Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,784)

Search Parameters:
Keywords = periodic motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14898 KiB  
Article
SSI Effects on Constant-Ductility Inelastic Displacement Ratio and Residual Displacement of Self-Centering Systems Under Pulse-Type Ground Motions
by Muberra Eser Aydemir
Appl. Sci. 2025, 15(15), 8661; https://doi.org/10.3390/app15158661 (registering DOI) - 5 Aug 2025
Abstract
This study aims to examine the seismic response of self-centering single-degree-of-freedom (SDOF) systems exhibiting flag-shaped hysteretic behavior, while considering soil–structure interaction, in contrast to prior research that predominantly addressed conventional hysteretic behavior and overlooked soil flexibility. The inelastic displacement ratio, residual displacement, and [...] Read more.
This study aims to examine the seismic response of self-centering single-degree-of-freedom (SDOF) systems exhibiting flag-shaped hysteretic behavior, while considering soil–structure interaction, in contrast to prior research that predominantly addressed conventional hysteretic behavior and overlooked soil flexibility. The inelastic displacement ratio, residual displacement, and residual displacement ratio are used to analyze the seismic response of interacting structures. These structural response parameters are calculated based on the nonlinear dynamic analyses of SDOF systems subjected to 56 near-fault pulse-type ground motions. Analyses are conducted for varying values of ductility, energy dissipation coefficient, strain hardening ratio, aspect ratio, structural period, and normalized vibration period by pulse period of the record. New formulas to estimate the inelastic displacement ratio and residual displacement of self-centering SDOF systems with soil–structure interaction are developed based on a statistical analysis of the findings. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

16 pages, 4615 KiB  
Article
Daily Variation in the Feeding Activity of Pacific Crown-of-Thorns Starfish (Acanthaster cf. solaris)
by Josie F. Chandler, Deborah Burn, Will F. Figueira, Peter C. Doll, Abby Johandes, Agustina Piccaluga and Morgan S. Pratchett
Biology 2025, 14(8), 1001; https://doi.org/10.3390/biology14081001 - 5 Aug 2025
Abstract
The ecological impact of crown-of-thorns starfish (CoTS; Acanthaster spp.) on coral reefs is intrinsically linked to their feeding behaviour. Management thresholds designed to mitigate coral loss driven by elevated densities of crown-of-thorns starfish rely on accurate estimates of individual feeding rates. In this [...] Read more.
The ecological impact of crown-of-thorns starfish (CoTS; Acanthaster spp.) on coral reefs is intrinsically linked to their feeding behaviour. Management thresholds designed to mitigate coral loss driven by elevated densities of crown-of-thorns starfish rely on accurate estimates of individual feeding rates. In this study, structure-from-motion photogrammetry and intensive tracking of adult Pacific CoTS over an extended survey period were used to generate three-dimensional, high-resolution estimates of daily feeding rates. Our findings revealed substantial variation in the areal extent of coral consumed, both across consecutive days and among individuals. Notably, CoTS did not feed consistently; feeding occurred on 65% of observation days, with 2–3 days periods of inactivity common. Despite this variability, mean daily feeding rates aligned with previous studies (1.35 coral colonies d−1; 198.4 cm2 day−1 planar area, and 998.83 cm2 day−1 three-dimensional surface area). Across all tracked individuals (n = 8), feeding was recorded on 17 coral genera; however, Acropora alone accounted for 51% of colonies consumed and contributed 82% of the total three-dimensional surface area ingested during the survey period. This highlights the disproportionately large feeding yield derived from Acropora-dominated diets and raises important questions about how future declines in Acropora cover may impact CoTS feeding success and energetic intake. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

20 pages, 3248 KiB  
Article
Experimental Study on the Hydrodynamic Analysis of a Floating Offshore Wind Turbine Under Focused Wave Conditions
by Hanbo Zhai, Chaojun Yan, Wei Shi, Lixian Zhang, Xinmeng Zeng, Xu Han and Constantine Michailides
Energies 2025, 18(15), 4140; https://doi.org/10.3390/en18154140 - 5 Aug 2025
Abstract
The strong nonlinearity of shallow-water waves significantly affects the dynamic response of floating offshore wind turbines (FOWTs), introducing additional complexity in motion behavior. This study presents a series of 1:80-scale experiments conducted on a 5 MW FOWT at a 50 m water depth, [...] Read more.
The strong nonlinearity of shallow-water waves significantly affects the dynamic response of floating offshore wind turbines (FOWTs), introducing additional complexity in motion behavior. This study presents a series of 1:80-scale experiments conducted on a 5 MW FOWT at a 50 m water depth, under regular, irregular, and focused wave conditions. The tests were conducted under regular, irregular, and focused wave conditions. The results show that, under both regular and irregular wave conditions, the platform’s motion and mooring tension increased as the wave period became longer, indicating a greater energy transfer and stronger coupling effects at lower wave frequencies. Specifically, in irregular seas, mooring tension increased by 16% between moderate and high sea states, with pronounced surge–pitch coupling near the natural frequency. Under focused wave conditions, the platform experienced significant surge displacement due to the impact of large wave crests, followed by free-decay behavior. Meanwhile, the pitch amplitude increased by up to 27%, and mooring line tension rose by 16% as the wave steepness intensified. These findings provide valuable insights for the design and optimization of FOWTs in complex marine environments, particularly under extreme wave conditions. Additionally, they contribute to the refinement of relevant numerical simulation methods. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

22 pages, 4658 KiB  
Article
Experimental Research on Ship Wave-Induced Motions of Tidal Turbine Catamaran
by Tinghui Liu, Xiwu Gong, Zijian Yu and Yonghe Xie
Fluids 2025, 10(8), 205; https://doi.org/10.3390/fluids10080205 - 4 Aug 2025
Abstract
In this research, the effect of ship navigation on the mooring system of a deep-sea floating tidal energy platform is experimentally investigated. Hydrodynamic experiments were conducted on a figure-of-eight mooring system with a KCS ship (KRISO Container Ship) as the sailing ship model [...] Read more.
In this research, the effect of ship navigation on the mooring system of a deep-sea floating tidal energy platform is experimentally investigated. Hydrodynamic experiments were conducted on a figure-of-eight mooring system with a KCS ship (KRISO Container Ship) as the sailing ship model and a catamaran as the carrier model of the tidal current energy generator under the combined effect of waves and ocean currents. The experimental results show that the increase in ship speed increases the amplitude of the carrier motion re-response. When the ship speed increases from 1.2 m/s to 1.478 m/s, the roll amplitude increases by 220%. At the same time, a decrease in the distance and draft of the navigating vessel also increases the amplitude of the motion response. Then, the actual sea conditions are simulated by the combined effect of ship waves and regular waves. As the wave period decreases and the height increases, the platform motion response is gradually reduced by the ship-generated waves. These findings provide important insights for optimizing the mooring system design in wave-dominated marine environments. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

21 pages, 12507 KiB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Viewed by 60
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 1060 KiB  
Article
Condition Changes Before and After the Coronavirus Disease 2019 Pandemic in Adolescent Athletes and Development of a Non-Contact Medical Checkup Application
by Hiroaki Kijima, Toyohito Segawa, Kimio Saito, Hiroaki Tsukamoto, Ryota Kimura, Kana Sasaki, Shohei Murata, Kenta Tominaga, Yo Morishita, Yasuhito Asaka, Hidetomo Saito and Naohisa Miyakoshi
Sports 2025, 13(8), 256; https://doi.org/10.3390/sports13080256 - 4 Aug 2025
Viewed by 112
Abstract
During the coronavirus 2019 pandemic, sports activities were restricted, raising concerns about their impact on the physical condition of adolescent athletes, which remained largely unquantified. This study was designed with two primary objectives: first, to precisely quantify and elucidate the differences in the [...] Read more.
During the coronavirus 2019 pandemic, sports activities were restricted, raising concerns about their impact on the physical condition of adolescent athletes, which remained largely unquantified. This study was designed with two primary objectives: first, to precisely quantify and elucidate the differences in the physical condition of adolescent athletes before and after activity restrictions due to the pandemic; and second, to innovatively develop and validate a non-contact medical checkup application. Medical checks were conducted on 563 athletes designated for sports enhancement. Participants were junior high school students aged 13 to 15, and the sample consisted of 315 boys and 248 girls. Furthermore, we developed a smartphone application and compared self-checks using the application with in-person checks by orthopedic surgeons to determine the challenges associated with self-checks. Statistical tests were conducted to determine whether there were statistically significant differences in range of motion and flexibility parameters before and after the pandemic. Additionally, items with discrepancies between values self-entered by athletes using the smartphone application and values measured by specialists were detected, and application updates were performed. Student’s t-test was used for continuous variables, whereas the chi-square test was used for other variables. Following the coronavirus 2019 pandemic, athletes were stiffer than during the pre-pandemic period in terms of hip and shoulder joint rotation range of motion and heel–buttock distance. The dominant hip external rotation decreased from 53.8° to 46.8° (p = 0.0062); the non-dominant hip external rotation decreased from 53.5° to 48.0° (p = 0.0252); the dominant shoulder internal rotation decreased from 62.5° to 54.7° (p = 0.0042); external rotation decreased from 97.6° to 93.5° (p = 0.0282), and the heel–buttock distance increased from 4.0 cm to 10.4 cm (p < 0.0001). The heel–buttock distance and straight leg raising angle measurements differed between the self-check and face-to-face check. Although there are items that cannot be accurately evaluated by self-check, physical condition can be improved with less contact by first conducting a face-to-face evaluation under appropriate guidance and then conducting a self-check. These findings successfully address our primary objectives. Specifically, we demonstrated a significant decline in the physical condition of adolescent athletes following pandemic-related activity restrictions, thereby quantifying their impact. Furthermore, our developed non-contact medical checkup application proved to be a viable tool for monitoring physical condition with reduced contact, although careful consideration of measurable parameters is crucial. This study provides critical insights into the long-term effects of activity restrictions on young athletes and offers a practical solution for health monitoring during infectious disease outbreaks, highlighting the potential for hybrid checkup approaches. Full article
Show Figures

Graphical abstract

22 pages, 1350 KiB  
Article
Optimization of Dynamic SSVEP Paradigms for Practical Application: Low-Fatigue Design with Coordinated Trajectory and Speed Modulation and Gaming Validation
by Yan Huang, Lei Cao, Yongru Chen and Ting Wang
Sensors 2025, 25(15), 4727; https://doi.org/10.3390/s25154727 - 31 Jul 2025
Viewed by 228
Abstract
Steady-state visual evoked potential (SSVEP) paradigms are widely used in brain–computer interface (BCI) systems due to their reliability and fast response. However, traditional static stimuli may reduce user comfort and engagement during prolonged use. This study proposes a dynamic stimulation paradigm combining periodic [...] Read more.
Steady-state visual evoked potential (SSVEP) paradigms are widely used in brain–computer interface (BCI) systems due to their reliability and fast response. However, traditional static stimuli may reduce user comfort and engagement during prolonged use. This study proposes a dynamic stimulation paradigm combining periodic motion trajectories with speed control. Using four frequencies (6, 8.57, 10, 12 Hz) and three waveform patterns (sinusoidal, square, sawtooth), speed was modulated at 1/5, 1/10, and 1/20 of each frequency’s base rate. An offline experiment with 17 subjects showed that the low-speed sinusoidal and sawtooth trajectories matched the static accuracy (85.84% and 83.82%) while reducing cognitive workload by 22%. An online experiment with 12 subjects participating in a fruit-slicing game confirmed its practicality, achieving recognition accuracies above 82% and a System Usability Scale score of 75.96. These results indicate that coordinated trajectory and speed modulation preserves SSVEP signal quality and enhances user experience, offering a promising approach for fatigue-resistant, user-friendly BCI application. Full article
(This article belongs to the Special Issue EEG-Based Brain–Computer Interfaces: Research and Applications)
Show Figures

Figure 1

20 pages, 17113 KiB  
Article
Seismic Performance of an Asymmetric Tall-Pier Girder Bridge with Fluid Viscous Dampers Under Near-Field Earthquakes
by Ziang Pan, Qiming Qi, Jianxian He, Huaping Yang, Changjiang Shao, Wanting Gong and Haomeng Cui
Symmetry 2025, 17(8), 1209; https://doi.org/10.3390/sym17081209 - 30 Jul 2025
Viewed by 232
Abstract
Tall-pier girder bridges with fluid viscous dampers (FVDs) are widely used in earthquake-prone mountainous areas. However, the influence of higher-order modes and near-field earthquakes on tall piers has rarely been studied. Based on an asymmetric tall-pier girder bridge, a finite element model is [...] Read more.
Tall-pier girder bridges with fluid viscous dampers (FVDs) are widely used in earthquake-prone mountainous areas. However, the influence of higher-order modes and near-field earthquakes on tall piers has rarely been studied. Based on an asymmetric tall-pier girder bridge, a finite element model is established, and the parameters of FVDs are optimized using SAP2000. The higher-order mode effects on tall piers are explored by proportionally reducing the pier heights. The pulse effects of near-field earthquakes on FVD mitigation and higher-order modes are analyzed. The optimal FVDs can coordinate the force distribution among tall piers, effectively reducing displacement responses and internal forces. Due to higher-order modes, the internal force envelopes of tall piers exhibit concave-convex distributions. As pier heights decrease, the internal force envelopes gradually become linear, implying reduced higher-order mode effects. Long-period pulse-like motions produce the maximum seismic responses because the slender tall-pier bridge is sensitive to high spectral accelerations in medium-to-long periods. The higher-order modes are more easily excited by near-field motions with large spectral values in the high-frequency range. Overall, FVDs can simultaneously reduce the seismic responses of tall piers and diminish the influence of higher-order modes. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

33 pages, 4686 KiB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 259
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

22 pages, 11766 KiB  
Article
Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions
by Ziang Pan, Qiming Qi, Ruifeng Yu, Huaping Yang, Changjiang Shao and Haomeng Cui
Buildings 2025, 15(15), 2666; https://doi.org/10.3390/buildings15152666 - 28 Jul 2025
Viewed by 159
Abstract
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield [...] Read more.
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield strength: 3000 kN; initial gap: 100 mm; post-yield stiffness ratio: 15%) are optimized through seismic analysis under near-fault ground motions, incorporating pulse characteristic investigations. The optimized TSD effectively reduces bearing displacements and results in smaller pier top displacements and internal forces compared to the bridge with fixed bearings. Due to the higher-order mode effects, there is no direct correlation between top displacements and bottom internal forces. As pier height decreases, the S-shaped shear force and bending moment envelopes gradually become linear, reflecting the reduced influence of these modes. Medium- to long-period pulse-like motions amplify seismic responses due to resonance (pulse period ≈ fundamental period) or susceptibility to large low-frequency spectral values. Higher-order mode effects on bending moments and shear forces intensify under prominent high-frequency components. However, the main velocity pulse typically masks the influence of high-order modes by the overwhelming seismic responses due to large spectral values at medium to long periods. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

20 pages, 7332 KiB  
Article
Analytical Derivation of the q-Factor for Slender Masonry Structures Under Out-of-Plane Seismic Action
by Simona Coccia
Buildings 2025, 15(15), 2622; https://doi.org/10.3390/buildings15152622 - 24 Jul 2025
Viewed by 219
Abstract
Slender masonry structures, in the absence of disintegration phenomena, can be idealized as rigid bodies subjected to seismic excitation. In this study, a closed-form expression for the behavior factor (q-factor) associated with overturning collapse under out-of-plane seismic loading is derived. The [...] Read more.
Slender masonry structures, in the absence of disintegration phenomena, can be idealized as rigid bodies subjected to seismic excitation. In this study, a closed-form expression for the behavior factor (q-factor) associated with overturning collapse under out-of-plane seismic loading is derived. The analysis considers five-step pulse seismic inputs. In the proposed approach, valid for slender masonry structures, sliding failure is neglected, and collapse is assumed to occur when, at the end of the seismic excitation, the rotation of the structure reaches a value equal to its slenderness. Based on this criterion, it is possible to derive a formulation for the q-factor as a function of a dimensionless parameter that combines the geometric characteristics of the slender structure and the period of the applied accelerogram. To validate the proposed formulation, a comparative analysis is conducted against the results obtained from a numerical integration of the motion equation using a set of 20 natural accelerograms recorded in Italy. The characteristic period of each accelerogram is evaluated through different methodologies, with the aim of identifying the most suitable approach for application in simplified seismic assessment procedures. Full article
(This article belongs to the Special Issue Seismic Assessment of Unreinforced Masonry Buildings)
Show Figures

Figure 1

24 pages, 11580 KiB  
Article
GS24b and GS24bc Ground Motion Models for Active Crustal Regions Based on a Non-Traditional Modeling Approach
by Vladimir Graizer and Scott Stovall
Geosciences 2025, 15(8), 277; https://doi.org/10.3390/geosciences15080277 - 23 Jul 2025
Viewed by 245
Abstract
An expanded Pacific Earthquake Engineering Research (PEER) Center Next Generation Attenuation Phase 2 (NGA-West2) ground motion database, compiled using shallow crustal earthquakes in active crustal regions (ACRs), was used to develop the closed-form GS24b backbone ground motion model (GMM) for the RotD50 horizontal [...] Read more.
An expanded Pacific Earthquake Engineering Research (PEER) Center Next Generation Attenuation Phase 2 (NGA-West2) ground motion database, compiled using shallow crustal earthquakes in active crustal regions (ACRs), was used to develop the closed-form GS24b backbone ground motion model (GMM) for the RotD50 horizontal components of peak ground acceleration (PGA), peak ground velocity (PGV), and 5% damped elastic pseudo-absolute response spectral accelerations (SA). The GS24b model is applicable to earthquakes with moment magnitudes of 4.0 ≤ M ≤ 8.5, at rupture distances of 0 ≤ Rrup ≤ 400 km, with time-averaged S-wave velocity in the upper 30 m of the profile at 150 ≤ VS30 ≤ 1500 m/s, and for periods of 0.01 ≤ T ≤ 10 s. The new backbone model includes VS30 site correction developed based on multiple representative S-wave velocity profiles. For crustal wave attenuation, we used the apparent anelastic attenuation of SA—QSA (f, M). In contrast to the GK17, the GS24b backbone is a generic ACR model designed specifically to be adjusted to any ACRs. The GS24bc is an example of a partially non-ergodic model created by adjusting the backbone GS24b model for magnitude M, S-wave velocity VS30, and fault rupture distance residuals. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

14 pages, 926 KiB  
Article
The Effectiveness of Manual Therapy in the Cervical Spine and Diaphragm, in Combination with Breathing Re-Education Exercises, on the Range of Motion and Forward Head Posture in Patients with Non-Specific Chronic Neck Pain: A Randomized Controlled Trial
by Petros I. Tatsios, Eirini Grammatopoulou, Zacharias Dimitriadis and George A. Koumantakis
Healthcare 2025, 13(14), 1765; https://doi.org/10.3390/healthcare13141765 - 21 Jul 2025
Viewed by 428
Abstract
Background/Objectives: A randomized controlled trial (RCT) was designed to test the emerging role of respiratory mechanics as part of physiotherapy in patients with non-specific chronic neck pain (NSCNP). Methods: Ninety patients with NSCNP and symptom duration >3 months were randomly allocated to three [...] Read more.
Background/Objectives: A randomized controlled trial (RCT) was designed to test the emerging role of respiratory mechanics as part of physiotherapy in patients with non-specific chronic neck pain (NSCNP). Methods: Ninety patients with NSCNP and symptom duration >3 months were randomly allocated to three intervention groups of equal size, receiving either cervical spine (according to the Mulligan Concept) and diaphragm manual therapy plus breathing reeducation exercises (experimental group—EG1), cervical spine manual therapy plus sham diaphragmatic manual techniques (EG2), or conventional physiotherapy (control group—CG). The treatment period lasted one month (10 sessions) for all groups. The effect on the cervical spine range of motion (CS-ROM) and on the craniovertebral angle (CVA) was examined. Outcomes were collected before treatment (0/12), after treatment (1/12), and three months after the end of treatment (4/12). The main analysis comprised a two-way mixed ANOVA with a repeated measures factor (time) and a between-groups factor (group). Post hoc tests assessed the source of significant interactions detected. The significance level was set at p = 0.05. Results: No significant between-group baseline differences were identified. Increases in CS-ROM and in CVA were registered mainly post-treatment, with improvements maintained at follow-up for CS-ROM. EG1 significantly improved over CG in all movement directions except for flexion and over EG2 for extension only, at 1/12 and 4/12. All groups improved by the same amount for CVA. Conclusions: EG1, which included diaphragm manual therapy and breathing re-education exercises, registered the largest overall improvement over CG (except for flexion and CVA), and for extension over EG2. The interaction between respiratory mechanics and neck mobility may provide new therapeutic and assessment insights of patients with NSCNP. Full article
(This article belongs to the Special Issue Future Trends of Physical Activity in Health Promotion)
Show Figures

Figure 1

19 pages, 3292 KiB  
Article
Demographic, Epidemiological and Functional Profile Models of Greek CrossFit Athletes in Relation to Shoulder Injuries: A Prospective Study
by Akrivi Bakaraki, George Tsirogiannis, Charalampos Matzaroglou, Konstantinos Fousekis, Sofia A. Xergia and Elias Tsepis
J. Funct. Morphol. Kinesiol. 2025, 10(3), 278; https://doi.org/10.3390/jfmk10030278 - 18 Jul 2025
Viewed by 354
Abstract
Objectives: Shoulder injury prevalence appears to be the highest among all injuries in CrossFit (CF) athletes. Nevertheless, there is no evidence deriving from prospective studies to explain this phenomenon. The purpose of this study was to document shoulder injury incidence in CF [...] Read more.
Objectives: Shoulder injury prevalence appears to be the highest among all injuries in CrossFit (CF) athletes. Nevertheless, there is no evidence deriving from prospective studies to explain this phenomenon. The purpose of this study was to document shoulder injury incidence in CF participants over a 12-month period and prospectively investigate the risk factors associated with their demographic, epidemiological, and functional characteristics. Methods: The sample comprised 109 CF athletes in various levels. Participants’ data were collected during the baseline assessment, using a specially designed questionnaire, as well as active range of motion, muscle strength, muscle endurance, and sport-specific tests. Non-parametric statistical tests and inferential statistics were employed, and in addition, linear and regression models were created. Logistic regression models incorporating the study’s continuous predictors to classify injury occurrence in CF athletes were developed and evaluated using the Area Under the ROC Curve (AUC) as the performance metric. Results: A shoulder injury incidence rate of 0.79 per 1000 training hours was recorded. Olympic weightlifting (45%) and gymnastics (35%) exercises were associated with shoulder injury occurrence. The most frequent injury concerned rotator cuff tendons (45%), including lesions and tendinopathies, exhibiting various severity levels. None of the examined variables individually showed a statistically significant correlation with shoulder injuries. Conclusions: This is the first study that has investigated prospectively shoulder injuries in CrossFit, creating a realistic profile of these athletes. Despite the broad spectrum of collected data, the traditional statistical approach failed to identify shoulder injury predictors. This indicates the necessity to explore this topic using more sophisticated techniques, such as advanced machine learning approaches. Full article
Show Figures

Figure 1

12 pages, 612 KiB  
Article
Treatment of Chronic Neck Pain with Transcranial Direct Current Stimulation: A Single-Blinded Randomized Clinical Trial
by Manuel Rodríguez-Huguet, Miguel Ángel Rosety-Rodríguez, Daniel Rodríguez-Almagro, Rocío Martín-Valero, Maria Jesus Vinolo-Gil, Jorge Bastos-Garcia and Jorge Góngora-Rodríguez
Biomedicines 2025, 13(7), 1746; https://doi.org/10.3390/biomedicines13071746 - 17 Jul 2025
Viewed by 484
Abstract
Background/Objectives: Neck pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, affecting the cervical region. It represents one of the leading causes of disability, with a prevalence of 30%. Transcranial direct current stimulation (tDCS) [...] Read more.
Background/Objectives: Neck pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, affecting the cervical region. It represents one of the leading causes of disability, with a prevalence of 30%. Transcranial direct current stimulation (tDCS) is a non-invasive electrotherapy technique that enables direct modulation of cortical excitability. It involves the application of a low-intensity electrical current to the scalp, targeting the central nervous system. The aim of this study was to analyze the effects of tDCS on functionality, pain, mobility, and pressure pain threshold in patients with chronic nonspecific neck pain. Methods: Thirty participants (18–60 years) were selected to receive ten treatment sessions over a four-week period using tDCS (CG = 15) or transcutaneous electrical nerve stimulation (TENS) (CG = 15), with the following various related variables evaluated: functionality (Neck Disability Index), pain intensity (NPRS), cervical range of motion (ROM), and pressure pain threshold (PPT). Assessments were conducted at baseline, post-treatment, one month, and three months after the intervention. Results: The within-group analysis revealed statistically significant improvements for both groups at post-treatment, one-month follow-up, and three-month follow-up. Conclusions: The comparison between groups shows favorable changes in the tDCS group for PPT measurements. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

Back to TopTop