.; Dasgupta, N.P.; Tuteja, A. Durable Liquid- and Solid-Repellent Elastomeric Coatings Infused with Partially Crosslinked Lubricants. ACS Appl. Mater. Inter. 2022, 14, 22466–22475. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Sun, N.; Tierney, R.; Li, H.; Corsetti, M.; Williams, L.; Wong, P.K.; Wong, T.S. Viscoelastic solid-repellent coatings for extreme water saving and global sanitation. Nat. Sustain. 2019, 2, 1097–1105. [Google Scholar] [CrossRef]
Materials | Stimulus Sources | Response Time | Mechanical Properties | Crosslinking Methods | Durability | Refs |
---|---|---|---|---|---|---|
Ecoflex 00-30 | Fluidic stimuli | ~50 ms | E = ~0.1 MPa | Thermal curing | 1 × 105 cycles | [37] |
IPMCs | Electrical stimuli | ~20–90 s | NA | Ionic crosslinking | NA | [112] |
IGMN | Electrical stimuli | ~50 s | E = ~0.35 MPa | Ionic crosslinking | 7.6 × 104 cycles | [113] |
PEDGA, PEDOT: PSS | Electrical stimuli | ~0.8 s | E = ~11–15 MPa | Ionic crosslinking | 5 × 103 cycles | [114] |
PDMS | Electrical stimuli | ~1.67 ms | E = ~4 MPa | Thermal curing | NA | [35] |
PDMS | Electrical stimuli | 5 ms | NA | Thermal curing | 5 × 104 cycles | [115] |
FSNPs, Ecoflex 00-30 | Electrical stimuli | 1.43 ms | G = 27–979 kPa | Thermal curing | 2.6 × 105 cycles | [116] |
Fe3O4 nanoparticles, Fe-alginate, PAAm | Magnetic stimuli | NA | τ = 200–1000 kPa | Ionic crosslinking | NA | [117] |
Carbonyl iron microparticles, TPU | Magnetic stimuli | 25 ms | NA | Thermal curing | NA | [118] |
NdFeB microparticles, Ecoflex 00-10 | Magnetic stimuli | NA | E = ~78.6 ± 4.8 kPa | Thermal curing | NA | [119] |
Iron microparticles, PDMS | Magnetic stimuli | 35.8 ms | E = ~2 MPa | Thermal curing | 5 × 103 cycles | [78] |
NdFeB, FSNPs, Ecoflex 00-30 Part B, SE 1700 | Magnetic stimuli | ~0.1 s | G = 330 kPa | Thermal curing | NA | [120] |
PEG1000, HDI, HABI | Light stimuli | ~35 s | τ = 2.88 MPa | Light-crosslinking | 500 cycles | [121] |
BN, AlN, Si3N4, NIPAM | Light stimuli | ~30 s | E = 9.71 ± 0.06 kPa | Photopolymerization | >10 cycles | [122] |
PNIPAAM, AuNPs, rGO | Light stimuli | <1 s | τ = 8–18 kPa | Photopolymerization | NA | [123] |
RM 257, HDT | Light stimuli | <0.2 s | τ = 3–4 MPa | Light-crosslinking | 1 × 106 cycles | [124] |
PLCMs, MDI, HEMA | Light stimuli | 4–8 s | E = ~11–20 MPa | Light-crosslinking | NA | [125] |
Ni, Cr, SMP | Electrothermal stimuli | 20 s | E = ~3.33–125.65 MPa | NA | NA | [126] |
Graphene oxide, SU-8 | Humidity stimuli | ~22–26 s | τ = ~30–90 MPa | Photopolymerization | >500 cycles | [127] |
PVDF, PPy | Solvent stimuli | 3.1–9.2 s | E = ~2.53 GPa | Thermal curing | NA | [127] |
PAAc | pH stimuli | ~120 s | E = ~300 MPa | Photopolymerization | >10 cycles | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Chen, Y.; Ma, Y.; Wang, J. Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics 2024, 9, 128. https://doi.org/10.3390/biomimetics9030128
Wang Z, Chen Y, Ma Y, Wang J. Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics. 2024; 9(3):128. https://doi.org/10.3390/biomimetics9030128
Chicago/Turabian StyleWang, Zhongbao, Yixin Chen, Yuan Ma, and Jing Wang. 2024. "Bioinspired Stimuli-Responsive Materials for Soft Actuators" Biomimetics 9, no. 3: 128. https://doi.org/10.3390/biomimetics9030128
APA StyleWang, Z., Chen, Y., Ma, Y., & Wang, J. (2024). Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics, 9(3), 128. https://doi.org/10.3390/biomimetics9030128