Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,637)

Search Parameters:
Keywords = phase variations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1723 KiB  
Article
Molecular Fractionation Induced by Viscosity-Driven Segregative Phase Separation Behavior of Gum Arabic/Hydroxypropyl Methylcellulose
by Lingyu Han, Cunzhi Zhang, Nuo Dong, Jixin Yang, Qiuyue Zheng, Xiaobo Zhang, Ronggang Liu, Jijuan Cao and Bing Hu
Foods 2025, 14(15), 2642; https://doi.org/10.3390/foods14152642 - 28 Jul 2025
Abstract
Segregative phase separation technology demonstrates substantial potential for precise molecular fractionation in food and biomaterial applications. The investigation elucidates the causal relationship between viscosity variations and phase separation dynamics, which govern molecular fractionation in GA/HPMC composite systems. By conducting a comparative analysis of [...] Read more.
Segregative phase separation technology demonstrates substantial potential for precise molecular fractionation in food and biomaterial applications. The investigation elucidates the causal relationship between viscosity variations and phase separation dynamics, which govern molecular fractionation in GA/HPMC composite systems. By conducting a comparative analysis of two GA subtypes (CGA and SGA) and three HPMC grades with controlled viscosity gradients, we utilized gel permeation chromatography-multi-angle laser light scattering (GPC-MALLS) coupled with rheological characterization to elucidate the critical relationship between continuous phase viscosity and fractionation efficiency. Notably, increasing HPMC viscosity significantly intensified phase separation, resulting in selective enrichment of arabinogalactan-protein complexes: from 6.3% to 8.5% in CGA/HPMC systems and from 27.3% to 36.5% in SGA/HPMC systems. Further mechanistic investigation revealed that elevated HPMC viscosity enhances thermodynamic incompatibility while slowing interfacial mass transfer, synergistically driving component redistribution. These findings establish a quantitative viscosity–fractionation relationship, offering theoretical insights for optimizing GA/HPMC systems in emulsion stabilization, microencapsulation, and functional biopolymer purification via viscosity-mediated phase engineering. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

26 pages, 4687 KiB  
Article
Geant4-Based Logging-While-Drilling Gamma Gas Detection for Quantitative Inversion of Downhole Gas Content
by Xingming Wang, Xiangyu Wang, Qiaozhu Wang, Yuanyuan Yang, Xiong Han, Zhipeng Xu and Luqing Li
Processes 2025, 13(8), 2392; https://doi.org/10.3390/pr13082392 - 28 Jul 2025
Abstract
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for [...] Read more.
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for early warning. This study proposes a real-time monitoring technique for gas content in drilling fluid based on the attenuation principle of Ba-133 γ-rays. By integrating laboratory static/dynamic experiments and Geant4-11.2 Monte Carlo simulations, the influence mechanism of gas–liquid two-phase media on γ-ray transmission characteristics is systematically elucidated. Firstly, through a comparative analysis of radioactive source parameters such as Am-241 and Cs-137, Ba-133 (main peak at 356 keV, half-life of 10.6 years) is identified as the optimal downhole nuclear measurement source based on a comparative analysis of penetration capability, detection efficiency, and regulatory compliance. Compared to alternative sources, Ba-133 provides an optimal energy range for detecting drilling fluid density variations, while also meeting exemption activity limits (1 × 106 Bq) for field deployment. Subsequently, an experimental setup with drilling fluids of varying densities (1.2–1.8 g/cm3) is constructed to quantify the inverse square attenuation relationship between source-to-detector distance and counting rate, and to acquire counting data over the full gas content range (0–100%). The Monte Carlo simulation results exhibit a mean relative error of 5.01% compared to the experimental data, validating the physical correctness of the model. On this basis, a nonlinear inversion model coupling a first-order density term with a cubic gas content term is proposed, achieving a mean absolute percentage error of 2.3% across the full range and R2 = 0.999. Geant4-based simulation validation demonstrates that this technique can achieve a measurement accuracy of ±2.5% for gas content within the range of 0–100% (at a 95% confidence interval). The anticipated field accuracy of ±5% is estimated by accounting for additional uncertainties due to temperature effects, vibration, and mud composition variations under downhole conditions, significantly outperforming current surface monitoring methods. This enables the high-frequency, high-precision early detection of kick events during the shut-in period. The present study provides both theoretical and technical support for the engineering application of nuclear measurement techniques in well control safety. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

27 pages, 14921 KiB  
Article
Analysis of the Dynamic Process of Tornado Formation on 28 July 2024
by Xin Zhou, Ling Yang, Shuqing Ma, Ruifeng Wang, Zhaoming Li, Yuchen Song, Yongsheng Gao and Jinyan Xu
Remote Sens. 2025, 17(15), 2615; https://doi.org/10.3390/rs17152615 - 28 Jul 2025
Abstract
An EF1 tornado struck Nansha District, Foshan, Guangdong, on 28 July 2024. To explore the dynamic and thermodynamic changes during the tornado’s life cycle, high-resolution spatiotemporal data from Foshan’s X-band phased-array radar and the direct wind field synthesis algorithm were used to reconstruct [...] Read more.
An EF1 tornado struck Nansha District, Foshan, Guangdong, on 28 July 2024. To explore the dynamic and thermodynamic changes during the tornado’s life cycle, high-resolution spatiotemporal data from Foshan’s X-band phased-array radar and the direct wind field synthesis algorithm were used to reconstruct the 3D wind field. The dynamics and 3D structure of the tornado were analysed, with a new parameter, vorticity volume (VV), introduced to study its variation. The observation results indicate that the tornado moved from southwest to northeast. During the tornado’s early stage (00:10–00:20 UTC), arc-shaped and annular echoes emerged and positive vorticity increased (peaking at 0.042 s−1). Based on the tornado’s movement direction, the right side of the vortex centre was divergent, while the left side was convergent, whereas the vorticity area and volume continued to grow centrally. During the mature stage (00:23–00:25 UTC), the echo intensity weakened and, at 00:24, the vorticity reached its peak and touched the ground, with the vorticity area and volume also reaching their peaks at the same time. During the dissipation stage (00:25–00:30 UTC), the vorticity and echo features faded and the vorticity area and volume also declined rapidly. The analysis showed that the vorticity volume effectively reflects the tornado’s life cycle, enhancing the understanding of the dynamic and thermodynamic processes during the tornado’s development. Full article
Show Figures

Figure 1

22 pages, 9343 KiB  
Article
Effect of Polymer Molecular Weight on the Structure and Properties of Ultra-High-Molecular-Weight Polyethylene Membranes Prepared via Controlled Swelling
by Andrey V. Basko, Konstantin V. Pochivalov, Tatyana N. Lebedeva, Mikhail Y. Yurov, Alexander S. Zabolotnov, Sergey S. Gostev, Alexey A. Yushkin, Alexey V. Volkov and Sergei V. Bronnikov
Polymers 2025, 17(15), 2044; https://doi.org/10.3390/polym17152044 - 26 Jul 2025
Viewed by 14
Abstract
A recently proposed method called “controlled swelling of monolithic films” was implemented to prepare ultra-high-molecular-weight polyethylene (UHMWPE) ultrafiltration membranes. For the first time, the effect of UHMWPE molecular weight (MW) on the structure and properties of the membranes prepared via this special case [...] Read more.
A recently proposed method called “controlled swelling of monolithic films” was implemented to prepare ultra-high-molecular-weight polyethylene (UHMWPE) ultrafiltration membranes. For the first time, the effect of UHMWPE molecular weight (MW) on the structure and properties of the membranes prepared via this special case of thermally induced phase separation was studied in detail. The morphology and properties of the membranes were studied using SEM, DSC, liquid–liquid displacement porometry, and standard methods for the evaluation of mechanical properties, permeance, rejection, and abrasion resistance. High-quality membranes with a tensile strength of 5.0–17.8 MPa, a mean pore size of 25–50 nm, permeance of 17–107 L m−2 h−1 bar−1, rejection of model contaminant (blue dextran) of 72–98%, and great abrasion resistance can be prepared only if the MW of the polymer in the initial monolithic film is sufficiently high. The properties of the membranes can effectively be controlled by changing the MW of the polymer and the mass fraction of the latter in the swollen film. Shrinkage is responsible for the variation in the membrane properties. The membranes prepared from a higher-MW polymer are more prone to shrinking after the removal of the solvent. Shrinkage decreases before rising again and minimizes with an increase in the polymer content in the swollen film. Full article
Show Figures

Graphical abstract

11 pages, 7608 KiB  
Article
A Theoretical Raman Spectra Analysis of the Effect of the Li2S and Li3PS4 Content on the Interface Formation Between (110)Li2S and (100)β-Li3PS4
by Naiara Leticia Marana, Eleonora Ascrizzi, Fabrizio Silveri, Mauro Francesco Sgroi, Lorenzo Maschio and Anna Maria Ferrari
Materials 2025, 18(15), 3515; https://doi.org/10.3390/ma18153515 - 26 Jul 2025
Viewed by 71
Abstract
In this study, we perform density functional theory (DFT) simulations to investigate the Raman spectra of the bulk and surface phases of β-Li3PS4 (LPS) and Li2S, as well as their interfaces at varying compositional ratios. This analysis is [...] Read more.
In this study, we perform density functional theory (DFT) simulations to investigate the Raman spectra of the bulk and surface phases of β-Li3PS4 (LPS) and Li2S, as well as their interfaces at varying compositional ratios. This analysis is relevant given the widespread application of these materials in Li–S solid-state batteries, where Li2S functions not only as a cathode material but also as a protective layer for the lithium anode. Understanding the interfacial structure and how compositional variations influence its chemical and mechanical stability is therefore crucial. Our results demonstrate that the LPS/Li2S interface remains stable regardless of the compositional ratio. However, when the content of both materials is low, the Raman-active vibrational mode associated with the [PS4]3− tetrahedral cluster dominates the interface spectrum, effectively obscuring the characteristic peaks of Li2S and other interfacial features. Only when sufficient amounts of both LPS and Li2S are present does the coupling between their vibrational modes become sufficiently pronounced to alter the Raman profile and reveal distinct interfacial fingerprints. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

9 pages, 2733 KiB  
Data Descriptor
Investigating Mid-Latitude Lower Ionospheric Responses to Energetic Electron Precipitation: A Case Study
by Aleksandra Kolarski, Vladimir A. Srećković, Zoran R. Mijić and Filip Arnaut
Data 2025, 10(8), 121; https://doi.org/10.3390/data10080121 - 26 Jul 2025
Viewed by 88
Abstract
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to [...] Read more.
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to the localized, transient nature of Energetic Electron Precipitation (EEP) events and the path-dependence of VLF responses, research relies on event-specific case studies to model reflection height and sharpness via numerical simulations. Findings show LIEs are typically under 1000 × 500 km, with varying internal structure. Accumulated case studies and corresponding data across diverse conditions contribute to a broader understanding of ionospheric dynamics and space weather effects. These findings enhance regional modeling, support aerosol–electricity climate research, and underscore the value of VLF-based ionospheric monitoring and collaboration in Europe. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

19 pages, 10374 KiB  
Article
Nanoscale Nickel Oxide: Synthesis, Characterization, and Impact on Antibacterial Activity Against Representative Microorganisms
by Daniela Istrate, Mihai Oproescu, Ecaterina Magdalena Modan, Sorin Georgian Moga, Denis Aurelian Negrea and Adriana-Gabriela Schiopu
ChemEngineering 2025, 9(4), 77; https://doi.org/10.3390/chemengineering9040077 - 25 Jul 2025
Viewed by 115
Abstract
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an [...] Read more.
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an active field of research. This study aims to investigate the structural, morphological, and antibacterial properties of NiO nanoparticles synthesized via hydrolytic methods and thermally treated at different temperatures. XRD data indicate the presence of the hexagonal crystallographic phase of NiO (space group 166: R-3m), a structural variant less commonly reported in the literature, stabilized under mild hydrolytic synthesis conditions. The average crystallite size increases significantly from 4.97 nm at 300 °C to values of ~17.8 nm at 500–700 °C, confirming the development of the crystal lattice. The ATR-FTIR analysis confirms the presence of the characteristic Ni–O band for all samples, positioned between 367 and 383 cm−1, with a reference value of 355 cm−1 for commercial NiO. The displacements and variations in intensity reflect a thermal evolution of the crystalline structure, but also an important influence of the size of the crystallites and the agglomeration state. The results reveal a systematic evolution in particle morphology from porous, flake-like nanostructures at 300 °C to dense, well-faceted polyhedral crystals at 900 °C. With an increasing temperature, particle size increases. EDS spectra confirm the high purity of the NiO phase across all samples. Additionally, the NiO nanoparticles exhibit calcination-temperature-dependent antibacterial activity, with the complete inhibition of Escherichia coli and Enterococcus faecalis observed after 24 h for the sample calcined at 300 °C and over 90% CFU reduction within 4 h. A significant reduction in E. faecalis viability across all samples indicates time- and strain-specific bactericidal effects. Due to its remarkable multifunctionality, NiO has emerged as a strategic nanomaterial in fields ranging from energy storage and catalysis to antimicrobial technologies, where precise control over its structural phase and particle size is essential for optimizing performance. Full article
Show Figures

Figure 1

18 pages, 513 KiB  
Review
Molecular Determinants of Bone Plasticity Regeneration After Trauma: Forensic Consequences
by Sorin Hostiuc, Ionut Negoi, Mihnea Costescu and Costel Siserman
Int. J. Mol. Sci. 2025, 26(15), 7184; https://doi.org/10.3390/ijms26157184 - 25 Jul 2025
Viewed by 85
Abstract
Bone tissue is one of the most remarkable examples of biological plasticity within the human body, with a high regenerative capacity and adaptation following traumatic injuries. This process is conducted through a series of complex and interlinked molecular mechanisms, which will be summarized [...] Read more.
Bone tissue is one of the most remarkable examples of biological plasticity within the human body, with a high regenerative capacity and adaptation following traumatic injuries. This process is conducted through a series of complex and interlinked molecular mechanisms, which will be summarized in this study. The temporal progression of bone healing follows relatively predictable phases, characterized by variation in the concentration and/or activity of biomolecules such as BMP, VEGF, MMPs. The molecular understanding of bone plasticity and regeneration has potentially significant implications in forensic sciences. They were not extensively studied and implemented in practical, forensic environments, mainly due to their high costs and limited availability. However, they have potential uses in areas, such as the interpretation of skeletal trauma, the estimation of the post-traumatic intervals, the postmortem interval, or the differentiation between ante-, peri-, and postmortem injuries to the bone. Full article
(This article belongs to the Special Issue Advances in Bone Regeneration Biology)
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Seasonal and Cultivar-Dependent Phenolic Dynamics in Tuscan Olive Leaves: A Two-Year Study by HPLC-DAD-MS for Food By-Product Valorization
by Tommaso Ugolini, Lorenzo Cecchi, Graziano Sani, Irene Digiglio, Barbara Adinolfi, Leonardo Ciaccheri, Bruno Zanoni, Fabrizio Melani and Nadia Mulinacci
Separations 2025, 12(8), 192; https://doi.org/10.3390/separations12080192 - 24 Jul 2025
Viewed by 95
Abstract
Olive tree leaf is a phenol-rich, high-potential-value biomass that can be used to formulate food additives and supplements. Leaf phenolic content varies depending on numerous factors, like cultivar, geographical origin, year, and season of harvest. The aim of this research was to evaluate [...] Read more.
Olive tree leaf is a phenol-rich, high-potential-value biomass that can be used to formulate food additives and supplements. Leaf phenolic content varies depending on numerous factors, like cultivar, geographical origin, year, and season of harvest. The aim of this research was to evaluate the variations in phenolic profile of four major Tuscan cultivars (Frantoio, Leccio del Corno, Leccino, and Moraiolo) over four different phenological phases and across two years. All 96 olive leaf samples were harvested from trees grown in the same orchard located in Florence. After drying, their phenolic profile was characterized using HPLC-DAD-MS, and the obtained data were processed by ANOVA, GA-LDA, and RF methods. A total of 25 phenolic derivatives were analyzed, with total contents ranging 16,674.0–50,594.3 mg/kg and oleuropein (4570.0–27,547.7 mg/kg) being the predominant compound regardless of cultivar, year, and season of harvest. Oleuropein and hydroxytyrosol glucoside showed inverse proportionality and similar behavior across years in all cultivars, and therefore were highlighted as main phenolic compounds correlated with the seasonal variability in studied cultivars. Interesting behavior was also pointed out for apigenin rutinoside. Application of GA-LDA and RF methods allowed pointing out the excellent performance of leaf phenols in discriminating samples based on cultivar, harvest year, and harvesting season. Full article
(This article belongs to the Special Issue Extraction and Isolation of Nutraceuticals from Plant Foods)
Show Figures

Figure 1

20 pages, 21323 KiB  
Article
C Band 360° Triangular Phase Shift Detector for Precise Vertical Landing RF System
by Víctor Araña-Pulido, B. Pablo Dorta-Naranjo, Francisco Cabrera-Almeida and Eugenio Jiménez-Yguácel
Appl. Sci. 2025, 15(15), 8236; https://doi.org/10.3390/app15158236 - 24 Jul 2025
Viewed by 83
Abstract
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point [...] Read more.
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point arrives with different delays. The circuit increases the aerial tracking volume relative to that achieved by detectors with theoretical unambiguous detection ranges of ±90°. The phase shift measurement circuit uses an analog phase detector (mixer), detecting a maximum range of ±90°and a double multiplication of the input signals, in phase and phase-shifted, without the need to fulfill the quadrature condition. The calibration procedure, phase detector curve modeling, and calculation of the input signal phase shift are significantly simplified by the use of an automatic gain control on each branch, dwhich keeps input amplitudes to the analog phase detectors constant. A simple program to determine phase shifts and guidance instructions is proposed, which could be integrated into the same flight control platform, thus avoiding the need to add additional processing components. A prototype has been manufactured in C band to explain the details of the procedure design. The circuit uses commercial circuits and microstrip technology, avoiding the crossing of lines by means of switches, which allows the design topology to be extrapolated to much higher frequencies. Calibration and measurements at 5.3 GHz show a dynamic range greater than 50 dB and a non-ambiguous detection range of ±180°. These specifications would allow one to track the drone during the landing maneuver in an inverted cone formed by a surface with an 11 m radius at 10 m high and the landing point, when 4 cm between RF inputs is considered. The errors of the phase shifts used in the landing maneuver are less than ±3°, which translates into 1.7% losses over the detector theoretical range in the worst case. The circuit has a frequency bandwidth of 4.8 GHz to 5.6 GHz, considering a 3 dB variation in the input power when the AGC is limiting the output signal to 0 dBm at the circuit reference point of each branch. In addition, the evolution of phases in the landing maneuver is shown by means of a small simulation program in which the drone trajectory is inside and outside the tracking range of ±180°. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

21 pages, 4524 KiB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Viewed by 191
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

25 pages, 5705 KiB  
Article
Application of Array Imaging Algorithms for Water Holdup Measurement in Gas–Water Two-Phase Flow Within Horizontal Wells
by Haimin Guo, Ao Li, Yongtuo Sun, Liangliang Yu, Wenfeng Peng, Mingyu Ouyang, Dudu Wang and Yuqing Guo
Sensors 2025, 25(15), 4557; https://doi.org/10.3390/s25154557 - 23 Jul 2025
Viewed by 173
Abstract
Gas–water two-phase flow in horizontal and inclined wells is significantly influenced by gravitational forces and spatial asymmetry around the wellbore, resulting in complex and variable flow patterns. Accurate measurement of water holdup is essential for analyzing phase distribution and understanding multiphase flow behavior. [...] Read more.
Gas–water two-phase flow in horizontal and inclined wells is significantly influenced by gravitational forces and spatial asymmetry around the wellbore, resulting in complex and variable flow patterns. Accurate measurement of water holdup is essential for analyzing phase distribution and understanding multiphase flow behavior. Water holdup imaging provides a valuable means for visualizing the spatial distribution and proportion of gas and water phases within the wellbore. In this study, air and tap water were used to simulate downhole gas and formation water, respectively. An array capacitance arraay tool (CAT) was employed to measure water holdup under varying total flow rates and water cuts in a horizontal well experimental setup. A total of 228 datasets were collected, and the measurements were processed in MATLAB (2020 version) using three interpolation algorithms: simple linear interpolation, inverse distance interpolation, and Lagrangian nonlinear interpolation. Water holdup across the wellbore cross-section was also calculated using arithmetic averaging and integration methods. The results obtained from the three imaging algorithms were compared with these reference values to evaluate accuracy and visualize imaging performance. The CAT demonstrated reliable measurement capabilities under low- to medium-flow conditions, accurately capturing fluid distribution. For stratified flow regimes, the linear interpolation algorithm provided the clearest depiction of the gas–water interface. Under low- to medium-flow rates with high water content, both inverse distance and Lagrangian methods produced more refined images of phase distribution. In dispersed flow conditions, the Lagrangian nonlinear interpolation algorithm delivered the highest accuracy, effectively capturing subtle variations within the complex flow field. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

14 pages, 20742 KiB  
Article
The Role of Modulation Techniques on Power Device Thermal Performance in Two-Level VSI Converters
by Abraham M. Alcaide, Jose I. Leon, Christian A. Rojas, Jhonattan G. Berger, Alejandro Stowhas-Villa, Alan H. Wilson-Veas, Giampaolo Buticchi and Samir Kouro
Electronics 2025, 14(15), 2934; https://doi.org/10.3390/electronics14152934 - 23 Jul 2025
Viewed by 195
Abstract
The failure of power semiconductors due to variations in junction temperature represents an important factor in determining the reliability of a power converter. This work presents a comparative assessment of the thermal performance of IGBT power semiconductors within a two-level voltage source converter, [...] Read more.
The failure of power semiconductors due to variations in junction temperature represents an important factor in determining the reliability of a power converter. This work presents a comparative assessment of the thermal performance of IGBT power semiconductors within a two-level voltage source converter, specifically the average junction temperature and the variation of this value over a given period. The evaluation was carried out using different continuous and discontinuous carrier-based pulse width modulation (CB-PWM) techniques. The use of discontinuous PWM allows for a decrease in switching losses and therefore in average junction temperatures, but the variation in junction temperature is largely and non-linearly dependent on several factors, including the power factor of the three-phase load. Among the discontinuous PWM techniques, this analysis focuses on those that allow for a symmetric thermal load. The aforementioned comparisons have been tested in a laboratory setup, whee we directly measured the junction temperature through a high-end infrared thermal camera. Full article
(This article belongs to the Special Issue Applications, Control and Design of Power Electronics Converters)
Show Figures

Figure 1

19 pages, 3910 KiB  
Article
Microbial Dynamics in a Musalais Wine Fermentation: A Metagenomic Study
by Yongzeng Pei, Mengrong Chen and Qiling Chen
Foods 2025, 14(15), 2570; https://doi.org/10.3390/foods14152570 - 22 Jul 2025
Viewed by 136
Abstract
This study provides a comprehensive analysis of the microbial dynamics involved in the fermentation process of traditional Musalais wine, an intangible cultural heritage of Xinjiang. Utilizing metagenomic sequencing, we identified 2894 microbial species, of which 494 persisted throughout the fermentation process. Saccharomyces cerevisiae [...] Read more.
This study provides a comprehensive analysis of the microbial dynamics involved in the fermentation process of traditional Musalais wine, an intangible cultural heritage of Xinjiang. Utilizing metagenomic sequencing, we identified 2894 microbial species, of which 494 persisted throughout the fermentation process. Saccharomyces cerevisiae was the dominant species, with its prevalence increasing from 97.35% in the early phase to 99.38% in the mid phase, before slightly decreasing to 98.79% in the late phase. Additionally, 24 non-Saccharomyces yeast species, including Hanseniaspora uvarum, Lachancea thermotolerans, and Torulaspora delbrueckii, were detected. Common species associated with other fermented foods, including Wickerhamomyces anomalus, Kluyveromyces marxianus, Saccharomyces eubayanus, and Zygosaccharomyces parabailii, were also identified. Notably, species not previously used in food fermentation, such as Saccharomyces jurei, Sodiomyces alkalinus, Vanrija pseudolonga, and Moesziomyces antarcticus, were also identified in this study. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KO) and Gene Ontology (GO) revealed notable variations in metabolic pathways and enriched functional genes. In addition, a total of 82 volatile compounds were detected in the final product, with higher alcohols (60.12%), esters (37.80%), and organic acids (1.80%) being the most prevalent. These results offer important insights into microbial interactions and their influence on Musalais wine quality, laying the groundwork for optimizing the fermentation process. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

32 pages, 3675 KiB  
Article
Gibbs Quantum Fields Computed by Action Mechanics Recycle Emissions Absorbed by Greenhouse Gases, Optimising the Elevation of the Troposphere and Surface Temperature Using the Virial Theorem
by Ivan R. Kennedy, Migdat Hodzic and Angus N. Crossan
Thermo 2025, 5(3), 25; https://doi.org/10.3390/thermo5030025 - 22 Jul 2025
Viewed by 151
Abstract
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow [...] Read more.
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow with coupled work processes in the atmosphere? Using statistical action mechanics to describe Carnot’s cycle, the maximum rate of work possible can be integrated for the working gases as equal to variations in the absolute Gibbs energy, estimated as sustaining field quanta consistent with Carnot’s definition of heat as caloric. His treatise of 1824 even gave equations expressing work potential as a function of differences in temperature and the logarithm of the change in density and volume. Second, Carnot’s mechanical principle of cooling caused by gas dilation or warming by compression can be applied to tropospheric heat–work cycles in anticyclones and cyclones. Third, the virial theorem of Lagrange and Clausius based on least action predicts a more accurate temperature gradient with altitude near 6.5–6.9 °C per km, requiring that the Gibbs rotational quantum energies of gas molecules exchange reversibly with gravitational potential. This predicts a diminished role for the radiative transfer of energy from the atmosphere to the surface, in contrast to the Trenberth global radiative budget of ≈330 watts per square metre as downwelling radiation. The spectral absorptivity of greenhouse gas for surface radiation into the troposphere enables thermal recycling, sustaining air masses in Lagrangian action. This obviates the current paradigm of cooling with altitude by adiabatic expansion. The virial-action theorem must also control non-reversible heat–work Carnot cycles, with turbulent friction raising the surface temperature. Dissipative surface warming raises the surface pressure by heating, sustaining the weight of the atmosphere to varying altitudes according to latitude and seasonal angles of insolation. New predictions for experimental testing are now emerging from this virial-action hypothesis for climate, linking vortical energy potential with convective and turbulent exchanges of work and heat, proposed as the efficient cause setting the thermal temperature of surface materials. Full article
Show Figures

Figure 1

Back to TopTop