Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,617)

Search Parameters:
Keywords = perovskite materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2349 KB  
Article
Long Period Grating Modified with Quasi-2D Perovskite/PAN Hybrid Nanofibers for Relative Humidity Measurement
by Dingyi Feng, Changjiang Zhang, Syed Irshad Haider, Jing Tian, Jiandong Wu, Fu Liu and Biqiang Jiang
Nanomaterials 2026, 16(2), 99; https://doi.org/10.3390/nano16020099 - 12 Jan 2026
Abstract
Metal halide perovskites have emerged as promising photoactive materials for highly efficient photodetectors; however, the inherent instability of perovskite materials in oxygen and moisture limits their practical applications. In this study, the highly moisture-sensitive characteristics of the quasi-2D perovskite nanocrystals were used to [...] Read more.
Metal halide perovskites have emerged as promising photoactive materials for highly efficient photodetectors; however, the inherent instability of perovskite materials in oxygen and moisture limits their practical applications. In this study, the highly moisture-sensitive characteristics of the quasi-2D perovskite nanocrystals were used to fabricate a long-period grating (LPG) humidity sensor based on the perovskite/polyacrylonitrile (PAN) hybrid nanofibers film. The pure-bromide quasi-2D perovskite nanocrystals were in situ synthesized and encapsulated in the PAN matrix on the fiber grating via an electrospinning technique. Humidity-induced variation in the complex permittivity of perovskites can alter the evanescent field of the co-propagating cladding modes, resulting in changes in both resonant amplitude and wavelength in the transmission spectrum of the LPG. These effects yielded an intensity sensitivity of ~0.21 dB/%RH and a wavelength sensitivity of ~18.2 pm/%RH, respectively, in the relative humidity range of 50–80%RH. The proposed LPG sensor demonstrated a good performance, indicating its potential application in the humidity-sensing field. Full article
(This article belongs to the Special Issue Nanomaterials for Optical Fiber Sensing)
Show Figures

Figure 1

10 pages, 3414 KB  
Article
PN Tandem Solar Cells Based on Combination of Dye-Sensitized TiO2 Photoanode and Perovskite-Sensitized NiO Photocathode
by Huan Wang, Weicheng Tang, Mengru Li and Xiaoli Mao
Micromachines 2026, 17(1), 99; https://doi.org/10.3390/mi17010099 - 12 Jan 2026
Abstract
Dye-sensitized solar cells (DSSCs) have attracted significant attention as next-generation photovoltaic devices due to their low cost, simple fabrication process, use of earth-abundant materials, and potential for colour tunability and transparency. p–n tandem DSSCs have garnered particular interest owing to their higher open-circuit [...] Read more.
Dye-sensitized solar cells (DSSCs) have attracted significant attention as next-generation photovoltaic devices due to their low cost, simple fabrication process, use of earth-abundant materials, and potential for colour tunability and transparency. p–n tandem DSSCs have garnered particular interest owing to their higher open-circuit voltage compared to single-junction DSSCs. However, the performance of such tandem devices remains limited by relatively low open-circuit voltage and short-circuit current density, primarily due to the scarcity of suitable p-type sensitizers. To address this challenge, we report a novel p–n tandem solar cell integrating a dye-sensitized TiO2 photoanode with a perovskite-sensitized NiO photocathode, achieving a record power conversion efficiency of 4.02%. By optimizing the thickness of the TiO2 layer, a maximum open-circuit voltage of 1060 mV and a peak short-circuit current density of 6.11 mA cm−2 were simultaneously attained. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, 4th Edition)
Show Figures

Figure 1

34 pages, 4355 KB  
Review
Thin-Film Sensors for Industry 4.0: Photonic, Functional, and Hybrid Photonic-Functional Approaches to Industrial Monitoring
by Muhammad A. Butt
Coatings 2026, 16(1), 93; https://doi.org/10.3390/coatings16010093 - 12 Jan 2026
Abstract
The transition toward Industry 4.0 requires advanced sensing platforms capable of delivering real-time, high-fidelity data under extreme industrial conditions. Thin-film sensors, leveraging both photonic and functional approaches, are emerging as key enablers of this transformation. By exploiting optical phenomena such as Fabry–Pérot interference, [...] Read more.
The transition toward Industry 4.0 requires advanced sensing platforms capable of delivering real-time, high-fidelity data under extreme industrial conditions. Thin-film sensors, leveraging both photonic and functional approaches, are emerging as key enablers of this transformation. By exploiting optical phenomena such as Fabry–Pérot interference, guided-mode resonance, plasmonics, and photonic crystal effects, thin-film photonic devices provide highly sensitive, electromagnetic interference-immune, and remotely interrogated solutions for monitoring temperature, strain, and chemical environments. Complementarily, functional thin films including oxide-based chemiresistors, nanoparticle coatings, and flexible electronic skins extend sensing capabilities to diverse industrial contexts, from hazardous gas detection to structural health monitoring. This review surveys the fundamental optical principles, material platforms, and deposition strategies that underpin thin-film sensors, emphasizing advances in nanostructured oxides, 2D materials, hybrid perovskites, and additive manufacturing methods. Application-focused sections highlight their deployment in temperature and stress monitoring, chemical leakage detection, and industrial safety. Integration into Internet of Things (IoT) networks, cyber-physical systems, and photonic integrated circuits is examined, alongside challenges related to durability, reproducibility, and packaging. Future directions point to AI-driven signal processing, flexible and printable architectures, and autonomous self-calibration. Together, these developments position thin-film sensors as foundational technologies for intelligent, resilient, and adaptive manufacturing in Industry 4.0. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

26 pages, 3452 KB  
Review
The Quest for Low Work Function Materials: Advances, Challenges, and Opportunities
by Alessandro Bellucci
Crystals 2026, 16(1), 47; https://doi.org/10.3390/cryst16010047 - 9 Jan 2026
Viewed by 159
Abstract
Low work function (LWF) materials are essential for enabling efficient systems’ behavior in applications ranging from vacuum electronics to energy conversion devices and next-generation opto-electronic interfaces. Recent advances in theory, characterization, and materials engineering have dramatically expanded the candidates for LWF systems, including [...] Read more.
Low work function (LWF) materials are essential for enabling efficient systems’ behavior in applications ranging from vacuum electronics to energy conversion devices and next-generation opto-electronic interfaces. Recent advances in theory, characterization, and materials engineering have dramatically expanded the candidates for LWF systems, including alkali-based compounds, perovskites, borides, nitrides, barium and scandium oxides, 2D materials, MXenes, functional polymers, carbon materials, and hybrid architectures. This review provides a comprehensive overview of the fundamental mechanisms governing the work function (WF) and discusses the state-of-the-art measurement techniques, as well as the most used computational approaches for predicting and validating WF values. The recent breakthroughs in engineering LWF surfaces through different methods are discussed. Special emphasis is placed on the relationship between predicted and experimentally measured WF values, highlighting the role of surface contamination, reconstruction, and environmental stability. Performance, advantages, and limitations of major LWF material families are fully analyzed, identifying emerging opportunities for next applications. Finally, current and fundamental challenges in achieving scalable, stable, and reproducible LWF surfaces are considered, presenting promising research directions such as high-throughput computational discovery and in situ surface engineering with protective coatings. This review aims to provide a unified framework for understanding, achieving, and advancing LWF materials toward practical and industrially relevant technologies. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

10 pages, 1178 KB  
Article
The Modification of Nitrogen to Modulate Perovskite for the Application of p-Type Transparent Conductive Oxides
by Yunting Liang, Kaihua Li, Haixu Chen, Yinling Wang, Shasha Zheng and Liuyang Bai
Molecules 2026, 31(2), 222; https://doi.org/10.3390/molecules31020222 - 8 Jan 2026
Viewed by 109
Abstract
Due to the strong electronegativity of oxygen ions, the valence band maximum (VBM) that is derived from the O 2p orbital leads to strong localization, as well as further heavy hole mass and low hole mobility, which makes it extremely difficult to obtain [...] Read more.
Due to the strong electronegativity of oxygen ions, the valence band maximum (VBM) that is derived from the O 2p orbital leads to strong localization, as well as further heavy hole mass and low hole mobility, which makes it extremely difficult to obtain high-conductivity p-type transparent conductive materials. Herein, we propose the strategy of multiple anions through the introduction of weaker electronegative nitrogen, in consideration of the delocalization on VBM, as well as the stability of octahedral anion cages. As such, first-principles calculations in the framework of density functional theory (DFT) are used for this work. Crystal structure prediction software USPEX (version 2023.0) was adopted to investigate the N-O appropriate ratio in CaTiO3−xNx (0 ≤ x ≤ 1) to balance the high transmission of light and highly favorable dispersion at the VBM. Furthermore, the p-type TCO performance of CaTiO3-xNx was evaluated based on the hole effective mass, hole mobility, and conductivity. The effectiveness of modulating p-type TCO through N-O multiple anions was also evaluated through defect formation energy and ionization energy. Ultimately, the construction of a CaTiO3-xNx/Si heterojunction and band alignment were considered for practical application. This approach attempts to boost the diversity of p-type perovskite-based TCOs and opens a new perspective for engineering and innovative material design for sustainable TCOs demand. Full article
Show Figures

Figure 1

39 pages, 2355 KB  
Review
Life-Cycle Assessment of Innovative Industrial Processes for Photovoltaic Production: Process-Level LCIs, Scale-Up Dynamics, and Recycling Implications
by Kyriaki Kiskira, Nikitas Gerolimos, Georgios Priniotakis and Dimitrios Nikolopoulos
Appl. Sci. 2026, 16(1), 501; https://doi.org/10.3390/app16010501 - 4 Jan 2026
Viewed by 148
Abstract
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module [...] Read more.
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module level. Although many life-cycle assessment (LCA) studies compare silicon, cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and perovskite technologies, most rely on aggregated indicators and database-level inventories. Few studies systematically compile and harmonize process-level life-cycle inventories (LCIs) for the manufacturing steps that differentiate emerging industrial routes, such as solution coating, R2R processing, atomic layer deposition, low-temperature annealing, and advanced encapsulation–metallization strategies. In addition, inconsistencies in functional units, system boundaries, electricity-mix assumptions, and scale-up modeling continue to limit meaningful cross-study comparison. To address these gaps, this review (i) compiles and critically analyzes process-resolved LCIs for innovative PV manufacturing routes across laboratory, pilot, and industrial scales; (ii) quantifies sensitivity to scale-up, yield, throughput, and electricity carbon intensity; and (iii) proposes standardized methodological rules and open-access LCI templates to improve reproducibility, comparability, and integration with techno-economic and prospective LCA models. The review also synthesizes current evidence on recycling, circularity, and critical-material management. It highlights that end-of-life (EoL) benefits for emerging PV technologies are highly conditional and remain less mature than for crystalline-silicon systems. By shifting the analytical focus from technology class to manufacturing process and life-cycle configuration, this work provides a harmonized evidence base to support scalable, circular, and low-carbon industrial pathways for next-generation PV technologies. Full article
(This article belongs to the Special Issue Life Cycle Assessment in Sustainable Materials Manufacturing)
Show Figures

Graphical abstract

22 pages, 4259 KB  
Review
Stoichiometry-Controlled Surface Reconstructions in Epitaxial ABO3 Perovskites for Sustainable Energy Applications
by Habib Rostaghi Chalaki, Ebenezer Seesi, Gene Yang, Mohammad El Loubani and Dongkyu Lee
Crystals 2026, 16(1), 37; https://doi.org/10.3390/cryst16010037 - 1 Jan 2026
Viewed by 332
Abstract
ABO3 perovskite oxides are a versatile class of materials whose surfaces and interfaces play essential roles in sustainable energy technologies, including catalysis, solid oxide fuel and electrolysis cells, thermoelectrics, and energy-relevant oxide electronics. The interplay between point defects and surface reconstructions strongly [...] Read more.
ABO3 perovskite oxides are a versatile class of materials whose surfaces and interfaces play essential roles in sustainable energy technologies, including catalysis, solid oxide fuel and electrolysis cells, thermoelectrics, and energy-relevant oxide electronics. The interplay between point defects and surface reconstructions strongly affects interfacial stability, charge transport, and catalytic activity under operating conditions. This review summarizes recent progress in understanding how oxygen vacancies, cation nonstoichiometry, and electronic defects couple to atomic-scale surface rearrangements in representative perovskite systems. We first revisit Tasker’s classification of ionic surfaces and clarify how defect chemistry provides compensation mechanisms that stabilize otherwise polar or metastable terminations. We then discuss experimental and theoretical insights into defect-mediated reconstructions on perovskite surfaces and how they influence the performance of energy conversion devices. Finally, we conclude with a perspective on design strategies that leverage defect engineering and surface control to enhance functionality in energy applications, aiming to connect fundamental surface science with practical materials solutions for the transition to sustainable energy. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

30 pages, 11527 KB  
Review
From Waste to Value: A Comprehensive Review of Perovskite Solar Cell Recycling Technologies
by Yaoxu Gao, Baheila Jumayi, Peng Wei, Chenxi Song, Shuying Wang and Xiangqian Shen
Crystals 2026, 16(1), 24; https://doi.org/10.3390/cryst16010024 - 28 Dec 2025
Viewed by 474
Abstract
The rapid progress of perovskite solar cells (PSCs) has established them as a groundbreaking technology for sustainable energy. However, the sustainability of their lifecycle is still hindered by challenges related to material toxicity and end-of-life management. This review comprehensively assesses emerging recycling technologies, [...] Read more.
The rapid progress of perovskite solar cells (PSCs) has established them as a groundbreaking technology for sustainable energy. However, the sustainability of their lifecycle is still hindered by challenges related to material toxicity and end-of-life management. This review comprehensively assesses emerging recycling technologies, with a particular focus on their effectiveness in recovering perovskite compounds, transparent conductive oxides, and metallic contacts. Mechanical separation, solvent-based dissolution, thermal decomposition, and hybrid methods are compared in terms of recovery rates, purity levels, energy consumption, and scalability. Current challenges, such as the generation of secondary waste, the instability of recovered perovskites, and economic barriers, are critically analyzed alongside emerging solutions, including the use of non-toxic solvents, vacuum-assisted recovery, and the integration of closed-loop manufacturing. By evaluating lifecycle impacts and cost–benefit trade-offs, this work outlines pathways for transforming PSC waste into high-value secondary resources, thereby promoting both environmental sustainability and industrial competitiveness. Full article
(This article belongs to the Special Issue Growth and Properties of Photovoltaic Materials)
Show Figures

Figure 1

21 pages, 1332 KB  
Article
Simulation of Perovskite Solar Cell with BaZr(S0.6Se0.4)3–Based Absorber Using SCAPS–1D
by Lihle Mdleleni, Sithenkosi Mlala, Tobeka Naki, Edson L. Meyer, Mojeed A. Agoro and Nicholas Rono
Processes 2026, 14(1), 87; https://doi.org/10.3390/pr14010087 - 26 Dec 2025
Viewed by 497
Abstract
The increasing impact of global warming is predominantly driven by the extensive use of fossil fuels, which release significant amounts of greenhouse gases into the atmosphere. This has led to a critical need for alternative, sustainable energy sources that can mitigate environmental impacts. [...] Read more.
The increasing impact of global warming is predominantly driven by the extensive use of fossil fuels, which release significant amounts of greenhouse gases into the atmosphere. This has led to a critical need for alternative, sustainable energy sources that can mitigate environmental impacts. Photovoltaic technology has emerged as a promising solution by harnessing renewable energy from the sun, providing a clean and inexhaustible power source. Perovskite solar cells (PSCs) are a class of hybrid organic–inorganic solar cells that have recently attracted significant scientific attention due to their low cost, relatively high efficiency, low–temperature processing routes, and longer carrier lifetimes. These characteristics make them a viable alternative to traditional fossil fuels, reducing the carbon footprint and contributing to the fight against global warming. In this study, the SCAPS–1D numerical simulator was used in the computational analysis of a PSC device with the configuration FTO/ETL/BaZr(S0.6Se0.4)3/HTL/Ir. Different hole transport layer (HTL) and electron transport layer (ETL) material were proposed and tested. The HTL materials included copper (I) oxide (Cu2O), 2,2′,7,7′–Tetrakis(N,N–di–p–methoxyphenylamine)9,9′–spirobifluorene (spiro–OMETAD), and poly(3–hexylthiophene) (P3HT), while the ETLs included cadmium suphide (CdS), zinc oxide (ZnO), and [6,6]–phenyl–C61–butyric acid methyl ester (PCBM). Finally, BaZr(S0.6Se0.4)3 was proposed as an absorber, and a fluorine–doped tin oxide glass substrate (FTO) was proposed as an anode. The metal back contact used was iridium. Photovoltaic parameters such as short circuit density (Isc), open circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE) were used to evaluate the performance of the device. The initial simulated primary device with the configuration FTO/CdS/BaZr(S0.6Se0.4)3/spiro–OMETAD/Ir gave a PCE of 5.75%. Upon testing different HTL materials, the best HTL was found to be Cu2O, and the PCE improved to 9.91%. Thereafter, different ETLs were also inserted and tested, and the best ETL was established to be ZnO, with a PCE of 10.10%. Ultimately an optimized device with a configuration of FTO/ZnO/BaZr(S0.6Se0.4)3/Cu2O/Ir was achieved. The other photovoltaic parameters for the optimized device were as follows: FF = 31.93%, Jsc = 14.51 mA cm−2, and Voc = 2.18 V. The results of this study will promote the use of environmentally benign BaZr(S0.6Se0.4)3–based absorber materials in PSCs for improved performance and commercialization. Full article
Show Figures

Figure 1

35 pages, 4880 KB  
Review
Perovskite Nanocrystals, Quantum Dots, and Two-Dimensional Structures: Synthesis, Optoelectronics, Quantum Technologies, and Biomedical Imaging
by Kamran Ullah, Anwar Ul Haq, Sergii Golovynskyi, Tarak Hidouri, Junle Qu and Iuliia Golovynska
Nanomaterials 2026, 16(1), 30; https://doi.org/10.3390/nano16010030 - 25 Dec 2025
Viewed by 572
Abstract
Perovskite crystals, nanocrystals, quantum dots (QDs), and two-dimensional (2D) materials are at the forefront of optoelectronics and quantum optics, offering groundbreaking potential for a wide range of applications, including photovoltaics, light-emitting devices, and quantum information technologies. Perovskite materials, with their remarkable, tunable bandgaps, [...] Read more.
Perovskite crystals, nanocrystals, quantum dots (QDs), and two-dimensional (2D) materials are at the forefront of optoelectronics and quantum optics, offering groundbreaking potential for a wide range of applications, including photovoltaics, light-emitting devices, and quantum information technologies. Perovskite materials, with their remarkable, tunable bandgaps, high absorption coefficients, and efficient charge transport, have revolutionized the field of light-emitting diodes, photodetectors, and solar cells. QDs, owing to their size-dependent quantum confinement and high photoluminescence quantum yields, are crucial for applications in display technologies, imaging, and quantum computing. The synthesis of QDs from perovskite-based materials yields a significant enhancement in the performance of optoelectronics devices. Furthermore, 2D perovskites have recently exhibited extraordinary carrier mobility, strong light–matter interactions, and mechanical flexibility, making them highly attractive for next-generation optoelectronic applications. Additionally, this review discusses the synergistic potential of hybrid material architectures, where perovskite crystals, QDs, and 2D materials are combined to enhance optoelectronic performance and their role in quantum optics. By analyzing the effects of material structure, surface modifications, and fabrication techniques, this review provides a valuable resource for harnessing the transformative potential of these advanced materials in modern optoelectronic applications. Full article
(This article belongs to the Special Issue Luminescence Properties and Bio-Applications of Nanomaterials)
Show Figures

Figure 1

14 pages, 2398 KB  
Article
Synergistic Triplet Exciton Management and Interface Engineering for High-Brightness Sky-Blue Multi-Cation Perovskite Light-Emitting Diodes
by Fawad Ali, Fang Yuan, Shuaiqi He, Peichao Zhu, Nabeel Israr, Songting Zhang, Puyang Wu, Jiaxin Liang, Wen Deng and Zhaoxin Wu
Nanomaterials 2026, 16(1), 4; https://doi.org/10.3390/nano16010004 - 19 Dec 2025
Viewed by 309
Abstract
Perovskite light-emitting diodes (PeLEDs) have garnered significant interest owing to their exceptional color purity, broadly tunable emission spectra, and cost-effective solution processability. However, blue PeLEDs continue to underperform in efficiency and operational stability compared to their red and green counterparts, primarily due to [...] Read more.
Perovskite light-emitting diodes (PeLEDs) have garnered significant interest owing to their exceptional color purity, broadly tunable emission spectra, and cost-effective solution processability. However, blue PeLEDs continue to underperform in efficiency and operational stability compared to their red and green counterparts, primarily due to defect-induced non-radiative recombination losses and inefficient exciton management. Herein, we demonstrate a synergistic approach that integrates multi-cation compositional engineering with triplet exciton management by incorporating a high-triplet-energy material, mCBP (3,3-Di(9H-carbazol-9-yl)biphenyl), during film fabrication. Temperature-dependent photoluminescence reveals that mCBP incorporation significantly enhances the exciton binding energy from 49.36 meV to 68.84 meV and reduces phonon coupling strength, indicating improved exciton stability and suppressed non-radiative channels. The corresponding PeLEDs achieve a peak external quantum efficiency of 10.2% and a maximum luminance exceeding 12,000 cd/m2, demonstrating the effectiveness of this solution-based triplet management strategy. This work highlights the critical role of scalable, solution-processed triplet exciton management strategies in advancing blue PeLED performance, offering a practical pathway toward high-performance perovskite-based display and lighting technologies. Full article
Show Figures

Graphical abstract

24 pages, 3258 KB  
Review
Progress in Charge Transfer in 2D Metal Halide Perovskite Heterojunctions: A Review
by Chenjing Quan, Jiahe Yan, Xiaofeng Liu, Qing Lin, Beibei Xu and Jianrong Qiu
Materials 2025, 18(24), 5690; https://doi.org/10.3390/ma18245690 - 18 Dec 2025
Viewed by 333
Abstract
Metal halide perovskite (MHP)-based heterojunctions have become a forefront area in the research of optoelectronic functional materials due to their unique layered crystal structure, tunable band gaps, and exceptional optoelectronic properties. Recent studies have demonstrated that interface charge transfer is a crucial factor [...] Read more.
Metal halide perovskite (MHP)-based heterojunctions have become a forefront area in the research of optoelectronic functional materials due to their unique layered crystal structure, tunable band gaps, and exceptional optoelectronic properties. Recent studies have demonstrated that interface charge transfer is a crucial factor in determining the optoelectronic performance of the heterojunction devices. By constructing heterojunctions between MHPs and two-dimensional (2D) materials such as graphene, MoS2, and WS2, efficient electron–hole separation and transport can be achieved, significantly extending carrier lifetimes and suppressing non-radiative recombination. This results in enhanced response speed and energy conversion efficiency in photodetectors, photovoltaic devices, and light-emitting devices (LEDs). In these heterojunctions, the thickness of the MHP layer, interface defect density, and band alignment significantly influence carrier dynamics. Furthermore, techniques such as interface engineering, molecular passivation, and band engineering can effectively optimize charge separation efficiency and improve device stability. The integration of multilayer heterojunctions and flexible designs also presents new opportunities for expanding the functionality of high-performance optoelectronic devices. In this review, we systematically summarize the charge transfer mechanisms in MHP-based heterojunctions and highlight recent advances in their optoelectronic applications. Particular emphasis is placed on the influence of interfacial coupling on carrier generation, transport, and recombination dynamics. Furthermore, the ultrafast dynamic behaviors and band-engineering strategies in representative heterojunctions are elaborated, together with key factors and approaches for enhancing charge transfer efficiency. Finally, the potential of MHP heterojunctions for high-performance optoelectronic devices and emerging photonic systems is discussed. This review aims to provide a comprehensive theoretical and experimental reference for future research and to offer new insights into the rational design and application of flexible optoelectronics, photovoltaics, light-emitting devices, and quantum photonic technologies. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

18 pages, 5992 KB  
Article
First Translucent BaLaLiWO6 and BaLaNaWO6 Ceramics: Structural and Spectroscopic Behavior of Passive and Nd3+-Doped Sintered Bodies
by Kacper A. Prokop, Sandrine Cottrino, Vincent Garnier, Gilbert Fantozzi, Miłosz Siczek, Krzysztof Rola, Elżbieta Tomaszewicz, Yannick Guyot, Georges Boulon and Małgorzata Guzik
Ceramics 2025, 8(4), 155; https://doi.org/10.3390/ceramics8040155 - 18 Dec 2025
Viewed by 292
Abstract
This work highlights the feasible fabrication of translucent ceramics from un-doped and Nd3+-doped BaLaLiWO6 (BLLW) and BaLaNaWO6 (BLNW) cubic tungstates using the Spark Plasma Sintering (SPS) method. Ceramics were sintered using pure-phase, homogeneous powders with submicron particle sizes, obtained [...] Read more.
This work highlights the feasible fabrication of translucent ceramics from un-doped and Nd3+-doped BaLaLiWO6 (BLLW) and BaLaNaWO6 (BLNW) cubic tungstates using the Spark Plasma Sintering (SPS) method. Ceramics were sintered using pure-phase, homogeneous powders with submicron particle sizes, obtained via the solid-state reaction method. The present study investigated the microstructural, structural, and spectroscopic properties of both un-doped and Nd3+-doped sintered specimens. All the ceramic materials exhibited certain drawbacks that significantly contributed to their low transparency in both sample types. However, initial spectroscopic tests on sintered translucent ceramics doped with Nd3+ ions revealed promising properties, comparable to those of the powdered samples. Therefore, we believe that producing higher-quality ceramics would improve their spectroscopic properties. For that, further optimization of the manufacturing conditions is necessary. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 1301 KB  
Review
Perovskite Oxygen Carriers for Hydrogen Production via Chemical Looping Steam Methane Reforming: A Review
by Zhiyong Liang, Haozhe Zhou and Junfei Fang
Energies 2025, 18(24), 6538; https://doi.org/10.3390/en18246538 - 13 Dec 2025
Viewed by 527
Abstract
The chemical looping steam methane reforming (CL-SMR) process is an efficient and low-carbon hydrogen production technology. It enables high-efficiency methane conversion and inherent CO2 separation through the cyclic utilization of oxygen carriers. Perovskite-materials are regarded as potential oxygen carriers due to their [...] Read more.
The chemical looping steam methane reforming (CL-SMR) process is an efficient and low-carbon hydrogen production technology. It enables high-efficiency methane conversion and inherent CO2 separation through the cyclic utilization of oxygen carriers. Perovskite-materials are regarded as potential oxygen carriers due to their superior oxygen transport capabilities, tunable chemical compositions, and excellent high-temperature stability. This review summarizes recent advances in perovskite-based oxygen carriers, focusing on the effects of elemental doping and structural characteristics on key performance metrics, including methane conversion rate, CO selectivity, H2/CO ratio, and hydrogen yield. Based on existing research findings, we propose optimization strategies for improving the reaction performance of perovskite oxygen carriers in CL-SMR processes. Additionally, we outline future research directions, such as the design of high-efficiency oxygen carriers and in-depth exploration of reaction mechanisms. This work provides a comprehensive theoretical framework and research roadmap for advancing CL-SMR technology, while identifying potential pathways for developing efficient and stable perovskite-based oxygen carriers. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

19 pages, 2332 KB  
Article
Symmetry and Environmental Performance of PTB7-Th:ZY-4Cl Non-Fullerene Solar Cells: LCA, Benchmarking, and Process Optimization
by Muhammad Raheel Khan, Bożena Jarząbek, Wan Haliza Abd Majid and Marcin Adamiak
Symmetry 2025, 17(12), 2106; https://doi.org/10.3390/sym17122106 - 8 Dec 2025
Viewed by 293
Abstract
Organic photovoltaics (OPVs) based on non-fullerene acceptors (NFAs) are rapidly advancing as lightweight, flexible, and low-cost solar technologies, with power conversion efficiencies approaching 20%. To ensure that environmental sustainability progresses symmetrically alongside performance improvements, it is essential to quantify the environmental footprint of [...] Read more.
Organic photovoltaics (OPVs) based on non-fullerene acceptors (NFAs) are rapidly advancing as lightweight, flexible, and low-cost solar technologies, with power conversion efficiencies approaching 20%. To ensure that environmental sustainability progresses symmetrically alongside performance improvements, it is essential to quantify the environmental footprint of these emerging technologies, particularly during early development stages when material and process choices remain adaptable. This study presents a cradle-to-gate life cycle assessment (LCA) of PTB7-Th:ZY-4Cl solar cells, aiming to identify asymmetries in environmental impact distribution and guide eco-efficient optimization strategies. Using laboratory-scale fabrication data, global warming potential (GWP), cumulative energy demand (CED), acidification (AP), eutrophication (EP), and fossil fuel depletion (FFD) were evaluated via the TRACI methodology. Results reveal that electricity consumption in thermomechanical operations (ultrasonic cleaning, spin coating, annealing, and stirring) disproportionately dominates most impact categories, while chemical inputs such as PEDOT:PSS, PTB7-Th:ZY-4Cl precursors, and solvents contribute significantly to fossil fuel depletion. Substituting grid electricity with renewable sources (hydro, wind, PV) markedly reduces GWP, and solvent recovery or replacement with greener alternatives offers further gains. Although extrapolation to a 1 m2 pilot-scale module reveals impacts higher than established PV technologies, prospective scenarios with realistic efficiencies (10%) and lifetimes (10–20 years) suggest values of ~150–500 g CO2-eq/kWh—comparable to fullerene OPVs and approaching perovskite and thin-film benchmarks. These findings underscore the value of early-stage LCA in identifying asymmetrical hotspots, informing material and process optimization, and supporting the sustainable scale-up of next-generation OPVs. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop