Phosphate Homeostasis in Chronic Kidney Disease with Emphasis in Peritoneal Dialysis
Abstract
:1. Introduction
2. Body Phosphate Homeostasis
- Elemental phosphorus is a highly reactive compound; the phosphorus we are exposed to in biological systems is combined with oxygen, mostly as orthophosphate.
- At usual body pH, orthophosphate exists in two main forms: H2PO4−1 and HPO4−2.
- Measurements of phosphorus in biological fluids only measure inorganic, not organic phosphate.
- When a clinical laboratory reports a normal serum phosphate level of 4 mg/dL, it is expressed as inorganic phosphorus (MW = 31). Therefore, normal serum Pi= 4 mg/dL =1.29 mmol/L = 2.32 mEq/L (pH 7.4).
3. Gastrointestinal Phosphate Absorption
4. Renal Phosphate Handling
5. Exchange of Phosphate Between Extra- and Intracellular Fluids
6. Exchange of Phosphate with Bone
- Pi in bone is in the form of hydroxyapatite: Ca10(PO4)6(OH)2
- Therefore, every 46 mg of Pi lost from bone is accompanied by 100 mg of calcium
- For bone release to increase serum Pi by 1 mg/dL, it needs the addition of 160 mg of Pi to the extracellular space (16 L × 10 mg/L) and 348 mg of Ca, which, added to the extracellular space, would raise serum Ca by about 21 mg/L or 2.1 mg/dL (0.5 mmol/L).
7. Oral Intake of Phosphate
8. Hormonal Regulation of Phosphate
9. Body Phosphate Balance
10. Clinical Approach to Hyperphosphatemia in PD
- Patient’s size may affect dwell fluid volume
- Peritoneal membrane transport characteristics (slow or fast transporters)
- Presence of residual renal function
- Dwelling time not matching with peritoneal membrane characteristics (for example, short dwell times in a slow transporter)
- Automatic peritoneal dialysis versus CAPD; consider that more than 90% of PD patients in the USA are currently on APD (cycler) [42]
- PD vintage is important, since membrane transport characteristics also affecting phosphoate dialytic removal develop as time on PD progresses
- Dietary Phosphate control
- Limit total phosphate intake
- Limit more bioavailable phosphate intake (e.g., avoid processed foods with easily absorbable phosphates, prefer plant-derived foods with less absorbable phytate)
- 2.
- Use of oral phosphate binders
- Calcium carbonate
- Calcium acetate
- Sevelamer carbonate
- Lanthanum carbonate
- Ferric citrate
- Sucroferric oxyhydroxide
- 3.
- Decrease GI phosphate absorption
- Niacin (blocking intestinal Na-P cotransporter)
- Tenapanor (blocking NHE3 exchanger)
- 4.
- Increase dialysis phosphate removal
11. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hiyamuta, H.; Yamada, S.; Taniguchi, M.; Tokumoto, M.; Tsuruya, K.; Nakano, T.; Kitazono, T. Association of hyperphosphatemia with an increased risk of sudden death in patients on hemodialysis: Ten-year outcomes of the Q-Cohort Study. Atherosclerosis 2021, 316, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Block, G.A.; Hulbert-Shearon, T.E.; Levin, N.W.; Port, F.K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: A national study. Am. J. Kidney Dis. 1998, 31, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, X.; Sun, L.; Qu, Z.; Jiang, L.; Du, Y. Phosphorus and mortality risk in end-stage renal disease: A meta-analysis. Clin. Chim. Acta 2017, 474, 108–113. [Google Scholar] [CrossRef]
- Kuro-o, M. A potential link between phosphate and aging--lessons from Klotho-deficient mice. Mech. Ageing Dev. 2010, 131, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- NIH. 2022 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States; NIH: Bethesda, MD, USA, 2022.
- Nadkarni, G.N.; Uribarri, J. Phosphorus and the kidney: What is known and what is needed. Adv. Nutr. 2014, 5, 98–103. [Google Scholar] [CrossRef]
- Wagner, C.A. The basics of phosphate metabolism. Nephrol. Dial. Transplant. 2024, 39, 190–201. [Google Scholar] [CrossRef]
- Durozard, D.; Pimmel, P.; Baretto, S.; Caillette, A.; Labeeuw, M.; Baverel, G.; Zech, P. 31P NMR spectroscopy investigation of muscle metabolism in hemodialysis patients. Kidney Int. 1993, 43, 885–892. [Google Scholar] [CrossRef]
- Stremke, E.R.; Wiese, G.N.; Moe, S.M.; Wastney, M.E.; Moorthi, R.N.; Hill Gallant, K.M. Intestinal Phosphorus Absorption in Moderate CKD and Healthy Adults Determined Using a Radioisotopic Tracer. J. Am. Soc. Nephrol. 2021, 32, 2057–2069. [Google Scholar] [CrossRef]
- Fishbane, S.N.; Nigwekar, S. Phosphate Absorption and Hyperphosphatemia Management in Kidney Disease: A Physiology-Based Review. Kidney Med. 2021, 3, 1057–1064. [Google Scholar] [CrossRef]
- Marks, J. The role of SLC34A2 in intestinal phosphate absorption and phosphate homeostasis. Pflug. Arch. 2019, 471, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Saurette, M.; Alexander, R.T. Intestinal phosphate absorption: The paracellular pathway predominates? Exp. Biol. Med. 2019, 244, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, H.M.; Moledina, J.; Travis, J. Refeeding syndrome: What it is, and how to prevent and treat it. BMJ 2008, 336, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Megapanou, E.; Florentin, M.; Milionis, H.; Elisaf, M.; Liamis, G. Drug-Induced Hypophosphatemia: Current Insights. Drug Saf. 2020, 43, 197–210. [Google Scholar] [CrossRef]
- Michigami, T.; Ozono, K. Roles of Phosphate in Skeleton. Front. Endocrinol. 2019, 10, 180. [Google Scholar] [CrossRef]
- Hughes, E.A.B.; Robinson, T.E.; Bassett, D.B.; Cox, S.C.; Grover, L.M. Critical and diverse roles of phosphates in human bone formation. J. Mater. Chem. B 2019, 7, 7460–7470. [Google Scholar] [CrossRef]
- Moe, S.M.; Zidehsarai, M.P.; Chambers, M.A.; Jackman, L.A.; Radcliffe, J.S.; Trevino, L.L.; Donahue, S.E.; Asplin, J.R. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 257–264. [Google Scholar] [CrossRef]
- Lewis, N.M.; Marcus, M.S.; Behling, A.R.; Greger, J.L. Calcium supplements and milk: Effects on acid-base balance and on retention of calcium, magnesium, and phosphorus. Am. J. Clin. Nutr. 1989, 49, 527–533. [Google Scholar] [CrossRef]
- Relman, A.S.; Lennon, E.J.; Lemann, J., Jr. Endogenous production of fixed acid and the measurement of the net balance of acid in normal subjects. J. Clin. Investig. 1961, 40, 1621–1630. [Google Scholar] [CrossRef]
- Sullivan, C.; Sayre, S.S.; Leon, J.B.; Machekano, R.; Love, T.E.; Porter, D.; Marbury, M.; Sehgal, A.R. Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: A randomized controlled trial. JAMA 2009, 301, 629–635. [Google Scholar] [CrossRef]
- Calvo, M.S.; Uribarri, J. Perspective: Plant-based Whole-Grain Foods for Chronic Kidney Disease: The Phytate-Phosphorus Conundrum. Adv. Nutr. 2021, 12, 2056–2067. [Google Scholar] [CrossRef] [PubMed]
- Jacquillet, G.; Unwin, R.J. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflug. Arch. 2019, 471, 83–98. [Google Scholar] [CrossRef]
- Bergwitz, C.; Jüppner, H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu. Rev. Med. 2010, 61, 91–104. [Google Scholar] [CrossRef]
- Kawai, M. The FGF23/Klotho axis in the regulation of mineral and metabolic homeostasis. Horm. Mol. Biol. Clin. Investig. 2016, 28, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Kuro, O.M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 2019, 15, 27–44. [Google Scholar] [CrossRef]
- Cofan, F.; García, S.; Combalia, A.; Campistol, J.M.; Oppenheimer, F.; Ramón, R. Uremic tumoral calcinosis in patients receiving longterm hemodialysis therapy. J. Rheumatol. 1999, 26, 379–385. [Google Scholar]
- Smith, E.R. Vascular Calcification in Uremia: New-Age Concepts about an Old-Age Problem. Methods Mol. Biol. 2016, 1397, 175–208. [Google Scholar] [CrossRef] [PubMed]
- Nigwekar, S.U.; Thadhani, R.; Brandenburg, V.M. Calciphylaxis. N. Engl. J. Med. 2018, 378, 1704–1714. [Google Scholar] [CrossRef]
- Gutierrez, O.; Isakova, T.; Rhee, E.; Shah, A.; Holmes, J.; Collerone, G.; Jüppner, H.; Wolf, M. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 2005, 16, 2205–2215. [Google Scholar] [CrossRef]
- Hill, K.M.; Martin, B.R.; Wastney, M.E.; McCabe, G.P.; Moe, S.M.; Weaver, C.M.; Peacock, M. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease. Kidney Int. 2013, 83, 959–966. [Google Scholar] [CrossRef]
- Spiegel, D.M.; Brady, K. Calcium balance in normal individuals and in patients with chronic kidney disease on low- and high-calcium diets. Kidney Int. 2012, 81, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Coburn, J.W.; Koppel, M.H.; Brickman, A.S.; Massry, S.G. Study of intestinal absorption of calcium in patients with renal failure. Kidney Int. 1973, 3, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.H. Are we mismanaging calcium and phosphate metabolism in renal failure? Am. J. Kidney Dis. 1997, 29, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Craver, L.; Marco, M.P.; Martínez, I.; Rue, M.; Borràs, M.; Martín, M.L.; Sarró, F.; Valdivielso, J.M.; Fernández, E. Mineral metabolism parameters throughout chronic kidney disease stages 1-5--achievement of K/DOQI target ranges. Nephrol. Dial. Transplant. 2007, 22, 1171–1176. [Google Scholar] [CrossRef]
- Isakova, T.; Wahl, P.; Vargas, G.S.; Gutiérrez, O.M.; Scialla, J.; Xie, H.; Appleby, D.; Nessel, L.; Bellovich, K.; Chen, J.; et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011, 79, 1370–1378. [Google Scholar] [CrossRef]
- Uribarri, J.; Oh, M.S. Phosphorus Intake and Whole-Body Phosphorus Homeostasis. In Dietary Phosphorus: Health, Nutrition and Regulatory Aspects; Uribarri, J., Calvo, M.S., Eds.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Artunc, F. Widespread calcifications delineating an arterial vessel tree in a peritoneal dialysis patient. Turk. J. Nephrol. 2022, 31, 391–392. [Google Scholar] [CrossRef]
- Pellegrino, E.D.; Biltz, R.M. The composition of human bone in uremia. Observations on the reservoir functions of bone and demonstration of a labile fraction of bone carbonate. Medicine 1965, 44, 397–418. [Google Scholar] [CrossRef]
- Kaye, M.; Frueh, A.J.; Silverman, M.; Henderson, J.; Thibault, T. A study of vertebral bone powder from patients with chronic renal failure. J. Clin. Investig. 1970, 49, 442–453. [Google Scholar] [CrossRef]
- Oh, M.S. Irrelevance of bone buffering to acid-base homeostasis in chronic metabolic acidosis. Nephron 1991, 59, 7–10. [Google Scholar] [CrossRef]
- Moor, V.; Wagner, R.; Sayer, M.; Petsch, M.; Rueb, S.; Häring, H.U.; Heyne, N.; Artunc, F. Routine Monitoring of Sodium and Phosphorus Removal in Peritoneal Dialysis (PD) Patients Treated with Continuous Ambulatory PD (CAPD), Automated PD (APD) or Combined CAPD+APD. Kidney Blood Press. Res. 2017, 42, 257–266. [Google Scholar] [CrossRef]
- Calvo, M.S.; Uribarri, J. Contributions to total phosphorus intake: All sources considered. Semin. Dial. 2013, 26, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, O.M.; Anderson, C.; Isakova, T.; Scialla, J.; Negrea, L.; Anderson, A.H.; Bellovich, K.; Chen, J.; Robinson, N.; Ojo, A.; et al. Low socioeconomic status associates with higher serum phosphate irrespective of race. J. Am. Soc. Nephrol. 2010, 21, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Butt, S.; Leon, J.B.; David, C.L.; Chang, H.; Sidhu, S.; Sehgal, A.R. The prevalence and nutritional implications of fast food consumption among patients receiving hemodialysis. J. Ren. Nutr. 2007, 17, 264–268. [Google Scholar] [CrossRef]
- Correia, M.I.; Hegazi, R.A.; Diaz-Pizarro Graf, J.I.; Gomez-Morales, G.; Fuentes Gutiérrez, C.; Goldin, M.F.; Navas, A.; Pinzón Espitia, O.L.; Tavares, G.M. Addressing Disease-Related Malnutrition in Healthcare: A Latin American Perspective. J. Parenter. Enteral Nutr. 2016, 40, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Paniagua, R.; Ramos, A.; Fabian, R.; Lagunas, J.; Amato, D. Chronic kidney disease and dialysis in Mexico. Perit. Dial. Int. 2007, 27, 405–409. [Google Scholar] [CrossRef]
- Scialla, J.J.; Kendrick, J.; Uribarri, J.; Kovesdy, C.P.; Gutiérrez, O.M.; Jimenez, E.Y.; Kramer, H.J. State-of-the-Art Management of Hyperphosphatemia in Patients With CKD: An NKF-KDOQI Controversies Perspective. Am. J. Kidney Dis. 2021, 77, 132–141. [Google Scholar] [CrossRef]
- Kestenbaum, B.R.; de Boer, I.H. Comparative Safety of Phosphate Binders Without Proven Efficacy-How Did We Get Here? JAMA Intern. Med. 2019, 179, 749–750. [Google Scholar] [CrossRef]
- Calvo, M.S.; Sherman, R.A.; Uribarri, J. Dietary Phosphate and the Forgotten Kidney Patient: A Critical Need for FDA Regulatory Action. Am. J. Kidney Dis. 2019, 73, 542–551. [Google Scholar] [CrossRef]
- Marcuccilli, M.; Chonchol, M.; Jovanovich, A. Phosphate Binders and Targets Over Decades: Do We have it Right Now? Semin. Dial. 2017, 30, 134–141. [Google Scholar] [CrossRef]
- King, A.J.; Siegel, M.; He, Y.; Nie, B.; Wang, J.; Koo-McCoy, S.; Minassian, N.A.; Jafri, Q.; Pan, D.; Kohler, J.; et al. Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci. Transl. Med. 2018, 10, eaam6474. [Google Scholar] [CrossRef]
- Pergola, P.E.; Rosenbaum, D.P.; Yang, Y.; Chertow, G.M. A Randomized Trial of Tenapanor and Phosphate Binders as a Dual-Mechanism Treatment for Hyperphosphatemia in Patients on Maintenance Dialysis (AMPLIFY). J. Am. Soc. Nephrol. 2021, 32, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Debowska, M.; Gomez, R.; Pinto, J.; Waniewski, J.; Lindholm, B. Phosphate clearance in peritoneal dialysis. Sci. Rep. 2020, 10, 17504. [Google Scholar] [CrossRef] [PubMed]
- Peruzzo, D.; Guedes, M.; Larkin, J.W.; Yokoyama, G.; Dos Santos, T.L.; Pecoits-Filho, R.; Ribeiro, S.C.; Ramos, A.; Barretti, P.; de Moraes, T.P. Peritoneal dialysis modality transition and impact on phosphate and potassium serum levels. PLoS ONE 2021, 16, e0257140. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, M.; Dimaano, F.; Uribarri, J. Relationship between phosphorus and creatinine clearance in peritoneal dialysis: Clinical implications. Am. J. Kidney Dis. 2000, 36, 1020–1024. [Google Scholar] [CrossRef]
- Uribarri, J.; Guedes, M.; Diaz Bessone, M.I.; Chan, L.; De La Torre, A.; Mermelstein, A.; Garcia-Garcia, G.; Raimann, J.; Moraes, T.; Peters, V.; et al. The Role of Kt/V and Creatinine clearance on Assisting Optimization of Serum Phosphorus Levels among Patients on PD. Kidney360 2024, 6, 105–111. [Google Scholar] [CrossRef]
- AKTN. PHOSPHATE. Available online: https://aktn.org.au (accessed on 18 March 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uribarri, J. Phosphate Homeostasis in Chronic Kidney Disease with Emphasis in Peritoneal Dialysis. Kidney Dial. 2025, 5, 17. https://doi.org/10.3390/kidneydial5020017
Uribarri J. Phosphate Homeostasis in Chronic Kidney Disease with Emphasis in Peritoneal Dialysis. Kidney and Dialysis. 2025; 5(2):17. https://doi.org/10.3390/kidneydial5020017
Chicago/Turabian StyleUribarri, Jaime. 2025. "Phosphate Homeostasis in Chronic Kidney Disease with Emphasis in Peritoneal Dialysis" Kidney and Dialysis 5, no. 2: 17. https://doi.org/10.3390/kidneydial5020017
APA StyleUribarri, J. (2025). Phosphate Homeostasis in Chronic Kidney Disease with Emphasis in Peritoneal Dialysis. Kidney and Dialysis, 5(2), 17. https://doi.org/10.3390/kidneydial5020017