Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (145)

Search Parameters:
Keywords = phosphate binder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1947 KB  
Review
Phosphate and Inflammation in Health and Kidney Disease
by Carlos Novillo-Sarmiento, Raquel M. García-Sáez, Antonio Rivas-Domínguez, Ana Torralba-Duque, Cristian Rodelo-Haad, María E. Rodríguez-Ortiz, Juan R. Muñoz-Castañeda and M. Victoria Pendón-RuizdeMier
Int. J. Mol. Sci. 2026, 27(1), 408; https://doi.org/10.3390/ijms27010408 - 30 Dec 2025
Viewed by 423
Abstract
Phosphate is emerging as an active mediator of oxidative stress and vascular injury in chronic kidney disease (CKD). This emerging pathophysiological framework, referred to as “Phosphatopathy”, describes the systemic syndrome driven by chronic phosphate overload and characterized by oxidative stress, inflammation, endothelial dysfunction, [...] Read more.
Phosphate is emerging as an active mediator of oxidative stress and vascular injury in chronic kidney disease (CKD). This emerging pathophysiological framework, referred to as “Phosphatopathy”, describes the systemic syndrome driven by chronic phosphate overload and characterized by oxidative stress, inflammation, endothelial dysfunction, vascular calcification, cellular senescence, and metabolic imbalance. Beyond being a biochemical marker, phosphate overload triggers NOX-derived reactive oxygen species (ROS), activates Wnt/β-catenin and TGF-β signaling, and disrupts the FGF23–Klotho axis, promoting endothelial dysfunction, vascular calcification, and left ventricular hypertrophy (LVH). These pathways converge with systemic inflammation and energy imbalance, contributing to the malnutrition–inflammation–atherosclerosis (MIA) syndrome. Experimental and clinical data reveal that the phosphate/urinary urea nitrogen (P/UUN) ratio is a sensitive biomarker of inorganic phosphate load, while emerging regulators such as microRNA-125b and calciprotein particles integrate phosphate-driven oxidative and inflammatory responses. Therapeutic strategies targeting phosphate burden—rather than serum phosphate alone—include dietary restriction of inorganic phosphate, non-calcium binders, magnesium and zinc supplementation, and activation of important pathways related to the activation of antioxidant defense such as AMP-activated protein kinase (AMPK) and SIRT1. This integrative framework redefines phosphate as a modifiable upstream trigger of oxidative and metabolic stress in CKD. Controlling phosphate load and redox imbalance emerges as a convergent strategy to prevent vascular calcification, improve arterial stiffness, and reduce cardiovascular risk through personalized, mechanism-based interventions. Full article
(This article belongs to the Special Issue Oxidative Stress and Inflammation in Health and Disease)
Show Figures

Figure 1

22 pages, 8541 KB  
Article
The Impact of Post-Printing Hydration in NaCl Solution on the Properties of Binder Jet 3D-Printed Calcium Sulfate and Its Converted Hydroxyapatite
by Faungchat Thammarakcharoen, Autcharaporn Srion, Waraporn Suvannapruk, Wiroj Limtrakarn and Jintamai Suwanprateeb
J. Funct. Biomater. 2025, 16(12), 455; https://doi.org/10.3390/jfb16120455 - 8 Dec 2025
Viewed by 526
Abstract
Binder jet 3D printing of calcium sulfate-based materials combined with phase transformation offers a versatile route for fabricating customized bone grafts; however, controlling the transformation process remains a key challenge. This study investigates the effect of post-printing hydration in sodium chloride (NaCl) solutions [...] Read more.
Binder jet 3D printing of calcium sulfate-based materials combined with phase transformation offers a versatile route for fabricating customized bone grafts; however, controlling the transformation process remains a key challenge. This study investigates the effect of post-printing hydration in sodium chloride (NaCl) solutions on the phase transformation, dimension, and compressive properties of binder jet-printed calcium sulfate (3DPCaS) toward hydroxyapatite (3DPHA) formation. The as-printed 3DPCaS primarily consisted of bassanite with minor gypsum, which progressively transformed into gypsum upon immersion in NaCl solutions of varying concentrations (1–5 M) and durations (2–30 min). Increased immersion time and moderate NaCl concentrations (2–4 M) promoted gypsum formation without inducing dimensional instability. Subsequent transformation in phosphate solution produced 3DPHA with high hydroxyapatite (HA) purity, reaching 100% conversion. Microstructural analysis revealed recrystallized, plate-like gypsum crystals that served as favorable templates for HA nucleation. The resulting 3DPHA exhibited enhanced specific modulus (up to 274.9 MPa.m3/kg) and specific strength (up to 7.5 MPa.m3/kg). The optimal condition, immersion in 4 M NaCl solution for 30 min, achieved a balance between complete HA transformation, mechanical enhancement, and dimensional stability. Controlled ionic hydration thus represents a simple, low-cost, and effective strategy for improving properties of 3DPHA bone grafts. Full article
(This article belongs to the Special Issue Three-Dimensional-Printable Biomaterials for Bone Regeneration)
Show Figures

Figure 1

41 pages, 505 KB  
Review
The Conundrum of Medical Fracture Prevention in Chronic Kidney Disease—Summary of the Evidence and Pragmatic Clinical Guidance
by Simeon Schietzel and Uyen Huynh-Do
J. Clin. Med. 2025, 14(22), 8145; https://doi.org/10.3390/jcm14228145 - 17 Nov 2025
Viewed by 1145
Abstract
Fragility fractures are a major complication in chronic kidney disease (CKD), yet therapeutic strategies for their prevention remain highly controversial. The unique pathophysiology of CKD–mineral and bone disorder (CKD-MBD), coupled with the paucity of dedicated clinical trials, create substantial uncertainty regarding the efficacy [...] Read more.
Fragility fractures are a major complication in chronic kidney disease (CKD), yet therapeutic strategies for their prevention remain highly controversial. The unique pathophysiology of CKD–mineral and bone disorder (CKD-MBD), coupled with the paucity of dedicated clinical trials, create substantial uncertainty regarding the efficacy and safety of medical interventions established in the general osteoporosis population. This review summarizes the available evidence regarding fracture risk and bone mineral density including pragmatic clinical guidance for the use of calcium, vitamin D, phosphate binders, calcimimetics, bisphosphonates, denosumab, romosozumab, and teriparatide in patients with advanced non-dialysis CKD, on dialysis, and after kidney transplantation. For calcium, the conflicting balance between skeletal needs and risk of vascular calcification in the setting of declining kidney function and limited evidence for fracture prevention is outlined. For vitamin D, the gap between its widespread clinical use and the inconsistent data on fracture prevention is analyzed including a discussion of target levels in progressive kidney dysfunction. For phosphate binders, the evidence for fracture prevention, showing benefits in dialysis populations, is summarized together with a synthesis of data on potential risks of calcium-based agents. For calcimimetics, the available evidence on their role in fracture prevention, PTH, and calcium control is reviewed. For bisphosphonates, the unresolved question of benefit versus harm in advanced CKD stages are discussed and the evidence regarding efficacy and safety for various clinical settings is disentangled. For denosumab, the current data on fracture prevention is presented with emphasis on its renal-independent pharmacokinetics and strategies to mitigate hypocalcemia and rebound fracture risk. For romosozumab, the promising effects on bone health are reviewed alongside an analysis of cardiovascular safety data. For teriparatide, the limited evidence in patients with low bone turnover disease is evaluated. The review navigates the available evidence and unresolved controversies across therapeutic options, and provides pragmatic guidance to support individualized clinical decision-making. Full article
(This article belongs to the Special Issue The “Orthogeriatric Fracture Syndrome”—Issues and Perspectives)
19 pages, 3880 KB  
Article
Processing Water-Based Lithium Iron Phosphate (LiFePO4) Cathodes with CMC Binder: The Impact of Dispersing Methods
by Leah Jalowy, Henry Lehmann, Patrick Rassek, Olga Fromm, Marc Entenmann and Dominik Nemec
AppliedChem 2025, 5(4), 33; https://doi.org/10.3390/appliedchem5040033 - 5 Nov 2025
Viewed by 2219
Abstract
Lithium-ion batteries (LIBs) are vital for modern energy storage applications. Lithium iron phosphate (LFP) is a promising cathode material due to its safety, low cost, and environmental friendliness compared to the widely used nickel manganese cobalt oxide (NMC), which contains hazardous nickel and [...] Read more.
Lithium-ion batteries (LIBs) are vital for modern energy storage applications. Lithium iron phosphate (LFP) is a promising cathode material due to its safety, low cost, and environmental friendliness compared to the widely used nickel manganese cobalt oxide (NMC), which contains hazardous nickel and cobalt compounds. However, challenges remain in enhancing the performance of LFP cathodes due to their low electronic and ionic conductivity. To improve both the safety and sustainability of the battery, this work presents a water-based LFP cathode utilizing the bio-based binder carboxymethyl cellulose (CMC), eliminating the need for polyvinylidene fluoride (PVDF) and the toxic solvent N-methyl-2-pyrrolidone (NMP). This study investigates the impact of different dispersing methods—dissolver mixing and wet jet milling—on slurry properties, electrode morphology, and battery performance. Slurries were characterized by rheology, particle size distribution, and sedimentation behavior, while coated and calendered electrodes were examined via thickness measurements and scanning electron microscopy (SEM). Electrochemical performance of the electrodes was evaluated by means of C-Rate testing. The results reveal that dispersing methods significantly influence slurry characteristics but marginally affect electrochemical performance. Compared to dissolver mixing, wet jet milling reduced the median particle size by 39% (ΔD50 = 3.1 µm) and lowered viscosity by 96% at 1 s−1, 80% at 105 s−1, and 64% at 1000 s−1. In contrast, the electrochemical performance of the resulting electrodes differed only slightly, with discharge capacity varying by approximately 12.8% at 1.0 C (Δcapacity = 10.7 mAh g−1). This research highlights the importance of optimizing not only material selection but also processing techniques to advance safer and more sustainable energy storage solutions. Full article
Show Figures

Figure 1

20 pages, 4818 KB  
Article
Phytic Acid-Containing Reactive Acrylic Emulsions in Leather Coating Applications
by Kaan Canli, Catalina N. Cheaburu-Yilmaz, Raluca Nicoleta Darie-Nita and Onur Yilmaz
Polymers 2025, 17(21), 2905; https://doi.org/10.3390/polym17212905 - 30 Oct 2025
Viewed by 693
Abstract
Phytic acid, as a natural originated compound with multi phosphate side groups, is known to increase the corrosion protection and thermal resistance of the coatings. In this study, two different acrylic emulsion polymers containing epoxy and silane reactive functional groups (glycidyl methacrylate (GMA) [...] Read more.
Phytic acid, as a natural originated compound with multi phosphate side groups, is known to increase the corrosion protection and thermal resistance of the coatings. In this study, two different acrylic emulsion polymers containing epoxy and silane reactive functional groups (glycidyl methacrylate (GMA) and vinyltriethoxysilane (VTES)) were synthesized via emulsion polymerization and mixed with phytic acid (PA) solution in different ratios (5, 10, 15 wt%) for use as binders in leather finishing applications. The colloidal stability, particle size distribution, and chemical structures of the synthesized polymers were characterized through comprehensive analyses. The resulting reactive copolymer dispersions were used as binders in finishing formulations and applied to crust shoe upper leathers The coating performance was evaluated in terms of rub fastness, flex resistance, water spotting, and thermal resistance, using the unmodified reactive acrylic binders (G0 and V0) as reference systems to assess the improvements achieved. Both phytic acid-modified binders exhibited strong film integrity and maintained high dry rub fastness up to 2000 cycles and wet rub fastness up to 250 cycles at phytic acid concentrations of 5–10 wt%. Increasing the phytic acid content beyond this range led to reduced dispersion stability and partial loss of coating performance. The results confirm that incorporating moderate levels of phytic acid into reactive acrylic emulsions enhances coating durability and thermal resistance without compromising film appearance, offering a safer and more sustainable alternative to conventional crosslinking systems for leather finishing applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

25 pages, 9472 KB  
Article
Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite
by Leszek Borkowski, Krzysztof Palka and Lukasz Pajchel
Materials 2025, 18(19), 4538; https://doi.org/10.3390/ma18194538 - 29 Sep 2025
Cited by 1 | Viewed by 975
Abstract
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its [...] Read more.
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its various forms, hydroxyapatite (HAP) is the most widely used, owing to its natural occurrence in human and animal hard tissues. An emerging area of research involves the use of fluoride-substituted apatite, particularly fluorapatite (FAP), which can serve as a direct fluoride source at the implant site, potentially offering several biological and therapeutic advantages. However, substituting HAP with FAP may lead to unforeseen changes in material behavior due to the differing physicochemical properties of these two calcium phosphate phases. This study investigates the effects of replacing hydroxyapatite with fluorapatite in ceramic–polymer composite materials incorporating β-1,3-glucan as a bioactive polymeric binder. The β-1,3-glucan polysaccharide was selected for its proven biocompatibility, biodegradability, and ability to form stable hydrogels that promote cellular interactions. Nitrogen adsorption analysis revealed that FAP/glucan composites had a significantly lower specific surface area (0.5 m2/g) and total pore volume (0.002 cm3/g) compared to HAP/glucan composites (14.15 m2/g and 0.03 cm3/g, respectively), indicating enhanced ceramic–polymer interactions in fluoride-containing systems. Optical profilometry measurements showed statistically significant differences in profile parameters (e.g., Rp: 134 μm for HAP/glucan vs. 352 μm for FAP/glucan), although average roughness (Ra) remained similar (34.1 vs. 27.6 μm, respectively). Microscopic evaluation showed that FAP/glucan composites had smaller particle sizes (1 μm) than their HAP counterparts (2 μm), despite larger primary crystal sizes in FAP, as confirmed by TEM. XRD analysis indicated structural differences between the apatites, with FAP exhibiting a reduced unit cell volume (524.6 Å3) compared to HAP (528.2 Å3), due to substitution of hydroxyl groups with fluoride ions. Spectroscopic analyses (FTIR, Raman, 31P NMR) confirmed chemical shifts associated with fluorine incorporation and revealed distinct ceramic–polymer interfacial behaviors, including an upfield shift of PO43− bands (964 cm−1 in FAP vs. 961 cm−1 in HAP) and OH vibration shifts (3537 cm−1 in FAP vs. 3573 cm−1 in HAP). The glucan polymer showed different hydrogen bonding patterns when combined with FAP versus HAP, as evidenced by shifts in polymer-specific bands at 888 cm−1 and 1157 cm−1, demonstrating that fluoride substitution significantly influences ceramic–polymer interactions in these bioactive composite systems. Full article
Show Figures

Figure 1

20 pages, 2104 KB  
Article
Biochar-Based Granular Fertilizers with Agro-Industrial Binders Enhance Enzymatic Activity and Nutrient Cycling in Tropical Oxisols
by José Mendes dos Santos Júnior, Luiz Arnaldo Fernandes, Fernando Colen, Leidivan Almeida Frazão and Rodinei Facco Pegoraro
Agronomy 2025, 15(9), 2230; https://doi.org/10.3390/agronomy15092230 - 21 Sep 2025
Viewed by 1426
Abstract
The low fertility of tropical Oxisols challenges sustainable agriculture. While biochar-based granular fertilizers (BBGFs) offer a solution, the influence of different organic binders is unclear. This study investigated how BBGFs formulated with bio-oil (BO), pyroligneous extract (PE), and cassava wastewater (CW) impact soil [...] Read more.
The low fertility of tropical Oxisols challenges sustainable agriculture. While biochar-based granular fertilizers (BBGFs) offer a solution, the influence of different organic binders is unclear. This study investigated how BBGFs formulated with bio-oil (BO), pyroligneous extract (PE), and cassava wastewater (CW) impact soil enzyme activities and nutrient dynamics over time. Eucalyptus biochar (B) and natural phosphate (NP) were granulated with three binders at four doses. These treatments, plus controls (unfertilized soil, NP, B with NP, and B alone), were incubated in an Oxisol, assessing soil samples after 10 and 40 days of incubation. All BBGFs significantly enhanced β-glucosidase, acid phosphatase, and arylsulfatase activities over controls, with increases exceeding 8%. While the BBGFs-BO formulation sustained the highest enzymatic activity, BBGFs-PE at 125% maximized acid phosphatase at 10 days, with a subsequent decline, and inhibited arylsulfatase at the 150% dose. BBGFs-CW was most effective for increasing P availability (up to 24.0 mg kg−1). BBGFs-BO and BBGFs-PE also enhanced soil organic carbon and cation exchange capacity by up to 430% and 163%, respectively. The BBGFs-BO at 150% dose is the most effective and stable formulation to enhance nutrient cycling and soil health, offering a viable pathway to convert agricultural residues into high-value fertilizers. Full article
(This article belongs to the Special Issue Biochar-Based Fertilizers for Resilient Agriculture)
Show Figures

Figure 1

33 pages, 30246 KB  
Review
Critical Appraisal of Coal Gangue and Activated Coal Gangue for Sustainable Engineering Applications
by Narlagiri Snehasree, Mohammad Nuruddin and Arif Ali Baig Moghal
Appl. Sci. 2025, 15(17), 9649; https://doi.org/10.3390/app15179649 - 2 Sep 2025
Cited by 4 | Viewed by 2022
Abstract
Coal gangue, a primary solid waste by-product of coal mining and processing, constitutes approximately 10–15% of total coal output. Its accumulation poses substantial environmental challenges, including land occupation, spontaneous combustion, acid mine drainage, and heavy metal leaching. Despite its high silica and alumina [...] Read more.
Coal gangue, a primary solid waste by-product of coal mining and processing, constitutes approximately 10–15% of total coal output. Its accumulation poses substantial environmental challenges, including land occupation, spontaneous combustion, acid mine drainage, and heavy metal leaching. Despite its high silica and alumina content (typically exceeding 70% combined), the highly stable and crystalline structure of raw coal gangue limits its pozzolanic activity and adsorption efficiency. To address this limitation, this review emphasizes recent advances in activation strategies such as thermal (500–900 °C), mechanical (dry/wet grinding to less than 200 µm), chemical (acid/alkali treatments), microwave, and hybrid methods. The activated coal gangue resulted in an enhanced surface area (up to 55 m2/g), amorphization of kaolinite to metakaolinite, and the generation of mesoporosity under optimal conditions. This review critically examined the geotechnical applications, such as soil stabilization and mine backfill, highlighting the replacement of 50–75% of cementitious binder in backfilling and meeting the subgrade/base material strength criteria (UCS > 2 MPa). In geoenvironmental applications (adsorption of phosphate, dyes, heavy metals, and CO2 mineralization), more than 90% of pollutant removal is attained. In construction applications, supplementary cementitious materials and sintered bricks are examined. Several critical knowledge gaps, including limited understanding of long-term durability, inconsistent activation optimization across different coal gangue sources, and insufficient assessment of environmental impacts during large-scale implementation, are clearly addressed. This review provides a roadmap for advancing sustainable coal gangue utilization and highlights emerging opportunities for cost-effective applications in the mining and construction sectors. Full article
(This article belongs to the Special Issue Novel Construction Material and Its Applications)
Show Figures

Figure 1

17 pages, 5169 KB  
Article
Mix Design and Early-Age Performance of Rapid-Setting Phosphate-Based CBPCs for Emergency Road Repair
by Jaeyoung Lee
Materials 2025, 18(17), 4045; https://doi.org/10.3390/ma18174045 - 29 Aug 2025
Viewed by 699
Abstract
This study investigates rapid-setting, phosphate-based, chemically bonded phosphate ceramic (CBPC) composites for emergency pothole repair through a two-phase experimental approach. Phase I involved fundamental mix design experiments that systematically examined the effects of water-to-binder ratio (20–40%), filler content (10–50%), and phosphate powder fineness [...] Read more.
This study investigates rapid-setting, phosphate-based, chemically bonded phosphate ceramic (CBPC) composites for emergency pothole repair through a two-phase experimental approach. Phase I involved fundamental mix design experiments that systematically examined the effects of water-to-binder ratio (20–40%), filler content (10–50%), and phosphate powder fineness (570–3640 cm2/g) on setting and mechanical performance. Based on Phase I results, Phase II evaluated field-applicable mixes optimized for concrete and asphalt pavement conditions in terms of rapid strength development: compressive strength exceeding 24 MPa within 30 min, flexural strength surpassing 3.4 MPa within 1 h, and adhesive strength reaching up to 1.62 MPa (concrete) and 0.68 MPa (asphalt) within 4 h. Additional performance evaluations included Marshall stability (49,848 N), water-immersion residual stability (100% under the test protocol), length change (small magnitude over 28 days), and self-filling behavior (complete filling in 17 s in the specified setup). These rapid early-age results met or surpassed relevant domestic specifications used for emergency repair materials. Based on these data, mix designs for field application are proposed, and practical implications and limitations for early-age performance are discussed. Full article
Show Figures

Graphical abstract

20 pages, 6118 KB  
Article
Three Dimensionally Printed Octacalcium Phosphate via Binder Jetting for Use in Bone Grafting Applications
by Autcharaporn Srion, Faungchat Thammarakcharoen, Watchara Chokevivat, Waraporn Suvannapruk and Jintamai Suwanprateeb
Int. J. Mol. Sci. 2025, 26(12), 5633; https://doi.org/10.3390/ijms26125633 - 12 Jun 2025
Cited by 1 | Viewed by 1185
Abstract
This study investigates the fabrication and bioactivity of monophasic octacalcium phosphate (OCP) constructs using 3D-printed calcium sulfate precursors. A single-step and a two-step process were employed, transforming calcium sulfate into OCP through a controlled phase transformation in a disodium hydrogen phosphate solution. The [...] Read more.
This study investigates the fabrication and bioactivity of monophasic octacalcium phosphate (OCP) constructs using 3D-printed calcium sulfate precursors. A single-step and a two-step process were employed, transforming calcium sulfate into OCP through a controlled phase transformation in a disodium hydrogen phosphate solution. The results revealed that a single-step process for OCP conversion in 3D printed samples was unsuccessful due to incomplete transformation and the formation of intermediate phases such as brushite and monetite. In contrast, the two-step process enabled the efficient production of monophasic OCP in a shorter timeframe. The converted OCP samples exhibited a compressive strength of 7.65 ± 0.46 MPa and a contact angle of zero, indicating adequate handling strength and high wettability. The resorbability of 3D-printed OCP in simulated body fluid (SBF) was evaluated, showing weight loss through gradual dissolution accompanied by the release of calcium and phosphorus ions, followed by the consumption of these ions for reprecipitation back into OCP without direct transformation into hydroxyapatite (HA). Biocompatibility and bioactivity testing demonstrated high cell viability (96.67 ± 0.18%) using the MTT assay, indicating that the 3D-printed OCP was not cytotoxic. Alamar blue and alkaline phosphatase (ALP) activity assay showed that 3D-printed OCP supported preosteoblast proliferation and osteogenic differentiation. Full article
Show Figures

Figure 1

18 pages, 8036 KB  
Article
Research on High-Temperature Frictional Performance Optimization and Synergistic Effects of Phosphate-Based Composite Lubricating Coatings
by Yong Ding, Shengjun Wang, Youxin Zhou, Hongmei Lv and Baoping Yang
Coatings 2025, 15(6), 704; https://doi.org/10.3390/coatings15060704 - 11 Jun 2025
Cited by 1 | Viewed by 1077
Abstract
In high-temperature, high-pressure, and corrosive industrial environments, frictional wear of metallic components stands as a critical determinant governing the long-term operational reliability of mechanical systems. To address the challenge of traditional lubricating coating failure under a broad temperature range (−50 to 500 °C), [...] Read more.
In high-temperature, high-pressure, and corrosive industrial environments, frictional wear of metallic components stands as a critical determinant governing the long-term operational reliability of mechanical systems. To address the challenge of traditional lubricating coating failure under a broad temperature range (−50 to 500 °C), this study developed a phosphate-based composite lubricating coating. Through air-spraying technology and orthogonal experimental optimization, the optimal formulation was determined as follows: binder/filler ratio = 6:4, 5% graphite, 15% MoS2, and 10% aluminum powder. Experimental results demonstrated that at 500 °C, the coating forms an Al–O–P cross-linked network structure, with MoS2 oxidation generating MoO3 and aluminum powder transforming into Al2O3, significantly enhancing density and oxidation resistance. Friction tests revealed that the composite coating achieves a friction coefficient as low as 0.12 at room temperature with a friction time of 260 min. At 500 °C, the friction coefficient stabilizes at 0.24, providing 40 min of effective protection. This technology not only resolves the high-temperature instability of traditional coatings but also ensures an environmentally friendly preparation process with no harmful emissions, offering a technical solution for the protection of high-temperature equipment such as thermal power plant boiler tubes and petrochemical reactors. Full article
Show Figures

Figure 1

19 pages, 4579 KB  
Article
Effect of Heating Rate on the Properties and Mechanism of Nanocomposite Ceramic Coatings Prepared by Slurry Method
by Yuntian Zhang, Yinhui Li, Jiaqi Cao, Songyuchen Ma, Guangsong Chen, Kunquan Duan and Jie Liu
Appl. Sci. 2025, 15(12), 6561; https://doi.org/10.3390/app15126561 - 11 Jun 2025
Viewed by 1105
Abstract
Nano-titanium dioxide ceramic coatings exhibit excellent wear resistance, corrosion resistance, and self-cleaning properties, showing great potential as multifunctional protective materials. This study proposes a synergistic reinforcement strategy by encapsulating micron-sized Al2O3 particles with nano-TiO2. A core-shell structured nanocomposite [...] Read more.
Nano-titanium dioxide ceramic coatings exhibit excellent wear resistance, corrosion resistance, and self-cleaning properties, showing great potential as multifunctional protective materials. This study proposes a synergistic reinforcement strategy by encapsulating micron-sized Al2O3 particles with nano-TiO2. A core-shell structured nanocomposite coating composed of 65 wt% nano-TiO2 encapsulating 30 wt% micron-Al2O3 was precisely designed and fabricated via a slurry dip-coating method on Q235 steel substrates. The microstructure and surface morphology of the coatings were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Comprehensive performance evaluations including densification, adhesion strength, wear resistance, and thermal shock resistance were conducted. Optimal coating properties were achieved under the conditions of a binder-to-solvent ratio of 1:15 (g/mL), a heating rate of 2 °C/min, and a sintering temperature of 400 °C. XRD analysis confirmed the formation of multiple crystalline phases during the 400 °C curing process, including titanium pyrophosphate (TiP2O7), aluminum phosphate (AlPO4), copper aluminate (Cu(AlO2)2), and a unique titanium phosphate phase (Ti3(PO4)4) exclusive to the 2 °C/min heating rate. Adhesion strength tests revealed that the coating sintered at 2 °C/min exhibited superior interfacial bonding strength and outstanding performance in wear resistance, hardness, and thermal shock resistance. The incorporation of nano-TiO2 into the 30 wt% Al2O3 matrix significantly enhanced the mechanical properties of the composite coating. Mechanistic studies indicated that the bonding between the nanocomposite coating and the metal substrate is primarily achieved through mechanical interlocking, forming a robust physical interface. These findings provide theoretical guidance for optimizing the fabrication process of metal-based ceramic coatings and expanding their engineering applications in various industries. Full article
Show Figures

Figure 1

11 pages, 15871 KB  
Article
Low-Cost, Sustainable Hybrid Aqueous Zinc Metal Batteries Using Ethyl Cellulose as a Binder
by Pedro Pablo Machado Pico, Stefano Colonna and Fabio Ronci
Batteries 2025, 11(5), 189; https://doi.org/10.3390/batteries11050189 - 11 May 2025
Cited by 1 | Viewed by 2497
Abstract
Despite their inherently lower energy density than lithium-ion batteries (LIBs), aqueous zinc metal batteries (AZMBs) have recently attracted interest as rechargeable energy storage devices due to their low cost and high operational and environmental safety. They are composed of metallic zinc as the [...] Read more.
Despite their inherently lower energy density than lithium-ion batteries (LIBs), aqueous zinc metal batteries (AZMBs) have recently attracted interest as rechargeable energy storage devices due to their low cost and high operational and environmental safety. They are composed of metallic zinc as the anode, an aqueous zinc salt electrolyte and a cathode capable of (de)intercalating Zn2+ ions upon its (oxidation) reduction reaction. In this work, we studied a hybrid AZMB in which a dual-ion electrolyte containing both Zn2+ and Li+ ions was used in conjunction with a Li+ ion intercalation cathode, i.e., LiFePO4 (LFP), one of the most common, reliable, and cheap cathodes for LIBs. In this study, we present evidence that, thanks to its insolubility in water, ethyl cellulose (EC) can be effectively utilized as a binder for cathode membranes in AZMBs. Furthermore, its solubility in alcohol provides a significant advantage in avoiding the use of toxic solvents, contributing to a safer and more environmentally friendly approach to the formulation process. Full article
Show Figures

Graphical abstract

28 pages, 1022 KB  
Review
Hyperphosphatemia in Kidney Failure: Pathophysiology, Challenges, and Critical Role of Phosphorus Management
by Swetha Raju and Ramesh Saxena
Nutrients 2025, 17(9), 1587; https://doi.org/10.3390/nu17091587 - 5 May 2025
Cited by 3 | Viewed by 9897
Abstract
Phosphorus is one of the most abundant minerals in the body and plays a critical role in numerous cellular and metabolic processes. Most of the phosphate is deposited in bones, 14% is present in soft tissues as various organic phosphates, and only 1% [...] Read more.
Phosphorus is one of the most abundant minerals in the body and plays a critical role in numerous cellular and metabolic processes. Most of the phosphate is deposited in bones, 14% is present in soft tissues as various organic phosphates, and only 1% is found in extracellular space, mainly as inorganic phosphate. The plasma inorganic phosphate concentration is closely maintained between 2.5 and 4.5 mg/dL by intertwined interactions between fibroblast growth factor 23 (FGF-23), parathyroid hormone (PTH), and vitamin D, which tightly regulate the phosphate trafficking across the gastrointestinal tract, kidneys, and bones. Disruption of the strict hemostatic control of phosphate balance can lead to altered cellular and organ functions that are associated with high morbidity and mortality. In the past three decades, there has been a steady increase in the prevalence of kidney failure (KF) among populations. Individuals with KF have unacceptably high mortality, and well over half of deaths are related to cardiovascular disease. Abnormal phosphate metabolism is one of the major factors that is independently associated with vascular calcification and cardiovascular mortality in KF. In early stages of CKD, adaptive processes involving FGF-23, PTH, and vitamin D occur in response to dietary phosphate load to maintain plasma phosphate level in the normal range. However, as the CKD progresses, these adaptive events are unable to overcome phosphate retention from continued dietary phosphate intake and overt hyperphosphatemia ensues. As these hormonal imbalances and the associated adverse consequences are driven by the underlying hyperphosphatemic state in KF, it appears logical to strictly control serum phosphate. Conventional dialysis is inadequate in removing phosphate and most patients require dietary restrictions and pharmacologic interventions to manage hyperphosphatemia. However, diet control comes with many challenges with adherence and may place patients at risk for inadequate protein intake and malnutrition. Phosphate binders help to reduce phosphate levels but come with a sizable pill burden and high financial costs and are associated with poor adherence and psychosocial issues. Additionally, long-term use of binders may increase the risk of calcium, lanthanum, or iron overload or promote gastrointestinal side effects that exacerbate malnutrition and affect quality of life. Given the aforesaid challenges with phosphorus binders, novel therapies targeting small intestinal phosphate absorption pathways have been investigated. Recently, tenapanor, an agent that blocks paracellular absorption of phosphate via inhibition of enteric sodium–hydrogen exchanger-3 (NHE3) was approved for the treatment of hyperphosphatemia in KF. While various clinical tools are now available to manage hyperphosphatemia, there is a lack of convincing clinical data to demonstrate improvement in outcomes in KF with the lowering of phosphorus level. Conceivably, deleterious effects associated with hyperphosphatemia could be attributable to disruptions in phosphorus-sensing mechanisms and hormonal imbalance thereof. Further exploration of mechanisms that precisely control phosphorus sensing and regulation may facilitate development of strategies to diminish the deleterious effects of phosphorus load and improve overall outcomes in KF. Full article
Show Figures

Figure 1

12 pages, 856 KB  
Review
Phosphate Homeostasis in Chronic Kidney Disease with Emphasis in Peritoneal Dialysis
by Jaime Uribarri
Kidney Dial. 2025, 5(2), 17; https://doi.org/10.3390/kidneydial5020017 - 2 May 2025
Cited by 1 | Viewed by 3727
Abstract
Hyperphosphatemia in dialysis patients is associated with adverse outcomes including bone mineral disease, increased total mortality, and cardiovascular mortality. Therefore, maintaining serum phosphate levels within limits is an important aspect of the clinical care of peritoneal dialysis patients. Unfortunately, hyperphosphatemia is commonly seen [...] Read more.
Hyperphosphatemia in dialysis patients is associated with adverse outcomes including bone mineral disease, increased total mortality, and cardiovascular mortality. Therefore, maintaining serum phosphate levels within limits is an important aspect of the clinical care of peritoneal dialysis patients. Unfortunately, hyperphosphatemia is commonly seen in the majority of dialysis patients, at least in the USA, despite apparent optimal dietary and pharmacological intervention and adequate dialysis. Herein, we review major aspects of body phosphate homeostasis in healthy subjects and in dialysis patients in order to provide a good background understanding for a more rational approach to manage serum phosphate. Of note, the phosphate concentration measured in blood by clinical laboratories represents a minute portion of the total body phosphate content but the only one that we can easily access at present; this aspect is discussed in detail in this review. We emphasize the curtailment not only of the total oral phosphate intake but also the intake of highly bioavailable phosphate; this, together with the right use of oral phosphate binders and appropriate dialysis, is an important tool. Emerging therapies with agents that block intestinal absorption of phosphate may offer a promising four-pronged approach to phosphate management. Full article
Show Figures

Figure 1

Back to TopTop