Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (627)

Search Parameters:
Keywords = phenolic-resin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4427 KiB  
Article
Mechanistic Insights into m-Cresol Adsorption on Functional Resins: Surface Chemistry and Adsorption Behavior
by Yali Wang, Zhenrui Wang, Zile Liu, Xiyue He and Zequan Zeng
Materials 2025, 18(15), 3628; https://doi.org/10.3390/ma18153628 - 1 Aug 2025
Viewed by 115
Abstract
The removal of high-concentration m-cresol from industrial wastewater remains a significant challenge due to its toxicity and persistence. In this study, a commercially available functionalized resin with a high BET surface area (1439 m2 g−1) and hierarchical pore structure was [...] Read more.
The removal of high-concentration m-cresol from industrial wastewater remains a significant challenge due to its toxicity and persistence. In this study, a commercially available functionalized resin with a high BET surface area (1439 m2 g−1) and hierarchical pore structure was employed for the adsorption of pure m-cresol at an initial concentration of 20 g L−1, representative of coal-based industrial effluents. Comprehensive characterization confirmed the presence of oxygen-rich functional groups, amorphous polymeric structure, and uniform surface morphology conducive to adsorption. Batch experiments were conducted to evaluate the effects of resin dosage, contact time, temperature, and equilibrium concentration. Under optimized conditions (0.15 g resin, 60 °C), a maximum adsorption capacity of 556.3 mg g−1 and removal efficiency of 71% were achieved. Kinetic analysis revealed that the pseudo-second-order model best described the adsorption process (R2 > 0.99). Isotherm data fit the Langmuir model most closely (R2 = 0.9953), yielding a monolayer capacity of 833.3 mg g−1. Thermodynamic analysis showed that adsorption was spontaneous (ΔG° < 0), endothermic (ΔH° = 7.553 kJ mol−1), and accompanied by increased entropy (ΔS° = 29.90 J mol−1 K−1). The good agreement with the PSO model is indicative of chemisorption, as supported by other lines of evidence, including thermodynamic parameters (e.g., positive ΔH° and ΔS°), surface functional group characteristics, and molecular interactions. The adsorption mechanism was elucidated through comprehensive modeling of adsorption kinetics, isotherms, and thermodynamics, combined with detailed physicochemical characterization of the resin prior to adsorption, reinforcing the mechanistic understanding of m-cresol–resin interactions. Full article
Show Figures

Figure 1

20 pages, 4676 KiB  
Article
Adsorption of Pb2+ and Cd2+ from Aqueous Solutions by Porous Carbon Foam Derived from Biomass Phenolic Resin
by Jianwei Ling, Yu Gao, Ruiling Wang, Shiyu Lu, Xuemei Li, Shouqing Liu and Jianxiang Liu
Int. J. Mol. Sci. 2025, 26(15), 7302; https://doi.org/10.3390/ijms26157302 - 28 Jul 2025
Viewed by 199
Abstract
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and [...] Read more.
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and Cd2+ from water. The synthesis involved partially substituting phenol with the liquefaction product of bamboo powder, followed by modification with a silane coupling agent (KH560) and foaming with n-hexane-loaded activated carbon (H/AC). The prepared carbon foam was comprehensively characterized, and its adsorption performance and mechanism for Pb2+ and Cd2+ in aqueous solution were investigated. The results showed that M-CF possessed a uniform and well-developed spherical pore structure and demonstrated excellent removal capacity for Cd2+ and Pb2+. The adsorption process conformed to the Sips isotherm model and the pseudo-second-order kinetic equation, with maximum adsorption capacities of 22.15 mg·g−1 and 61.59 mg·g−1 for Cd2+ and Pb2+, respectively. Mechanistic analysis revealed that the removal of Cd2+ and Pb2+ was a result of the synergistic effect of physisorption and chemisorption, accompanied by complexation. Furthermore, precipitates formed during the adsorption process were found to be mainly composed of hydroxides, carbonates, and PbS. This research demonstrates the efficacy of carbon foam prepared from bamboo powder waste as a partial phenol substitute for the efficient removal of Pb2+ and Cd2+ from water, thus expanding the preparation pathways for novel heavy metal adsorption materials. Full article
Show Figures

Figure 1

25 pages, 9865 KiB  
Article
Microencapsulation of Propolis by Complex Coacervation with Chia Mucilage and Gelatin: Antioxidant Stability and Functional Potential
by Carlos A. Ligarda-Samanez, David Choque-Quispe, Henry Palomino-Rincón, Elibet Moscoso-Moscoso, Rodrigo J. Guzmán Gutiérrez and Ismael Banda Mozo
Antioxidants 2025, 14(7), 845; https://doi.org/10.3390/antiox14070845 - 10 Jul 2025
Viewed by 453
Abstract
Propolis is a bee-derived resin rich in phenolic compounds known for their antioxidant, anti-inflammatory, and antimicrobial properties; however, its limited solubility and stability hinder its incorporation into food matrices. This study aimed to optimize the microencapsulation of ethanolic propolis extract through complex coacervation [...] Read more.
Propolis is a bee-derived resin rich in phenolic compounds known for their antioxidant, anti-inflammatory, and antimicrobial properties; however, its limited solubility and stability hinder its incorporation into food matrices. This study aimed to optimize the microencapsulation of ethanolic propolis extract through complex coacervation using chia mucilage and gelatin as wall materials, followed by spray drying. A 32 factorial design was applied to evaluate the effects of coacervate concentration and inlet temperature on various microcapsule properties. The optimal formulation (3.13% coacervate and 120 °C) exhibited high phenolic retention (15.36 mg GAE/g), notable antioxidant capacity (60.10 µmol TE/g), good solubility, thermal stability, and sustained in vitro release. Phenolic compounds were identified and quantified by UPLC-PDA-QDa, including gallic acid, catechin, epicatechin, epigallocatechin gallate, rutin, myricetin, resveratrol, quercetin, and kaempferol. Incorporating the microcapsules into functional gummy candies significantly enhanced their antioxidant activity without compromising sensory attributes. These findings support the use of complex coacervation as an effective strategy for stabilizing propolis bioactives, with promising applications in the development of functional foods that offer potential health benefits. Full article
Show Figures

Graphical abstract

16 pages, 3436 KiB  
Article
Synthesis and Characterization of Polymethylhydrosiloxane-Modified Phenol–Formaldehyde Resin
by Luong Nhu Hai, Nguyen Van Thao, Pham The Long, Nguyen Xuan Anh, Le Tran Tiep, Hoang Quoc Nam, Nguyen Minh Viet, Tran The Dinh, Le Duy Binh, Ta Kim Thanh Hien and Cong Tien Dung
Chemistry 2025, 7(4), 112; https://doi.org/10.3390/chemistry7040112 - 7 Jul 2025
Viewed by 477
Abstract
Resol phenol–formaldehyde (PF) resin was modified with 2.5 and 5.0 wt% polymethylhydrosiloxane (PMHS). This study characterizes the modified resin and its subsequently fabricated glass fiber (GF)-reinforced composites (30–60 wt% GF). Formation of an organic–inorganic hybrid network, via reaction between Si-H groups of PMHS [...] Read more.
Resol phenol–formaldehyde (PF) resin was modified with 2.5 and 5.0 wt% polymethylhydrosiloxane (PMHS). This study characterizes the modified resin and its subsequently fabricated glass fiber (GF)-reinforced composites (30–60 wt% GF). Formation of an organic–inorganic hybrid network, via reaction between Si-H groups of PMHS and hydroxyl (-OH) groups of the resol resin, was confirmed by FTIR and 1H NMR. DSC and TGA/DTG revealed enhanced thermal stability for PMHS-modified resin: the decomposition temperature of Resol–PMHS 5.0% increased to 483 °C (neat resin: 438 °C), and char yield at 800 °C rose to 57% (neat resin: 38%). The 60 wt% GF-reinforced Resol–PMHS 5.0% composite exhibited tensile, flexural, and impact strengths of 145 ± 7 MPa, 160 ± 7 MPa, and 71 ± 5 kJ/m2, respectively, superior to the unmodified resin composite (136 ± 6 MPa, 112 ± 6 MPa, and 51 ± 5 kJ/m2). SEM observations indicated improved fiber–matrix interfacial adhesion and reduced delamination. These results demonstrate that PMHS modification effectively enhances the thermo-mechanical properties of the PF resin and its composites, highlighting potential for industrial applications. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Graphical abstract

17 pages, 8792 KiB  
Essay
Composite Effect of Nanoparticles and Conventional Additives on Hydrate Formation in Seawater-Based Drilling Fluids
by Dongdong Guo, Yunhong Zhang, Ling Ji, Hengyin Zhu, Jinjin Yao, Ran Li and Zhipeng Xin
Processes 2025, 13(7), 2058; https://doi.org/10.3390/pr13072058 - 28 Jun 2025
Viewed by 404
Abstract
The design of high-performance drilling fluid systems is of vital importance for the safe and efficient exploitation of natural gas hydrates. Incorporating appropriate nanoparticles into drilling fluids can significantly enhance drilling fluid loss control, wellbore stability, and hydrate inhibition. However, the combined effects [...] Read more.
The design of high-performance drilling fluid systems is of vital importance for the safe and efficient exploitation of natural gas hydrates. Incorporating appropriate nanoparticles into drilling fluids can significantly enhance drilling fluid loss control, wellbore stability, and hydrate inhibition. However, the combined effects of nanoparticles and conventional additives on hydrate inhibition in drilling fluid systems remain poorly understood. In this study, the influence of nanoparticles on hydrate formation was first evaluated in a base mud, followed by an investigation of their combined effects with common drilling fluid additives. The results demonstrate that hydrophilic nano-CaCO3 particles exhibit hydrate inhibitory effects, with the strongest inhibition observed at 3.0%. Composite system tests (incorporating nanoparticles with sepiolite, filtrate reducers, and flow modifiers) revealed diverse effects on hydrate formation. Specifically, the combination of nanoparticles and sepiolite promoted hydrate formation; the combination of nanoparticles and filtrate reducers showed divergent effects. Mixtures of nanoparticles with 0.2% low-viscosity anionic cellulose (LV-PAC), carboxymethyl starch (CMS), and low-viscosity carboxymethyl cellulose (LV-CMC) inhibited hydrate formation, while mixtures with 0.2% sulfonated phenolic resin (SMP-2) and hydrolyzed ammonium polyacrylonitrile (NH4-HPAN) accelerated hydrate formation. Notably, the incorporation of nanoparticles with 0.3% guar gum, sesbania gum, high-viscosity carboxymethyl cellulose (HV-CMC), or high-viscosity polyanionic cellulose (HV-PAC) resulted in the complete inhibition of hydrate formation. By contrast, the synergistic inhibition effect of the nanoparticle/xanthan gum (XC) composite system was relatively weak, with the optimal compounding concentration determined to be 0.3%. These findings provide critical insights for the development of drilling fluid systems in natural gas hydrate reservoirs, facilitating the optimization of drilling performance and enhancing operational safety in hydrate-bearing formations. Full article
(This article belongs to the Special Issue Advances in Gas Hydrate: From Formation to Exploitation Processes)
Show Figures

Figure 1

19 pages, 9587 KiB  
Article
Histological and Histochemical Analysis of Austrocedrus chilensis Trees Healthy and Infected with Phytophthora austrocedri
by Oscar Troncoso and Alina G. Greslebin
Forests 2025, 16(7), 1073; https://doi.org/10.3390/f16071073 - 27 Jun 2025
Viewed by 284
Abstract
The endemic Patagonian conifer, Austrocedrus chilensis, is threatened by the pathogen Phytophthora austrocedri. This study presents the first histological and histochemical analysis of A. chilensis affected by this pathogen. We examined the stem tissues of naturally infected adult trees (over 30 [...] Read more.
The endemic Patagonian conifer, Austrocedrus chilensis, is threatened by the pathogen Phytophthora austrocedri. This study presents the first histological and histochemical analysis of A. chilensis affected by this pathogen. We examined the stem tissues of naturally infected adult trees (over 30 years old) and artificially inoculated saplings (8–12 years old) to identify the pathogen’s colonization strategies and the tree’s histological responses. Using light and scanning electronic microscopy along with several histochemical techniques (Lugol, toluidine blue, vanillin-HCl, Phloroglucinol, Calcofluor white, and aniline blue), we found that P. austrocedri can grow in all active tissues, leading to cambium and parenchyma necrosis. The pathogen spreads through sieve cells and tracheids, moving to the adjacent cells via sieve plates and bordered pits and colonizing nearby parenchyma cells. We observed loss of starch in necrotic tissues. In contrast, starch accumulation and an increase in the number of polyphenolic cells occur in the healthy areas adjacent to the margins of the lesion, indicating a tree’s induced defense mechanisms. The tree’s responses include cambium reprogramming, which leads to the formation of traumatic resin ducts, alterations in cell shape and size, and the deposition of phenolic compounds. We analyze the tree responses and discuss their potential relationship with a methyl jasmonate-induced defense and a hypersensitive-like response. Full article
(This article belongs to the Section Forest Health)
Show Figures

Graphical abstract

15 pages, 2017 KiB  
Article
Assessment of Harmful Emissions from Multiple Binder Systems in Pilot-Scale Sand Casting
by Erika Garitaonandia, Andoni Ibarra, Angelika Kmita, Rafał Dańko and Mariusz Holtzer
Molecules 2025, 30(13), 2765; https://doi.org/10.3390/molecules30132765 - 27 Jun 2025
Viewed by 293
Abstract
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests [...] Read more.
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests for the production of 60 kg iron alloy castings in 110 kg sand molds. The molds were evaluated under two configurations: homogeneous systems, where both mold and cores were manufactured using the same binder (five trials), and heterogeneous systems, where different binders were used for mold and cores (four trials). Each mold was placed in a metallic box fitted with a lid and an integrated gas extraction duct. The lid remained open during pouring and was closed immediately afterward to enable efficient evacuation of casting gases through the extraction system. Although the box was not completely airtight, it was designed to direct most exhaust gases through the duct. Along the extraction system line, different sampling instruments were strategically located for the precise measurement of contaminants: volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), phenol, multiple forms of particulate matter (including crystalline silica content), and gases produced during pyrolysis. Across the nine trials, inorganic binders demonstrated significant reductions in gas emissions and priority pollutants, achieving decreases of over 90% in BTEX compounds (benzene, toluene, ethylbenzene, and xylene) and over 94% in PAHs compared to organic systems. Gas emissions were also substantially reduced, with CO emissions lowered by over 30%, NOx by more than 98%, and SO2 by over 75%. Conducted under the Greencasting LIFE project (LIFE 21 ENV/FI/101074439), this work provides empirical evidence supporting sodium silicate and geopolymer binders as viable, sustainable solutions for minimizing occupational and ecological risks in metal casting processes. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

25 pages, 2127 KiB  
Article
Isolation, Preliminary Structural Insights, Characterization, and Antioxidant Potential of a New High-Molecular Weight Complex Phenolic Polymer Developed from Olive Mill Wastewater
by Antonio Lama-Muñoz, Alejandra Bermúdez-Oria, Fátima Rubio-Senent, Guillermo Rodríguez-Gutiérrez, África Fernández-Prior and Juan Fernández-Bolaños
Antioxidants 2025, 14(7), 791; https://doi.org/10.3390/antiox14070791 - 27 Jun 2025
Viewed by 495
Abstract
Olive mill wastewater (OMW), a byproduct of the olive oil industry, is a potential source of natural bioactive phenolic polymers. In this work, a column chromatography technique was used for the isolation of a new complex polymer (named OMW-2000XAD) from OMW via fractionation [...] Read more.
Olive mill wastewater (OMW), a byproduct of the olive oil industry, is a potential source of natural bioactive phenolic polymers. In this work, a column chromatography technique was used for the isolation of a new complex polymer (named OMW-2000XAD) from OMW via fractionation on Amberlite® XAD16 resin. The developed procedure was simple and proved to be reproducible using OMW from two different sources. OMW-2000XAD was further characterized by elemental, glycosidic, and amino acid composition analysis, as well as spectroscopic techniques. The polymer’s molecular size, which was estimated via gel filtration chromatography, was 1960 kDa, which is significantly larger than other high-molecular weight fractions previously isolated from OMW or other agro-industrial wastes. OMW-2000XAD was mainly composed of phenolic compounds (89.8%). It also contained polysaccharides (16.1%) and proteins (10.3%), with glucose (12.25%) and cysteine (1.71%) being the most abundant sugar and amino acid, respectively, as well as metals (1.29%, primarily potassium). However, due to its low solubility, complexity, and heterogeneous composition, it was not possible to identify all phenolic compounds or elucidate a definitive structure via MS, FTIR, and NMR. OMW-2000XAD exhibited strong radical scavenging antioxidant capacity (ABTS•+, DPPH and peroxyl radicals), with results up to 7415 µmol Trolox equivalent/mol (ORAC method), but showed no antiproliferative effects, highlighting the need for further research. Full article
Show Figures

Figure 1

15 pages, 1315 KiB  
Article
Functionalisation of Lignin-Derived Diols for the Synthesis of Thermoplastic Polyurethanes and Polyester Resins
by Rachele N. Carafa, Justin J. S. Kosalka, Brigida V. Fernandes, Unnati Desai, Daniel A. Foucher and Guerino G. Sacripante
Molecules 2025, 30(12), 2604; https://doi.org/10.3390/molecules30122604 - 16 Jun 2025
Viewed by 449
Abstract
The functionalisation of lignin-derived phenolics (guaiacol, 4-propylguaiacol, eugenol, isoeugenol, phenol, m-cresol, catechol, syringol, syringaldehyde, and vanillin) for the synthesis of thermoplastic polyurethanes (PUs) and polyester (PE) resins is herein described. Diols were synthesised from phenolics in a one-step reaction using either glycerol [...] Read more.
The functionalisation of lignin-derived phenolics (guaiacol, 4-propylguaiacol, eugenol, isoeugenol, phenol, m-cresol, catechol, syringol, syringaldehyde, and vanillin) for the synthesis of thermoplastic polyurethanes (PUs) and polyester (PE) resins is herein described. Diols were synthesised from phenolics in a one-step reaction using either glycerol carbonate or ethylene carbonate as a greener, solvent-free synthetic route. Nine of the diols were selected for the synthesis of Pus, and two of the diols were used for the synthesis of PE resins, with their physical and thermal properties characterised. Analysis of the PUs by differential scanning calorimetry (DSC) confirmed their amorphous nature, while thermogravimetric analysis (TGA) suggested improved thermal stability for all PUs with the addition of an alkyl or aldehyde substituent on the benzene ring regardless of the diisocyanate used. However, lower PU thermal stabilities were observed with the use of an aliphatic diisocyanate over an aromatic diisocyanate in the absence of an additional substituent. Analysis of the PEs by DSC also confirmed that the clear resins were all amorphous, and gel permeation chromatography (GPC) revealed significantly higher molecular weights and dispersities when an aliphatic diacid was utilised over an aromatic diacid. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Graphical abstract

14 pages, 1615 KiB  
Article
Investigation on the Properties of Phenolic-Resin-Based Functional Gradient Thermal Protection Composite Materials
by Jiangman Li, Weixiong Chen and Jianlong Chang
Aerospace 2025, 12(6), 536; https://doi.org/10.3390/aerospace12060536 - 13 Jun 2025
Cited by 1 | Viewed by 701
Abstract
Crosslinked phenolic resin was prepared using hexamethylenetetramine (HMTA) as a crosslinking agent in hydrochloric acid solution. The ablation-heat-resistant material was prepared by a pressure-assisted RTM (resin transfer molding) process with reinforcing material (quartz fibre 2.5D needle-punched fabric/satin fibre cloth/fibre mesh tire) and matrix [...] Read more.
Crosslinked phenolic resin was prepared using hexamethylenetetramine (HMTA) as a crosslinking agent in hydrochloric acid solution. The ablation-heat-resistant material was prepared by a pressure-assisted RTM (resin transfer molding) process with reinforcing material (quartz fibre 2.5D needle-punched fabric/satin fibre cloth/fibre mesh tire) and matrix (crosslinked phenolic resin). The thermal stability of the cured product was studied by a thermogravimetric analyser (TG and DTG). The mechanical properties, heat resistance, and ablation properties of the composites were tested. The ablation morphology, element analysis, and phase structure of the composites were analysed by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD), respectively. The results show that the phenolic resin has a lower initial viscosity and a longer pot life at 80 °C, and a higher carbon residue rate (70.18%). The tensile strength of the composites is close to 40 MPa, the tensile modulus is higher than 1.35 GPa, the compression modulus is higher than 10 MPa, and the elongation at break is higher than 1.55%. SiO2, SiC, and ZrO2 ceramic phases were formed after ablation, which effectively improved the ablation performance of the composites. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

23 pages, 1943 KiB  
Article
Exploring the Characterization, Physicochemical Properties, and Antioxidant Activities of Chitosan-Encapsulated Green Tea Extract Microsphere Resin
by Lina Yu, Siyu Feng, Yu Song, Jie Bi, Yuan Gao, Luhui Wang, Chen Jiang and Mingqing Wang
Polymers 2025, 17(12), 1633; https://doi.org/10.3390/polym17121633 - 12 Jun 2025
Viewed by 452
Abstract
Chitosan, a naturally occurring alkaline polysaccharide with excellent biocompatibility, non-toxicity, and renewability, has the ability to undergo cross-linking reactions with polyphenolic compounds. In this study, chitosan-encapsulated green tea extract microsphere resin (CS-GTEMR) was successfully prepared using chitosan and green tea extract via reversed-phase [...] Read more.
Chitosan, a naturally occurring alkaline polysaccharide with excellent biocompatibility, non-toxicity, and renewability, has the ability to undergo cross-linking reactions with polyphenolic compounds. In this study, chitosan-encapsulated green tea extract microsphere resin (CS-GTEMR) was successfully prepared using chitosan and green tea extract via reversed-phase suspension cross-linking polymerization. The structural characterization of CS-GTEMR was conducted using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). Additionally, its physical properties, swelling behavior, polyphenol content, and antioxidant activities were investigated. The results indicate that CS-GTEMR consists of reddish-brown microspheres with a smooth surface and dense pores. The study found that the total content of polyphenolic compounds encapsulated in CS-GTEMR was 50.485 ± 0.840 μg/g. The characteristic absorption peak of phenolic hydroxyl groups appeared in the FTIR spectrum, suggesting that the polyphenolic compounds had been successfully encapsulated within the CS-GTEMR. The equilibrium swelling ratio of CS-GTEMR was determined to be 229.7%, indicating their suitability for use in solutions with a pH range of 1–13. In simulated gastric and intestinal fluids, the release rates of polyphenolic compounds from CS-GTEMR were 24.934% and 3.375%, respectively, indicating that CS-GTEMR can exert a sustained-release effect on polyphenolic compounds. CS-GTEMR demonstrated antioxidant activities such as scavenging DPPH radicals, superoxide anion radicals, hydroxyl radicals, and hydrogen peroxide, as well as exhibiting iron-reducing and molybdenum-reducing powers. With its high mechanical strength, acid resistance, and organic solvent resistance, CS-GTEMR can protect polyphenolic compounds from damage. Therefore, CS-GTEMR can be utilized as a natural antioxidant or preventive agent in food, expanding the application scope of green tea extracts. Full article
Show Figures

Figure 1

75 pages, 15988 KiB  
Review
Tailoring Polymer Properties Through Lignin Addition: A Recent Perspective on Lignin-Derived Polymer Modifications
by Nawoda L. Kapuge Dona and Rhett C. Smith
Molecules 2025, 30(11), 2455; https://doi.org/10.3390/molecules30112455 - 3 Jun 2025
Viewed by 902
Abstract
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This [...] Read more.
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This review provides an updated perspective on the incorporation of lignin into various polymer matrices, focusing on lignin modification techniques, structure–property relationships, and emerging applications. Special emphasis is given to recent innovations in lignin functionalization and its role in developing high-performance, biodegradable, and recyclable materials such as polyurethanes, epoxy resins, phenol-formaldehyde resins, lignin-modified composites, and lignin-based films, coatings, elastomers, and adhesives. These lignin-based materials are gaining attention for potential applications in construction, automated industries, packaging, textiles, wastewater treatment, footwear, supporting goods, automobiles, printing rollers, sealants, and binders. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

16 pages, 5706 KiB  
Article
In Situ-Prepared Nanocomposite for Water Management in High-Temperature Reservoirs
by Hui Yang, Jian Zhang, Zhiwei Wang, Shichao Li, Qiang Wei, Yunteng He, Luyao Li, Jiachang Zhao, Caihong Xu and Zongbo Zhang
Gels 2025, 11(6), 405; https://doi.org/10.3390/gels11060405 - 29 May 2025
Viewed by 429
Abstract
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their [...] Read more.
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their short gelation time under high-temperature reservoir conditions (e.g., >120 °C) limits effective in-depth water shutoff and conformance control. To address this, we developed a hydrogel system via the in situ cross-linking of polyacrylamide (PAM) with phenolic resin (PR), reinforced by silica sol (SS) nanoparticles. We employed a variety of research methods, including bottle tests, viscosity and rheology measurements, scanning electron microscopy (SEM) scanning, density functional theory (DFT) calculations, differential scanning calorimetry (DSC) measurements, quartz crystal microbalance with dissipation (QCM-D) measurement, contact angle (CA) measurement, injectivity and temporary plugging performance evaluations, etc. The composite gel exhibits an exceptional gelation period of 72 h at 130 °C, surpassing conventional systems by more than 4.5 times in terms of duration. The gelation rate remains almost unchanged with the introduction of SS, due to the highly pre-dispersed silica nanoparticles that provide exceptional colloidal stability and the system’s pH changing slightly throughout the gelation process. DFT and SEM results reveal that synergistic interactions between organic (PAM-PR networks) and inorganic (SS) components create a stacked hybrid network, enhancing both mechanical strength and thermal stability. A core flooding experiment demonstrates that the gel system achieves 92.4% plugging efficiency. The tailored nanocomposite allows for the precise management of gelation kinetics and microstructure formation, effectively addressing water control and enhancing the plugging effect in high-temperature reservoirs. These findings advance the mechanistic understanding of organic–inorganic hybrid gel systems and provide a framework for developing next-generation EOR technologies under extreme reservoir conditions. Full article
Show Figures

Figure 1

26 pages, 5955 KiB  
Article
Study of Road Bitumen Operational Properties Modified with Phenol–Cresol–Formaldehyde Resin
by Yuriy Demchuk, Volodymyr Gunka, Iurii Sidun, Bohdan Korchak, Myroslava Donchenko, Iryna Drapak, Ihor Poliuzhyn and Serhiy Pyshyev
Resources 2025, 14(6), 91; https://doi.org/10.3390/resources14060091 - 28 May 2025
Cited by 3 | Viewed by 1360
Abstract
Using a relatively inexpensive method, phenol–cresol–formaldehyde resin (PhCR-F) was produced utilizing the byproducts of coal coking. It is shown that petroleum road bitumens, to which 1.0 wt.% PhCR-F is added, in terms of basic physical and mechanical parameters, comply with the requirements of [...] Read more.
Using a relatively inexpensive method, phenol–cresol–formaldehyde resin (PhCR-F) was produced utilizing the byproducts of coal coking. It is shown that petroleum road bitumens, to which 1.0 wt.% PhCR-F is added, in terms of basic physical and mechanical parameters, comply with the requirements of the regulatory document for bitumens modified with adhesive additives. Research on the operational properties of these modified bitumens as a binding material for asphalt concrete is described. It has been proven that modified bitumen can store stable properties during its application (resistance to aging). The interaction of bitumens modified by PhCR-F with the surfaces of mineral materials, which occurs during the creation of asphalt concrete coatings, was studied. It was shown that adding 1.0 wt.% PhCR-F to road bitumen significantly improves the adhesion of the binder to the mineral material and increases the hydrophobicity of such a coating. The production of effective bitumen modifiers from non-target coking products of coal will not only make it possible to use new resources in road construction but will also increase the depth of decarbonization of the coking industry. Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
Show Figures

Figure 1

15 pages, 3531 KiB  
Article
Carbonized Hemp Fiber for Use in Composites
by Sodiq B. Yusuf, Michael R. Maughan and Armando G. McDonald
Materials 2025, 18(11), 2509; https://doi.org/10.3390/ma18112509 - 27 May 2025
Viewed by 605
Abstract
This study investigates the use of carbonized hemp fiber (CHF) as a reinforcement for phenol resorcinol formaldehyde (PRF)-based fiber composites. The hemp fiber was carbonized slowly up to 1000 °C under N2 with a yield of 18%. Compression-molded composites were prepared with [...] Read more.
This study investigates the use of carbonized hemp fiber (CHF) as a reinforcement for phenol resorcinol formaldehyde (PRF)-based fiber composites. The hemp fiber was carbonized slowly up to 1000 °C under N2 with a yield of 18%. Compression-molded composites were prepared with CHF and then compared to hemp (HF) and wood fiber (WF) at 0 to 50% loading with PRF resin. The flow characteristics of the uncured composites were determined by dynamic rheology and showed pseudoplastic behavior; the composites show promise as extrudable materials. The flexural strength of the HF composites (69 MPa for 40% HF) was higher than the CHF composites. The thermal stability of the composites was determined by thermogravimetric analysis (TGA), and the CHF composites were more stable than the HF and WF composites. Carbonization was shown to enhance both the thermal stability and the hydrophobicity of the composites, which is expected to lead to less susceptibility to weathering and biological attack. Formulations of 50% WF, 50% CHF, and 30% HF fiber loadings with PRF were able to be extruded into rods. Extruded CHF composites showed better mechanical properties than the HF and WF composites. Full article
Show Figures

Graphical abstract

Back to TopTop