Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (698)

Search Parameters:
Keywords = perovskite crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4253 KB  
Article
Tailoring the Electronic and Structural Properties of Lead-Free A2ZrX6 “Defect” Perovskites: A DFT Study on A-Site Cation and Halogen Substitutions
by Christina Kolokytha, Demeter Tzeli and Nektarios N. Lathiotakis
Materials 2025, 18(17), 3976; https://doi.org/10.3390/ma18173976 (registering DOI) - 25 Aug 2025
Abstract
Lead-free A2ZrX6 “defect” perovskites hold significant potential for many optoelectronic applications due to their stability and tunable properties. Extending a previous work, we present a first-principles density functional theory (DFT) study, utilizing PBE and HSE06 functionals, to systematically investigate the [...] Read more.
Lead-free A2ZrX6 “defect” perovskites hold significant potential for many optoelectronic applications due to their stability and tunable properties. Extending a previous work, we present a first-principles density functional theory (DFT) study, utilizing PBE and HSE06 functionals, to systematically investigate the impact of A-site cation and X-site halogen substitutions on the structural and electronic properties of these materials. We varied the A-site cation, considering ammonium, methylammonium, dimethylammonium, trimethylammonium, and phosphonium, and the X-site halogen, trying Cl, Br, and I. Our calculations reveal that both these substitutions significantly affect the band gap and the lattice parameters. Increasing A-site cation size generally enlarges the unit cell, while halogen electronegativity directly correlates with the band gap, yielding the lowest values for iodine-containing systems. We predict a broad range of band gaps (from ~4.79 eV for (PH4)2ZrCl6 down to ~2.11 eV for MA2ZrI6 using HSE06). The (PH4)2ZrX6 compounds maintain cubic crystal symmetry, unlike the triclinic of the ammonium-derived systems. Finally, our calculations show that the MA cation yields the smallest band gap among the ones studied, a result that is attributed to its size and the charges of the hydrogen atoms attached to nitrogen. Thus, our findings offer crucial theoretical insights into A2ZrX6 structure–property relationships, demonstrating how A-site cation and halogen tuning enables control over electronic and structural characteristics, thus guiding future experimental efforts for tailored lead-free perovskite design. Full article
Show Figures

Figure 1

19 pages, 1516 KB  
Review
Descriptors for Predicting Single- and Multi-Phase Formation in High-Entropy Oxides: A Unified Framework Approach
by Alejandro F. Manchón-Gordón, Paula Panadero-Medianero and Javier S. Blázquez
Materials 2025, 18(16), 3862; https://doi.org/10.3390/ma18163862 - 18 Aug 2025
Viewed by 322
Abstract
High-entropy oxides, HEOs, represent a relatively new class of ceramic materials characterized by the incorporation of multiple cations, typically four or more, into a single-phase crystal structure. This extensive compositional flexibility allows for the introduction of specific chemical elements into a crystal lattice [...] Read more.
High-entropy oxides, HEOs, represent a relatively new class of ceramic materials characterized by the incorporation of multiple cations, typically four or more, into a single-phase crystal structure. This extensive compositional flexibility allows for the introduction of specific chemical elements into a crystal lattice that would normally be unable to accommodate them, making it difficult to predict a priori their properties and crystal structures. Consequently, studying the phase stability of these single-phase materials presents significant challenges. This work examines the key parameters commonly employed to predict the stabilization of HEOs and introduces a unified framework for analyzing their stability. The proposed approach incorporates a normalized configurational entropy per mole of atoms and the relative volume occupied by cations into the mean atomic size deviation. By combining these parameters, the approach enables, as a first approximation, the identification of compositional ranges that favor the formation of single-phase and multi-phase HEO compounds with rock salt, spinel, fluorite, pyrochlore, and perovskite structures. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

17 pages, 5161 KB  
Article
Tunable Emission Properties of Sb3+/Pb2+ Co-Doped Cs7Cd3Br13 for Optical Anti-Counterfeiting Application
by Bingbing Zheng, Shuaigang Ge, Lingli Chen, Yijia Wen, Kaihuang Huang and Bingsuo Zou
Nanomaterials 2025, 15(16), 1238; https://doi.org/10.3390/nano15161238 - 13 Aug 2025
Viewed by 274
Abstract
Cd-based perovskite materials have the advantages of high emission efficiency and tunable emission, as well as broad application prospects in the field of optoelectronics. However, achieving multimode dynamic luminescence under UV light excitation in a single system is a great challenge. Here, we [...] Read more.
Cd-based perovskite materials have the advantages of high emission efficiency and tunable emission, as well as broad application prospects in the field of optoelectronics. However, achieving multimode dynamic luminescence under UV light excitation in a single system is a great challenge. Here, we successfully prepared Sb3+/Pb2+ co-doped Cs7Cd3Br13 crystals by a simple hydrothermal method. Tunable emission from orange to white and then to blue, covering the wavelength range between 370 and 800 nm, was achieved by varying the doping concentration of Pb2+ ions in Cs7Cd3Br13:0.5%Sb3+. Temperature-dependent photoluminescence (PL) spectra and density functional theory (DFT) calculations confirm that the wide-band white-light emission of Cs7Cd3Br13: Sb3+/Pb2+ crystal comes from the first self-trapped exciton (STE1) of undoped Cs7Cd3Br13 intrinsic capture state and the emission of free excitons (FEs) and STE2 induced by the confining effect and the Jahn–Teller effect by Pb2+ incorporation, as well as the Sb triplet self-trapped exciton (STE3). More specifically, the samples with the best co-doped ratio exhibit significant excitation-wavelength-dependent luminescence characteristics and can realize the conversion of the emission color from white and blue to orange. Based on the tunable emission characteristics of three emission colors, the material has good prospects in encryption and anti-counterfeiting applications. This work provides a new strategy for the application of Cd-based halides in the field of anti-counterfeiting. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

13 pages, 1891 KB  
Article
Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid
by Zhichun Yang, Mengyu Li, Jinyan Chen, Waqar Ahmad, Guofeng Zhang, Chengbing Qin, Liantuan Xiao and Suotang Jia
Nanomaterials 2025, 15(16), 1229; https://doi.org/10.3390/nano15161229 - 12 Aug 2025
Viewed by 483
Abstract
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose [...] Read more.
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose a defect-targeted passivation strategy using 2-chlorocinnamic acid (2-Cl) to simultaneously enhance the efficiency and stability of perovskite solar cells (PSCs). The crystallization kinetics, film morphology, and optical and electronic properties of the used formamidinium–cesium lead halide (FA0.85Cs0.15Pb(I0.95Br0.05)3, FACs) absorber were modulated and systematically investigated by various characterizations. Mechanistically, the carbonyl group in 2-Cl coordinates with undercoordinated Pb2+ ions, while the chlorine atom forms Pb–Cl bonds, effectively passivating the surface and interfacial defects. The optimized FACs perovskite film was incorporated into inverted (p-i-n) PSCs with a typical architecture of ITO/NiOx/PTAA/Al2O3/FACs/PEAI/PCBM/BCP/Ag. The optimal device delivers a champion power conversion efficiency (PCE) of 22.58% with an open-circuit voltage of 1.14 V and a fill factor of 82.8%. Furthermore, the unencapsulated devices retain 90% of their initial efficiency after storage in ambient air for 30 days and 83% of their original PCE after stress under 1 sun illumination with maximum power point tracking at 50 °C in a N2 environment, demonstrating the practical potential of dual-site molecular passivation for durable perovskite photovoltaics. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

10 pages, 8704 KB  
Article
Effect of Preparation Method on the Optical Properties of Novel Luminescent Glass-Crystalline Composites
by Radosław Lisiecki, Natalia Miniajluk-Gaweł and Bartosz Bondzior
Appl. Sci. 2025, 15(16), 8877; https://doi.org/10.3390/app15168877 - 12 Aug 2025
Viewed by 168
Abstract
Phosphor-in-glass (PiG) composites are promising materials for applications in various fields of material engineering. There are competing methods of preparation of PiGs which result in materials with different structural and performance characteristics. The glass-crystal composites comprising tellurite-zinc-sodium glass (TZN) and perovskite LaAlO3 [...] Read more.
Phosphor-in-glass (PiG) composites are promising materials for applications in various fields of material engineering. There are competing methods of preparation of PiGs which result in materials with different structural and performance characteristics. The glass-crystal composites comprising tellurite-zinc-sodium glass (TZN) and perovskite LaAlO3 doped with Eu3+ (LAO:Eu) are prepared using three distinct methods: remelt, direct-doping and co-sintering, in order to evaluate the impact of the preparation method on the structural, optical and luminescence properties of the novel phosphor-in-glass (PiG) composites. The composites prepared by the remelt and direct-doping method suffer from the decomposition of LAO:Eu and Eu3+ ion diffusion into the glass matrix. The highest rate of preservation and luminescence intensity of LAO:Eu is achieved in the composites prepared by the co-sintering method. Unfortunately, the loss of transparency is substantial. This article demonstrates the challenges and tradeoffs that are yet to be resolved in preparation of PiG composites. The preservation of the crystalline phase leads to the lower transparency of the final material. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

15 pages, 4578 KB  
Article
Improving Balance Between Oxygen Permeability and Stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Through High-Entropy Design
by Yongfan Zhu, Meng Wu, Guangru Zhang, Zhengkun Liu and Gongping Liu
Membranes 2025, 15(8), 232; https://doi.org/10.3390/membranes15080232 - 1 Aug 2025
Viewed by 441
Abstract
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of [...] Read more.
Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of a high-entropy perovskite, Ba0.5Sr0.5Co0.71Fe0.2Ta0.03Ni0.03Zr0.03O3−δ. The crystal structure, microstructure, and elemental composition of the material were systematically characterized and analyzed. Theoretical analysis and experimental characterization confirm that the material exhibits a stable single-phase high-entropy perovskite oxide structure. Under He as the sweep gas, the membrane achieved an oxygen permeation flux of 1.28 mL·cm−2·min−1 and operated stably for over 100 h (1 mm thick, 900 °C). In a 20% CO2/He atmosphere, the flux remained above 0.92 mL·cm−2·min−1 for over 100 h, demonstrating good CO2 tolerance. Notably, when the sweep gas is returned to the pure He atmosphere, the oxygen permeation flux fully recovers to 1.28 mL·cm−2·min−1, with no evidence of leakage. These findings indicate that the proposed B-site doping strategy can break the trade-off between oxygen permeability and structural stability in conventional perovskite membranes. This advancement supports the industrialization of oxygen permeable membranes and offers valuable theoretical guidance for the design of high-performance perovskite materials. Full article
Show Figures

Figure 1

8 pages, 971 KB  
Article
Mechanism of Topotactic Reduction-Oxidation Between Mg-Doped SrMoO3 Perovskites and SrMoO4 Scheelites, Utilized as Anode Materials for Solid Oxide Fuel Cells
by Vanessa Cascos, M. T. Fernández-Díaz and José Antonio Alonso
Materials 2025, 18(15), 3424; https://doi.org/10.3390/ma18153424 - 22 Jul 2025
Viewed by 300
Abstract
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for [...] Read more.
Recently, we have described SrMo1-xMgxO3-δ perovskites (x = 0.1, 0.2) as excellent anode materials for solid oxide fuel cells (SOFCs), with mixed ionic and electronic conduction (MIEC) properties. After depositing on the solid electrolyte, they were annealed for sintering at high temperatures (typically 1000 °C), giving rise to oxidized scheelite-type phases, with SrMo1-xMgxO4-δ (x = 0.1, 0.2) stoichiometry. To obtain the active perovskite phases, they were reduced again in the working anode conditions, under H2 atmosphere. Therefore, there must be an excellent reversibility between the oxidized Sr(Mo, Mg)O4-δ scheelite and the reduced Sr(Mo, Mg)O3-δ perovskite phases. This work describes the topotactical oxidation, by annealing at 400 °C in air, of the SrMo0.9Mg0.1O3-δ perovskite oxide. The characterization by X-ray diffraction (XRD) and neutron powder diffraction (NPD) was carried out in order to determine the crystal structure features. The scheelite oxides are tetragonal, space group I41/a (No. 88), whereas the perovskites are cubic, s.g. Pm-3m (No. 221). The Rietveld refinement of the scheelite phase from NPD data after annealing the perovskite at 400 °C and cooling it down slowly to RT evidences the absence of intermediate phases between perovskite and scheelite oxides, as well as the presence of oxygen vacancies in both oxidized and reduced phases, essential for their performance as MIEC oxides. The topotactical relationship between both crystal structures is discussed. Full article
Show Figures

Figure 1

4 pages, 894 KB  
Editorial
Photonics Gets a Makeover: The New Era of Perovskite Devices
by Muhammad Danang Birowosuto
Micromachines 2025, 16(7), 832; https://doi.org/10.3390/mi16070832 - 21 Jul 2025
Viewed by 901
Abstract
The story of perovskite materials dates back over a century to the discovery of calcium titanate, known for its nearly cubic crystal structure [...] Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

20 pages, 4322 KB  
Article
The 1D Hybrid Material Allylimidazolium Iodoantimonate: A Combined Experimental and Theoretical Study
by Hela Ferjani, Rim Bechaieb, Diego M. Gil and Axel Klein
Inorganics 2025, 13(7), 243; https://doi.org/10.3390/inorganics13070243 - 15 Jul 2025
Viewed by 603
Abstract
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void [...] Read more.
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void analysis through Mercury CSD software confirmed a densely packed lattice with a calculated void volume of 1.1%. Integrated quantum theory of atoms in molecules (QTAIM) and non-covalent interactions index (NCI) analyses showed that C–H···I interactions between the cations and the 1[SbI5]2− network predominantly stabilize the supramolecular assembly followed by N–H···I hydrogen bonds. The calculated growth morphology (GM) model fits very well to the experimental morphology. UV–Vis diffuse reflectance spectroscopy allowed us to determine the optical band gap to 3.15 eV. Density functional theory (DFT) calculations employing the B3LYP, CAM-B3LYP, and PBE0 functionals were benchmarked against experimental data. CAM-B3LYP best reproduced Sb–I bond lengths, while PBE0 more accurately captured the HOMO–LUMO gap and the associated electronic descriptors. These results support the assignment of an inorganic-to-organic [Sb–I] → π* charge-transfer excitation, and clarify how structural dimensionality and cation identity shape the material’s optoelectronic properties. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

18 pages, 2148 KB  
Article
Structural and Dielectric Impedance Studies of Mixed Ionic–Electronic Conduction in SrLaFe1−xMnxTiO6 (x = 0, 0.33, 0.67, and 1.0) Double Perovskites
by Abdelrahman A. Elbadawi, Elsammani A. Shokralla, Mohamed A. Siddig, Obaidallah A. Algethami, Abdullah Ahmed Alghamdi and Hassan H. E. Idris
Ceramics 2025, 8(3), 87; https://doi.org/10.3390/ceramics8030087 - 7 Jul 2025
Viewed by 404
Abstract
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor [...] Read more.
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor solid-state reaction in air at 1250 °C. The purity phase and crystal structures of perovskite compounds were determined by means of the standard Rietveld refinement method using the FullProf suite. The best fitting results showed that SrLaFeTiO6−δ was orthorhombic with space group Pnma, and both SrLaFe0.67Mn0.33TiO6−δ and SrLaFe0.33Mn0.67TiO6−δ were cubic structures with space group Fm3m, while SrLaMnTiO6−δ was tetragonal with a I/4m space group. The charge density maps obtained for these structures indicated that the compounds show an ionic and mixed ionic–electronic conduction. The dielectric impedance measurements were carried out in the range of 20 Hz to 1 MHz, and the analysis showed that there is more than one relaxation mechanism of Debye type. Doping with Mn was found to reduce the dielectric impedance of the samples, and the major contribution to the dielectric impedance was established to change from a capacitive for SrLaFeTiO6−δ to a resistive for SrLaMnTiO6−δ. The fall in values of electrical resistance may be related to the possible occurrence of the double exchange (DEX) mechanism among the Mn ions, provided there is oxygen deficiency in the samples. DC-resistivity measurements revealed that SrLaFeTiO6−δ was an insulator while SrLaMnTiO6−δ was showing a semiconductor–metallic transition at ~250 K, which is in support of the DEX interaction. The dielectric impedance of SrLaFe0.67Mn0.33TiO6−δ was found to be similar to that of (La,Sr)(Co,Fe)O3-δ, the mixed ionic–electronic conductor (MIEC) model. The occurrence of a mixed ionic–electronic state in these compounds may qualify them to be used in free lead solar cells and energy storage technology. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

19 pages, 2086 KB  
Article
Strategic Doping for Precise Structural Control and Intense Photocurrents Under Visible Light in Ba2M0.4Bi1.6O6 (M = La, Ce, Pr, Pb, Y) Double Perovskites
by Tirong Guo, Wen Tian Fu and Huub J. M. de Groot
Nanomaterials 2025, 15(13), 1039; https://doi.org/10.3390/nano15131039 - 4 Jul 2025
Viewed by 390
Abstract
Developing functional perovskites is important for advancing solar energy conversion technologies. This study investigates the effects of dopants on the structural, optical, electronic, and solar conversion performances of Ba2M0.4Bi1.6O6 double perovskites. X-ray diffraction (XRD) and Rietveld [...] Read more.
Developing functional perovskites is important for advancing solar energy conversion technologies. This study investigates the effects of dopants on the structural, optical, electronic, and solar conversion performances of Ba2M0.4Bi1.6O6 double perovskites. X-ray diffraction (XRD) and Rietveld refinement confirm crystallization in the I2/m space group (M = La, Ce, Pr, Pb), and Fm3¯m and I2/m space groups (M = Y). The B1-O-B2 structure modulates to highly ordered (M = La, Y), partially ordered (M = Pr), or disordered (M = Ce, Pb). UV-vis spectra show strong light absorption, with Tauc plots estimating ~1.57 eV (M = La) and ~1.73 eV (M = Pr) optical band gaps. Under AM 1.5G illumination, the M = La photoelectrode generates photocurrents of 1 mA cm−2 at 0.3 VRHE, surpassing M = Ce and Pb (1 μm, 4-times spin-coating). Increasing its thickness to 7.7 μm (4-times dip-coating) further enhances the photocurrents to 2.3 mA cm−2 at 0.2 VRHE, outperforming all counterparts due to improved stability. Fine-tuning crystal and electronic structures via strategic B-site doping provides a new route for engineering Ba2Bi2O6-based double perovskites for broad solar energy conversion applications. Full article
(This article belongs to the Special Issue Organic/Perovskite Solar Cell)
Show Figures

Figure 1

15 pages, 2226 KB  
Article
Perovskite Solar Cells Modified with Conjugated Self-Assembled Monolayers at Buried Interfaces
by Guorong Zhou, Faeze Hashemi, Changzeng Ding, Xin Luo, Lianping Zhang, Esmaeil Sheibani, Qun Luo, Askhat N. Jumabekov, Ronald Österbacka, Bo Xu and Changqi Ma
Nanomaterials 2025, 15(13), 1014; https://doi.org/10.3390/nano15131014 - 1 Jul 2025
Viewed by 815
Abstract
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried [...] Read more.
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried interface significantly influences the crystal growth quality of perovskite, but it is difficult to effectively control, leading to relatively slow research progress. To address the issue of poor interfacial contact between the hole transport-layer nickel oxide (NiOX) and the perovskite, we introduced a conjugated self-assembled monolayer (SAM), 4,4′-[(4-(3,6-dimethoxy-9H-carbazole)triphenylamine)]diphenylacetic acid (XS21), which features triphenylamine dicarboxylate groups. For comparison, we also employed the widely studied phosphonic acid-based SAM, [2-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl] phosphonic acid (MeO-2PACz). A systematic investigation was carried out to evaluate the influence of these SAMs on the performance and stability of inverted PSCs. The results show that both XS21 and MeO-2PACz significantly enhanced the crystallinity of the perovskite layer, reduced defect densities, and suppressed non-radiative recombination. These improvements led to more efficient hole extraction and transport at the buried interface. Consequently, inverted PSCs incorporating XS21 and MeO-2PACz achieved impressive power-conversion efficiencies (PCEs) of 21.43% and 22.43%, respectively, along with marked enhancements in operational stability. Full article
Show Figures

Figure 1

29 pages, 3391 KB  
Article
Near-Infrared and Sono-Enhanced Photodynamic Therapy of Prostate Cancer Cells Using Phyto-Second Harmonic Generation Nanoconjugates
by Efrat Hochma, Michael A. Firer and Refael Minnes
Polymers 2025, 17(13), 1831; https://doi.org/10.3390/polym17131831 - 30 Jun 2025
Viewed by 448
Abstract
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm [...] Read more.
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm pulses. Under CW NIR light, BT/rhein nanoconjugates reduced PC3 prostate cancer cell viability by 18% versus non-irradiated controls (p < 0.05), while BT/extract nanoconjugates exhibited 15% dark toxicity. The observed SHG signal matched theoretical predictions and previous CW laser studies. Reactive Oxygen Species (ROS) scavenger 1,3-diphenyl-isobenzofuran (DPBF) showed reduced absorbance at 410 nm upon NIR illumination, indirectly supporting SHG emission at 400 nm from nanoconjugates. Under fs-pulsed laser exposure, pronounced two-photon absorption (TPA) and SHG effects were observed in both nanoconjugate types. Our results demonstrate the effectiveness of BT/rhein nanoconjugates under both laser conditions, while the BT/extract nanoconjugates benefited from high-power pulsed excitation. These results highlight the potential of BT-based Phyto-SHG-PDT nanoconjugates for NIR and blue light applications, leveraging nonlinear optical effects for advanced photochemical cancer therapies. Full article
Show Figures

Graphical abstract

18 pages, 6277 KB  
Article
Fabrication and Characterization of a PZT-Based Touch Sensor Using Combined Spin-Coating and Sputtering Methods
by Melih Ozden, Omer Coban and Tevhit Karacali
Sensors 2025, 25(13), 3938; https://doi.org/10.3390/s25133938 - 24 Jun 2025
Viewed by 430
Abstract
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional [...] Read more.
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional layer formed via RF sputtering. The resulting multilayer structure was annealed at 700 °C for 2 h to improve crystallinity. Comprehensive material characterization was conducted using XRD, SEM, cross-sectional SEM, EDX, and UV–VIS absorbance spectroscopy. The analyses confirmed the formation of a well-crystallized perovskite phase, a uniform surface morphology, and an optical band gap of approximately 3.55 eV, supporting its suitability for sensing applications. Building upon these findings, a multilayer PZT-based touch sensor was fabricated and electrically characterized. Low-frequency I–V measurements demonstrated consistent and repeatable polarization behavior under cyclic loading conditions. In addition, |Z|–f measurements were performed to assess the sensor’s dynamic electrical behavior. Although expected dielectric responses were observed, the absence of distinct anti-resonance peaks suggested non-idealities linked to Ag+ ion diffusion from the electrode layers. To account for these effects, the classical Butterworth–Van Dyke (BVD) equivalent circuit model was extended with additional inductive and resistive components representing parasitic pathways. This modified model provided excellent agreement with the measured impedance and phase data, offering deeper insight into the interplay between material degradation and electrical performance. Overall, the developed sensor structure exhibits strong potential for use in piezoelectric sensing applications, particularly for tactile and pressure-based interfaces. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

14 pages, 4844 KB  
Article
In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells
by Yahya A. Alzahrani, Raghad M. Alqahtani, Raghad A. Alqarni, Jenan R. Alnakhli, Shahad A. Anezi, Ibtisam S. Almalki, Ghazal S. Yafi, Sultan M. Alenzi, Abdulaziz Aljuwayr, Abdulmalik M. Alessa, Huda Alkhaldi, Anwar Q. Alanazi, Masaud Almalki and Masfer H. Alkahtani
Nanomaterials 2025, 15(13), 978; https://doi.org/10.3390/nano15130978 - 24 Jun 2025
Viewed by 688
Abstract
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial [...] Read more.
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial compatibility between the PQDs and the host perovskite matrix enables effective passivation of grain boundaries and surface defects, thereby suppressing non-radiative recombination and facilitating more efficient charge transport. At an optimal PQD concentration of 15 mg/mL, the modified PSCs demonstrated a remarkable increase in power conversion efficiency (PCE) from 19.2% to 22.85%. This enhancement is accompanied by improved device metrics, including a rise in open-circuit voltage (Voc) from 1.120 V to 1.137 V, short-circuit current density (Jsc) from 24.5 mA/cm2 to 26.1 mA/cm2, and fill factor (FF) from 70.1% to 77%. Spectral response analysis via incident photon-to-current efficiency (IPCE) revealed enhanced photoresponse in the 400–750 nm wavelength range. Additionally, long-term stability assessments showed that PQD-passivated devices retained more than 92% of their initial PCE after 900 h under ambient conditions, outperforming control devices which retained ~80%. These findings underscore the potential of in situ integrated PQDs as a scalable and effective passivation strategy for next-generation high-efficiency and stable perovskite photovoltaics. Full article
(This article belongs to the Special Issue Nanomaterials for Inorganic and Organic Solar Cells)
Show Figures

Figure 1

Back to TopTop