Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = permanent magnet pump motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2517 KiB  
Article
Development of a Novel Digital Pressure Control Valve Applied to Emulsion Pump Station Control and Research on the Performance of Its Dynamic Characteristics
by Peng Xu, Ziming Kou and Jun Zhang
Actuators 2025, 14(6), 295; https://doi.org/10.3390/act14060295 - 17 Jun 2025
Viewed by 374
Abstract
To advance the construction of intelligent mining, electro-hydraulic digital control technology has emerged as a critical direction for the digital transformation of mining machinery. This study proposes a digital control scheme based on the pressure state of the system and the operating state [...] Read more.
To advance the construction of intelligent mining, electro-hydraulic digital control technology has emerged as a critical direction for the digital transformation of mining machinery. This study proposes a digital control scheme based on the pressure state of the system and the operating state of the actuator. The scheme utilises a novel convergence rate sliding film position control method to regulate the system pressure in real time by controlling the pilot valve, which is driven by a permanent magnet synchronous motor (PMSM). Moreover, a prototype of an incremental digital pressure control valve was developed for high-pressure, high water-based working conditions. A simulation model of the valve was established using AMESim/Simulink, and dynamic characteristics under various operating conditions were analyzed. The relative error between simulated and experimental pressure results remained within ±4.7%. Finally, a multi-parameter optimization was conducted using a genetic algorithm. The results demonstrate that the optimized digital pressure control valve achieved a stabilized inlet pressure within 44.8 ms, with a pressure overshoot of 4.1% and a response time of 20.1 ms, exhibiting excellent real-time dynamic pressure regulation capabilities. This study provides a theoretical foundation and practical reference for comprehensive research on pressure control in underground emulsion pump stations. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

10 pages, 915 KiB  
Article
Life Cycle Assessment of Electro-Submersible Pump Systems: Carbon Footprint Mitigation Using Improved Downhole Technology
by Manolo Córdova-Suárez, Juan Córdova-Suárez, Ricardo Teves, Enrique Barreno-Ávila and Fabian Silva-Frey
Energies 2025, 18(11), 2898; https://doi.org/10.3390/en18112898 - 31 May 2025
Viewed by 531
Abstract
Climate change has driven global awareness of environmental issues, leading to the adoption of clean technologies aimed at reducing Greenhouse Gas (GHG) emissions. An effective method to assess environmental mitigation is the quantification of the Product Carbon Footprint (PCF) in the Life Cycle [...] Read more.
Climate change has driven global awareness of environmental issues, leading to the adoption of clean technologies aimed at reducing Greenhouse Gas (GHG) emissions. An effective method to assess environmental mitigation is the quantification of the Product Carbon Footprint (PCF) in the Life Cycle Assessment (LCA) of production processes. In the oil extraction industry, artificial lift systems use electro submersible pumps (ESPs) that can now incorporate new operating principles based on permanent magnet motors (PMMs) and CanSystem (CS) as an alternative to traditional normal induction motors (NIMs) and can help lower the carbon footprint. This study compares the PCF of ESPs equipped with PMMs and CS versus NIMs, using LCA methodologies in accordance with ISO 14067:2018 for defining the Functional Unit (FU) and ISO 14064-1:2019 to calculate the GHG inventory and the amount of CO2 equivalent per year. The analysis spans five key stages and 14 related activities. For ESPs with NIMs, this study calculated 999.9 kg of raw materials, 1491.66 kW/h for manufacturing and storage, and 5.77 × 104 kW/h for use. In contrast, ESPs with PMMs and CS required 656 kg of raw materials and consumed 4.44 × 104 kW/h during use, resulting in an 23% reduction in energy consumption. This contributed to an 21.9% decrease in the PCF. The findings suggest that PMMs and CS offer a sustainable solution for reducing GHG emissions in oil extraction processes globally. Full article
Show Figures

Figure 1

20 pages, 15147 KiB  
Article
Design for Loss Reduction in a Compact AFPM Electric Water Pump with a PCB Motor
by Do-Hyeon Choi, Hyung-Sub Han, Min-Ki Hong, Dong-Hoon Jung and Won-Ho Kim
Energies 2025, 18(10), 2538; https://doi.org/10.3390/en18102538 - 14 May 2025
Viewed by 645
Abstract
A PCB stator axial flux permanent magnet (AFPM) motor is presented that overcomes the manufacturing challenges associated with the complex geometry of conventional stators by employing a PCB substrate. Traditionally, AFPM motors are produced by winding coils around the stator teeth, a process [...] Read more.
A PCB stator axial flux permanent magnet (AFPM) motor is presented that overcomes the manufacturing challenges associated with the complex geometry of conventional stators by employing a PCB substrate. Traditionally, AFPM motors are produced by winding coils around the stator teeth, a process that requires specialized winding machinery and is both labor intensive and time consuming, ultimately incurring considerable manufacturing costs and delays. In contrast, PCB substrates offer significant advantages in manufacturability and mass production, effectively resolving these issues. Furthermore, the primary material used in PCB substrates, FR-4, exhibits a permeability similar to that of air, resulting in negligible electromagnetic cogging torque. Cogging torque arises from the attraction between permanent magnets and stator teeth, creating forces that interfere with motor rotation and generate unwanted vibration, noise, and potential mechanical collisions between the rotor and stator. In the PCB stator design, the conventional PCB circuit pattern is replaced by the motor’s coil configuration, and the absence of stator teeth eliminates these interference issues. Consequently, a slotless motor configuration with minimal vibration and noise is achieved. The PCB AFPM motor has been applied to a vehicle-mounted electric water pump (EWP), where mass production and space efficiency are critical. In an EWP, which integrates the impeller with the motor, it is essential that vibrations are minimized since excessive vibration could compromise impeller operation and, due to fluid resistance, require high power input. Moreover, the AFPM configuration facilitates higher torque generation compared to a conventional radial flux permanent magnet synchronous motor (RFPM). In a slotless AFPM motor, the absence of stator teeth prevents core flux saturation, thereby further enhancing torque performance. AC losses occur in the conductors as a result of the magnetic flux produced by the permanent magnets, and similar losses arise within the PCB circuits. Therefore, an optimized PCB circuit design is essential to reduce these losses. The Constant Trace Conductor (CTC) PCB circuit design process is proposed as a viable solution to mitigate AC losses. A 3D finite element analysis (3D FEA) model was developed, analyzed, fabricated, and validated to verify the proposed solution. Full article
Show Figures

Figure 1

21 pages, 6079 KiB  
Article
Adaptive Speed Tuning of Permanent Magnet Synchronous Motors Using Intelligent Fuzzy Based Controllers for Pumping Applications
by Mohamed I. Abdelwanis, Abdelkarim Hegab, Faisal Albatati and Ragab A. El-Sehiemy
Processes 2025, 13(5), 1393; https://doi.org/10.3390/pr13051393 - 2 May 2025
Viewed by 600
Abstract
This study focuses on enhancing the performance of Permanent Magnet Synchronous Motors (PMSMs) in pumping applications by improving motor torque through the integration of advanced control strategies. The dq-axis model of a PMSM is utilized to facilitate precise control and dynamic response. The [...] Read more.
This study focuses on enhancing the performance of Permanent Magnet Synchronous Motors (PMSMs) in pumping applications by improving motor torque through the integration of advanced control strategies. The dq-axis model of a PMSM is utilized to facilitate precise control and dynamic response. The proposed approach combines Fuzzy Logic Control (FLC) and Fuzzy Proportional-Integral-Derivative (fuzzy PID) controllers with Vector Control (VC) inverters, specifically designed for PMSMs with salient rotor structures. The salient rotor design inherently provides higher torque density, making it suitable for demanding applications like pumping. The FLC and fuzzy PID controllers are employed to optimize the motor’s dynamic response, ensuring precise torque control and improved efficiency under varying load conditions. The VC inverter further enhances the system’s performance by enabling rapid torque and flux control, reducing torque ripple, and improving overall motor stability. The simulation results demonstrate that the proposed control strategy significantly increases motor torque, enhances energy efficiency, and reduces operational losses in pumping applications. This makes the system more reliable and cost-effective for industrial and agricultural pumping systems, where high torque and energy savings are critical. The integration of FLC, fuzzy PID, and VC with a salient-rotor PMSM offers a robust solution for achieving superior motor performance in real-world pumping scenarios. This work contributes to the development of smarter, more efficient pumping systems, paving the way for enhanced industrial automation and energy management. Full article
(This article belongs to the Special Issue Stability and Optimal Control of Linear Systems)
Show Figures

Figure 1

13 pages, 11380 KiB  
Article
Application of Line-Start Permanent-Magnet Synchronous Motor in Converter Drive System with Increased Safety Level
by Kamila Jankowska, Maciej Gwoździewicz and Mateusz Dybkowski
Electronics 2025, 14(9), 1787; https://doi.org/10.3390/electronics14091787 - 27 Apr 2025
Cited by 1 | Viewed by 799
Abstract
This article analyses the potential use of a Line-Start Permanent-Magnet Synchronous Motor (LSPMSM) in a drive system with a frequency converter that enables stable operation without internal feedback from the rotor position. In Fault-Tolerant Control (FTC) drives, resistant to measuring sensor faults, classical [...] Read more.
This article analyses the potential use of a Line-Start Permanent-Magnet Synchronous Motor (LSPMSM) in a drive system with a frequency converter that enables stable operation without internal feedback from the rotor position. In Fault-Tolerant Control (FTC) drives, resistant to measuring sensor faults, classical PMSM machines lose the possibility of stable operation in the event of damage to the position/speed sensor. LSPMSMs can operate without the presence of measuring sensors. However, most existing studies focus on the application of LSPMSMs powered directly from the grid, which is a suitable approach for large machines such as pumps and fans. Given the ongoing efforts to improve the efficiency of electric drives, it is reasonable to explore the application of LSPMSMs in drives controlled by frequency converters. The key advantage of this approach is that the motor, which typically operates in a vector control structure, can maintain stable operation even in the event of a speed sensor failure. This article presents a comprehensive research approach. Calculations of a new type of induced-pole LSPMSM were carried out, and simulation tests using Ansys software were performed. Next, a prototype of the machine was made. The induced-pole PMSM contains a two-times-lower number of permanent magnets but their volume in the motor rotor is the same due to demagnetization robustness. The motor has enclosure-less construction. The startup and running characteristics of the motor were investigated under direct-on-line supply. The article presents calculations, simulation analyses, and experimental validation under scalar control, confirming the feasibility of using this type of machine in Fault-Tolerant Control drives. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

13 pages, 5435 KiB  
Article
Design, Analysis, and Comparison of Electric Vehicle Electric Oil Pump Motor Rotors Using Ferrite Magnet
by Huai-Cong Liu
World Electr. Veh. J. 2025, 16(1), 50; https://doi.org/10.3390/wevj16010050 - 20 Jan 2025
Viewed by 1422
Abstract
With the recent proliferation of electric vehicles, there is increasing attention on drive motors that are powerful and efficient, with a higher power density. To meet such high power density requirements, the cooling technology used for drive motors is particularly important. To further [...] Read more.
With the recent proliferation of electric vehicles, there is increasing attention on drive motors that are powerful and efficient, with a higher power density. To meet such high power density requirements, the cooling technology used for drive motors is particularly important. To further optimize the cooling effects, the use of direct oil-cooling technology for drive motors is gaining more attention, especially regarding the requirements for electric vehicle electric oil pumps (EOPs) in motor cooling. In such high-temperature environments, it is also necessary for the EOP to maintain its performance under high temperatures. This research explores the feasibility of using high-temperature-resistant ferrite magnets in the rotors of EOPs. For a 150 W EOP motor with the same stator size, three different rotor configurations are proposed: a surface permanent magnet (SPM) rotor, an interior permanent magnet (IPM) rotor, and a spoke-type IPM rotor. While the rotor sizes are the same, to maximize the power density while meeting the rotor’s mechanical strength requirements, the different rotor configurations make the most use of ferrite magnets (weighing 58 g, 51.8 g, and 46.3 g, respectively). Finite element analysis (FEA) was used to compare the performance of these models with that of the basic rotor design, considering factors such as the no-load back electromotive force, no-load voltage harmonics (<10%), cogging torque (<0.1 Nm), load torque, motor loss, and efficiency (>80%). Additionally, a comprehensive analysis of the system efficiency and energy loss was conducted based on hypothetical electric vehicle traction motor parameters. Finally, by manufacturing a prototype motor and conducting experiments, the effectiveness and superiority of the finite element method (FEM) design results were confirmed. Full article
Show Figures

Figure 1

22 pages, 10930 KiB  
Article
Design and Optimization of a Permanent Magnet Synchronous Motor for a Two-Dimensional Piston Electro-Hydraulic Pump
by Xinguo Qiu, Zhili Wang, Changlong Li, Tong Shen, Ying Zheng and Chen Wang
Energies 2024, 17(21), 5379; https://doi.org/10.3390/en17215379 - 29 Oct 2024
Cited by 3 | Viewed by 1268
Abstract
A two-dimensional (2D) piston electro-hydraulic pump has been proposed further to enhance the power density of the electro-hydraulic pump. The 2D piston pump, characterized by high power density and a slender shape, is embedded within the stator of the motor in a co-rotor [...] Read more.
A two-dimensional (2D) piston electro-hydraulic pump has been proposed further to enhance the power density of the electro-hydraulic pump. The 2D piston pump, characterized by high power density and a slender shape, is embedded within the stator of the motor in a co-rotor configuration where the piston and the motor’s rotor are in tandem. The intimate design of the hydraulic pump and the motor results in a coupling between the two, with intricate relationships and influences existing between the geometric parameters of the piston pump and the dimensions of the motor’s rotor. Based on the operational requirements and structure of the 2D piston pump, a permanent magnet synchronous motor (PMSM) designed for use with a 2D piston electro-hydraulic pump is developed. This study examines the impact of the motor’s stator iron core geometric parameters on both the electromagnetic and mechanical properties of a PMSM and completes the necessary performance validations. The optimization objectives of the motor are determined through an analysis of the influence of the key parameters of the rotor and stator on torque, torque ripple, and motor loss. A surrogate optimization model is constructed using a metamodel of optimal prognosis (MOP) to optimize the torque, torque ripple, and motor loss. Evolutionary genetic algorithms are utilized to achieve the multi-objective optimization design. A finite element simulation is used to compare the electromagnetic performance of the initial motor and optimal motor. Based on the optimal motor parameters, a 2.5 kW motor prototype is manufactured, and the experimental results validate the feasibility and effectiveness of the motor design and optimization. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

21 pages, 13685 KiB  
Article
Multi-Objective Optimization Strategy for Commercial Vehicle Permanent Magnet Water Pump Motor Based on Improved Sparrow Algorithm
by Wenjun Pei, Ping Xiao, Jiabao Pan, Zhihao Li and Aoning Lv
Appl. Sci. 2024, 14(21), 9666; https://doi.org/10.3390/app14219666 - 23 Oct 2024
Cited by 1 | Viewed by 1192
Abstract
In order to achieve multi-objective optimization for a permanent magnet water pump motor in heavy commercial vehicles, we propose a strategy based on response-surface methodology and the improved sparrow algorithm (CGE-SSA). Firstly, the output capacity of the pump during actual operation was tested [...] Read more.
In order to achieve multi-objective optimization for a permanent magnet water pump motor in heavy commercial vehicles, we propose a strategy based on response-surface methodology and the improved sparrow algorithm (CGE-SSA). Firstly, the output capacity of the pump during actual operation was tested with an experimental bench to determine the design parameters of the motor, and then its modeling was completed using Ansys Maxwell 2022r2 software. Secondly, the response-surface model was established by taking the parameters of permanent magnet width, rib width, and slot width as optimization parameters and the output torque (Ta), torque ripple (Tr), and back electromotive force (EMF) amplitude as optimization objectives. Meanwhile, three methods—namely, circular sinusoidal chaotic mapping, improved golden sinusoidal strategy, and adaptive weight coefficients—were used to improve the convergence speed and accuracy of the sparrow search algorithm (SSA). Finally, the multi-objective optimization of the permanent magnet synchronous motor was completed using the improved sparrow algorithm. A comparative analysis of the motor’s output before and after optimization showed that the torque pulsation and reverse electromotive force of the motor were significantly improved after optimization. Full article
Show Figures

Figure 1

14 pages, 5035 KiB  
Article
Model-Based Angular Position Sensorless Drives of Main Electric Oil Pumps for e-Axles in HEV and BEV
by Chinchul Choi and Jongbeom Kim
Energies 2024, 17(19), 4962; https://doi.org/10.3390/en17194962 - 4 Oct 2024
Cited by 2 | Viewed by 1164
Abstract
This paper describes an approach in improving the performance of the position sensorless control of electric oil pumps with a permanent magnet synchronous motor. Electric oil pumps are widely applied for the lubricating and cooling of e-Axles in HEV and BEV which operate [...] Read more.
This paper describes an approach in improving the performance of the position sensorless control of electric oil pumps with a permanent magnet synchronous motor. Electric oil pumps are widely applied for the lubricating and cooling of e-Axles in HEV and BEV which operate from −40 to 130 °C. The accuracy of the estimation obtained from the sensorless control based on the motor model depends on the accuracy of motor parameters and input values. At a lower speed and lower temperature region, the parameter variation and input measurement errors have gained greater influence over the accuracy of the estimation. This paper describes how to overcome this weakness of the sensorless drive via applying a robust position estimator with electrical parameter adaptation and compensation of a phase voltage measurement error. Experimental results with various types of pumps show the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Electric Waves to Future Mobility)
Show Figures

Figure 1

31 pages, 21025 KiB  
Article
A Methodology to Optimize PMSM Driven Solar Water Pumps Using a Hybrid MPPT Approach in Partially Shaded Conditions
by Divya Shetty, Jayalakshmi N. Sabhahit and Ganesh Kudva
Clean Technol. 2024, 6(3), 1229-1259; https://doi.org/10.3390/cleantechnol6030060 - 18 Sep 2024
Cited by 2 | Viewed by 2186
Abstract
Solar water pumps are crucial for farmers, significantly reducing energy costs and providing independence from conventional fuels. Their adoption is further incentivized by government subsidies, making them a practical choice that aligns with sustainable agricultural practices. However, the cost of the required solar [...] Read more.
Solar water pumps are crucial for farmers, significantly reducing energy costs and providing independence from conventional fuels. Their adoption is further incentivized by government subsidies, making them a practical choice that aligns with sustainable agricultural practices. However, the cost of the required solar panels for the chosen power makes it essential to optimize solar water pumping systems (SWPS) for economic viability. This study enhances the efficiency and reliability of permanent magnet synchronous motor (PMSM)-driven SWPS in rural areas using hybrid maximum power point tracking (MPPT) algorithms and voltage-to-frequency (V/f) control strategy. It investigates the sensorless scalar control method for PMSM-based water pumps and evaluates various MPPT algorithms, including grey wolf optimization (GWO), particle swarm optimization (PSO), perturb and observe (PO), and incremental conductance (INC), along with hybrid combinations. The study, conducted using MATLAB Simulink, assesses these algorithms on convergence time, MPPT accuracy, torque ripple, and system efficiency under different partial shading conditions. Findings reveal that INC-GWO excels, providing higher accuracy, faster convergence, and reduced steady-state oscillations, thus boosting system efficiency. The V/f control strategy simplifies control mechanisms and enhances performance. Considering system non-idealities and maximum duty cycle limitations, PMSM-based SWPS achieve superior efficiency and stability, making them viable for off-grid water pumping applications. Full article
Show Figures

Figure 1

13 pages, 4083 KiB  
Article
Low-Voltage Water Pump System Based on Permanent Magnet Synchronous Motor
by Xinrong Jin, Leifu Zhou, Tingting Lang and Yanbing Jiang
Electronics 2024, 13(18), 3674; https://doi.org/10.3390/electronics13183674 - 16 Sep 2024
Cited by 2 | Viewed by 1302
Abstract
This paper designs a safe, low-cost, and efficient permanent magnet synchronous motor (PMSM) booster pump system. The aim is to enhance the pump’s safety and reduce the incidence of electric shock accidents, while also achieving cost reduction and efficiency improvement. The pump components [...] Read more.
This paper designs a safe, low-cost, and efficient permanent magnet synchronous motor (PMSM) booster pump system. The aim is to enhance the pump’s safety and reduce the incidence of electric shock accidents, while also achieving cost reduction and efficiency improvement. The pump components are made of a plastic material, and a safe voltage of 36 V is used as the operating voltage. Additionally, the PMSM is chosen to replace the induction motor (IM) as the pump’s driving device, utilizing sensorless control and field-weakening control strategies. The study results show that when the flow rate is 1.51 m3/h, the efficiency of the PMSM low-voltage pump can reach up to 20.86%. At the same flow rate of 1 m3/h, compared to other pumps, the PMSM low-voltage pump exhibits higher head, energy savings, and efficiency. The proposed PMSM low-voltage pump offers advantages such as high efficiency, energy savings, safety, and low cost. This study provides a reference for the domestic PMSM pump industry. Full article
Show Figures

Figure 1

19 pages, 13232 KiB  
Article
A Power-RPM Reduced-Order Model and Power Control Strategy of the Dual Three-Phase Permanent Magnet Synchronous Motor in a V/f Framework for Oscillation Suppression
by Riqing Su, Yuanze Wang, Hui Deng, Xiong Liu and Yuanpeng Guan
Energies 2024, 17(18), 4563; https://doi.org/10.3390/en17184563 - 12 Sep 2024
Cited by 1 | Viewed by 1047
Abstract
The dual three-phase permanent magnet synchronous motor (DTP-PMSM) under a V/f control framework is widely applied in belts, fans, pumps, etc. However, the oscillation in power and rotor speed is difficult to quantify and suppress, due to the higher-order model of the DTP-PMSM. [...] Read more.
The dual three-phase permanent magnet synchronous motor (DTP-PMSM) under a V/f control framework is widely applied in belts, fans, pumps, etc. However, the oscillation in power and rotor speed is difficult to quantify and suppress, due to the higher-order model of the DTP-PMSM. Thus, a power-revolutions per minute (RPM) reduced-order model and power control strategy of the DTP–PMSM are proposed for oscillation description and suppression. Firstly, according to the structure and V/f control framework, the reduced-order model is proposed under a power-RPM scale with coupled performances between sub-PMSMs, and then the decoupled method is employed. Moreover, the oscillated performances of power and rotor speed are detailed in small signals. Secondly, a power control strategy is proposed, including active power feedforward for active damping and reactive power droop control for high power quality and approaching optimal torque per ampere. Compared with the traditional strategies, the proposed method can achieve a stable and efficient operation, with a higher power factor of the DTP–PMSM, less stator current, and lower electromechanical power loss. Finally, an experimental platform of the DTP–PMSM is set up for the correctness and superiority of the proposed method. Full article
Show Figures

Figure 1

22 pages, 10566 KiB  
Article
Research on Variable Speed Variable Displacement Power Unit with High Efficiency and High Dynamic Optimized Matching
by Mingkun Yang, Xianhang Liu, Guishan Yan, Chao Ai and Cong Yu
Energies 2024, 17(13), 3322; https://doi.org/10.3390/en17133322 - 6 Jul 2024
Viewed by 1165
Abstract
For the variable speed variable displacement power unit (VSVDPU), achieving power matching between the permanent magnet synchronous motor (PMSM) and the variable displacement plunger pump (VDPP) is the key to reducing system energy consumption. The control method of adjusting the speed of the [...] Read more.
For the variable speed variable displacement power unit (VSVDPU), achieving power matching between the permanent magnet synchronous motor (PMSM) and the variable displacement plunger pump (VDPP) is the key to reducing system energy consumption. The control method of adjusting the speed of the PMSM and the displacement of the VDPP is the mainstay of current research and application of the VSVDPU. However, the dynamic properties of the PMSM and VDPP have not been balanced, which affects the control effect of the VSVDPU. This paper proposes a control method of variable speed and variable displacement with low energy consumption and high dynamics. The main idea is based on the efficiency model and dynamic response model of the PMSM and VDPP, and the factors that affect the efficiency and dynamic characteristics of the VSVDPU are analyzed. Guided by the multi-objective optimization algorithm, the optimal combination of speed and displacement under specific working conditions is derived. Simulation and experiment results show that the proposed control method is feasible to improve the efficiency and dynamic characteristics of the VSVDPU. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

19 pages, 16080 KiB  
Article
Research on the Material Characteristics and Loss Calculation Method of Cryogenic Permanent Magnet Motor Stator for LNG Pump
by Shuqi Liu, Baojun Ge, Likun Wang and Yue Wang
Energies 2024, 17(11), 2641; https://doi.org/10.3390/en17112641 - 29 May 2024
Cited by 1 | Viewed by 1117
Abstract
This paper explores the applicability of cryogenic permanent magnet motor stator materials for LNG pumps. First, this study selected four kinds of silicon steel sheets for motor stators tested at room temperature and ultra-low temperature and obtained the magnetization characteristics and loss characteristics [...] Read more.
This paper explores the applicability of cryogenic permanent magnet motor stator materials for LNG pumps. First, this study selected four kinds of silicon steel sheets for motor stators tested at room temperature and ultra-low temperature and obtained the magnetization characteristics and loss characteristics of the four silicon steel sheets at room temperature and ultra-low temperature. Then, through a comparative analysis of experimental data, the applicability of silicon steel sheet material in an ultra-low-temperature environment was verified. Finally, the improved methods of the basic iron loss model of silicon steel sheets and the basic iron loss model of motors were proposed, and the accuracy and feasibility of the improved models were verified. Full article
(This article belongs to the Special Issue Advances in Gas Transportation by Pipeline and LNG)
Show Figures

Figure 1

15 pages, 3900 KiB  
Article
Practical Comparison of Two- and Three-Phase Bearingless Permanent Magnet Slice Motors for Blood Pumps
by Jonathan E. M. Lawley, Giselle C. Matlis, Amy L. Throckmorton and Steven W. Day
Actuators 2024, 13(5), 179; https://doi.org/10.3390/act13050179 - 8 May 2024
Cited by 1 | Viewed by 1843
Abstract
The majority of bearingless permanent magnet slice motors (BPMSMs) used in commercially available rotary blood pumps use a two-phase configuration, but it is unclear as to whether or not a comparable three-phase configuration would offer a better performance. This study compares the performance [...] Read more.
The majority of bearingless permanent magnet slice motors (BPMSMs) used in commercially available rotary blood pumps use a two-phase configuration, but it is unclear as to whether or not a comparable three-phase configuration would offer a better performance. This study compares the performance of two-phase and three-phase BPMSM configurations. Initially, two nominal designs were manufactured and empirically tested for their performance characteristics, namely, the axial stiffness, radial stiffness, and current force. Subsequently, finite element analysis (FEA) models were developed based on these nominal devices and validated against the empirical results. Simulations were then employed to assess the sensitivity of performance characteristics to variations in seven different geometric features of the models for both configurations. Our findings indicate that the nominal three-phase design had a higher axial stiffness and radial stiffness, but resulted in a lower axial-to-radial-stiffness ratio when compared to the nominal two-phase design. Additionally, while the nominal two-phase design shows a higher current force, the nominal three-phase design proves to be slightly superior when the force generated is considered relative to the power usage. Notably, the three-phase configuration demonstrates a greater sensitivity to dimensional changes in the geometric features. We observed that alterations in the air gap and rotor length lead to the most significant variations in performance characteristics. Although most changes in specific geometric features entail equal tradeoffs, increasing the head protrusion positively influences the overall performance. Moreover, we illustrated the interdependent nature of the head height and rotor height on the performance characteristics. Overall, this study delineates the strengths and weaknesses of each configuration, while also providing general insights into the relationship between specific geometric features and performance characteristics of BPMSMs. Full article
(This article belongs to the Special Issue Power Electronics and Actuators)
Show Figures

Figure 1

Back to TopTop