Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,861)

Search Parameters:
Keywords = peptide-resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 847 KiB  
Review
Chemical Treatments Tested Against Xylella fastidiosa: Strategies, Successes and Limitations
by Letizia Portaccio, Marzia Vergine, Alessandro Bene, Mariarosaria De Pascali, Erika Sabella, Luigi De Bellis and Andrea Luvisi
Pathogens 2025, 14(9), 840; https://doi.org/10.3390/pathogens14090840 (registering DOI) - 23 Aug 2025
Abstract
Xylella fastidiosa (Xf) is a Gram-negative bacterium responsible for severe diseases in several commercially significant crops, including olive, grapevine, citrus and almond. Its management is particularly challenging due to its transmission via widespread vector insects, its ability to form biofilms, its [...] Read more.
Xylella fastidiosa (Xf) is a Gram-negative bacterium responsible for severe diseases in several commercially significant crops, including olive, grapevine, citrus and almond. Its management is particularly challenging due to its transmission via widespread vector insects, its ability to form biofilms, its high genetic diversity and, sometimes, latent symptoms. Current control strategies focus on integrated and preventive approaches, including the use of resistant varieties, agronomic practices, and vector control through chemical and biological methods. Direct control of the bacterium has always been a complex challenge that includes strategies to limit vector presence and activity in the field; however, several compounds have recently been evaluated that are able to inhibit biofilm formation and Xf growth. This review provides an up-to-date summary of studies investigating the efficacy of various treatments based on organic compounds, synthetic molecules and salt- or metal-based formulations. By evaluating the results of in vitro and in vivo experiments, the most promising solutions were identified that address the main challenges and limitations of chemical control strategies. These include N-acetylcysteine and zinc- and copper-based formulations, which are effective and potentially transferable to the field for crops such as citrus and olive trees. Antimicrobial peptides and nanoparticles, on the other hand, have demonstrated high efficacy in vitro, although further studies directly in the field are required. The evidence emerging from the analyzed studies offer insights to guide future research towards more effective and sustainable management approaches to mitigate the spread and impact of Xf. Full article
(This article belongs to the Section Bacterial Pathogens)
16 pages, 1108 KiB  
Review
Lasso Peptides—A New Weapon Against Superbugs
by Piotr Mucha, Jarosław Ruczyński, Katarzyna Prochera and Piotr Rekowski
Int. J. Mol. Sci. 2025, 26(17), 8184; https://doi.org/10.3390/ijms26178184 (registering DOI) - 23 Aug 2025
Abstract
The emergence of multi-drug-resistant bacteria (known as superbugs) represents one of the greatest challenges for human health and modern medicine. Due to their remarkable ability to rapidly develop resistance to currently used antibiotics, new molecular targets for bacteria and substances capable of effectively [...] Read more.
The emergence of multi-drug-resistant bacteria (known as superbugs) represents one of the greatest challenges for human health and modern medicine. Due to their remarkable ability to rapidly develop resistance to currently used antibiotics, new molecular targets for bacteria and substances capable of effectively combating related infections are still being sought. Lasso (known also as lariat) peptides are an unusual subclass of ribosomally synthesized and post-translationally modified peptides (RiPPs) with a structurally constrained knotted fold resembling a lasso. They are synthesized by certain groups of microorganisms as a result of complex processes involving intricate structural changes leading to the formation of the lasso structure. Reproducing these processes using known peptide synthesis methods poses a major challenge for synthetic chemistry. Lasso peptides exhibit a range of bioactivities including antibacterial activity. Due to the lasso structure, the peptides are capable of binding to new molecular targets, including atypical sides of ribosomes, in relation to currently used antibiotics. Thus, creating new mechanisms that inhibit metabolic processes leading to the death of pathogenic bacteria. This feature makes lasso peptides a potential “last chance” weapon in the fight against emerging superbugs. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

26 pages, 925 KiB  
Review
Comparative Pharmacological and Pharmaceutical Perspectives on Antidiabetic Therapies in Humans, Dogs, and Cats
by Iljin Kim and Jang-Hyuk Yun
Pharmaceutics 2025, 17(9), 1098; https://doi.org/10.3390/pharmaceutics17091098 (registering DOI) - 23 Aug 2025
Abstract
Background/Objectives: Diabetes mellitus (DM) is an increasingly prevalent endocrine disorder affecting humans and companion animals. Type 1 DM (T1DM) and type 2 DM (T2DM) are well characterized in humans, and canine DM most often resembles T1DM, marked by insulin dependence and β-cell destruction. [...] Read more.
Background/Objectives: Diabetes mellitus (DM) is an increasingly prevalent endocrine disorder affecting humans and companion animals. Type 1 DM (T1DM) and type 2 DM (T2DM) are well characterized in humans, and canine DM most often resembles T1DM, marked by insulin dependence and β-cell destruction. Conversely, feline DM shares key features with human T2DM, including insulin resistance, obesity-related inflammation, and islet amyloidosis. This review provides a comprehensive comparative analysis of antidiabetic therapies in humans, dogs, and cats, focusing on three core areas: disease pathophysiology, pharmacological and delivery strategies, and translational implications. In human medicine, a wide array of insulin analogs, oral hypoglycemic agents, and incretin-based therapies, including glucagon-like peptide-1 receptor agonists (liraglutide) and sodium-glucose cotransporter-2 inhibitors (empagliflozin), are available. Veterinary treatments remain limited to species-adapted insulin formulations and off-label use of human drugs. Interspecies differences in gastrointestinal physiology, drug metabolism, and behavioral compliance influence therapeutic efficacy and pharmacokinetics. Recent innovations, such as microneedle patches for insulin delivery and continuous glucose monitoring systems, show promise in humans and animals. Companion animals with naturally occurring diabetes serve as valuable models for preclinical testing of novel delivery platforms and long-acting formulations under real-world settings. While these technologies show potential, challenges remain in regulatory approval and behavioral adaptation in animals. Conclusions: Future research should prioritize pharmacokinetic bridging studies, veterinary-specific formulation trials, and device validation in animal models. By highlighting shared and species-specific characteristics of DM pathogenesis and treatment, this review advocates a One Health approach toward optimized antidiabetic therapies that benefit human and veterinary medicine. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

14 pages, 2569 KiB  
Article
Exometabolite-Based Antimicrobial Formulations from Lactic Acid Bacteria as a Multi-Target Strategy Against Multidrug-Resistant Escherichia coli
by Gabriela N. Tenea, Diana Molina, Yuleissy Cuamacas, George Cătălin Marinescu and Roua Gabriela Popescu
Antibiotics 2025, 14(9), 851; https://doi.org/10.3390/antibiotics14090851 - 22 Aug 2025
Abstract
Background/Objectives: The global increase in multidrug-resistant (MDR) bacterial infections underscores the urgent need for effective and sustainable antimicrobial alternatives. This study investigates the antimicrobial activity of exometabolite-based formulations (ExAFs), derived from the cell-free supernatants (CFS) of native lactic acid bacteria (LAB) applied [...] Read more.
Background/Objectives: The global increase in multidrug-resistant (MDR) bacterial infections underscores the urgent need for effective and sustainable antimicrobial alternatives. This study investigates the antimicrobial activity of exometabolite-based formulations (ExAFs), derived from the cell-free supernatants (CFS) of native lactic acid bacteria (LAB) applied individually or in combination thereof, against MDR-Escherichia coli strain L1PEag1. Methods: Fourteen ExAFs were screened for inhibitory activity using time–kill assays, and structural damage to bacterial cells was assessed via scanning and transmission electron microscopy (SEM/TEM). The most potent formulation was further characterized by liquid chromatography–tandem mass spectrometry (LC–MS/MS) employing a Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH) approach for untargeted metabolite profiling. Results: Among the tested formulations, E10, comprising CFS from Weissella cibaria UTNGt21O, exhibited the strongest inhibitory activity (zone of inhibition: 17.12 ± 0.22 mm), followed by E1 (CFS from Lactiplantibacillus plantarum Gt28L and Lactiplantibacillus plantarum Gt2, 3:1 v/v) and E2 (Gt28L CFS + EPS from Gt2, 3:1 v/v). Time–kill assays demonstrated rapid, dose-dependent bactericidal activity: E1 and E10 achieved >98% reduction in viable counts within 2–3 h, at 1× MIC, while E2 sustained 98.24% inhibition over 18 h, at 0.25× MIC. SEM and TEM revealed pronounced ultrastructural damage, including membrane disruption, cytoplasmic condensation, and intracellular disintegration, consistent with a membrane-targeting mode of action. Metabolomic profiling of E10 identified 22 bioactive metabolites, including lincomycin, the proline-rich peptide Val–Leu–Pro–Val–Pro–Gln, multiple flavonoids, and loperamide. Several compounds shared structural similarity with ribosomally synthesized and post-translationally modified peptides (RiPPs), including lanthipeptides and lassopeptides, suggesting a multifaceted antimicrobial mechanism. Conclusions: These findings position ExAFs, particularly E10, as promising, peptide-rich, bio-based antimicrobial candidates for food safety or therapeutic applications. The co-occurrence of RiPP analogs and secondary metabolites in the formulation suggests the potential for complementary or multi-modal bactericidal effects, positioning these compounds as promising eco-friendly alternatives for combating MDR pathogens. Full article
(This article belongs to the Special Issue Bioactive Peptides and Their Antibiotic Activity)
Show Figures

Figure 1

27 pages, 1791 KiB  
Review
Antimicrobial Peptides of the Cathelicidin Family: Focus on LL-37 and Its Modifications
by Olga Evgenevna Voronko, Victoria Alexandrovna Khotina, Dmitry Alexandrovich Kashirskikh, Arthur Anatolievich Lee and Vagif Ali oglu Gasanov
Int. J. Mol. Sci. 2025, 26(16), 8103; https://doi.org/10.3390/ijms26168103 - 21 Aug 2025
Abstract
Cathelicidins are a family of antimicrobial peptides (AMPs) with broad-spectrum activity and immunomodulatory functions. Among them, the only human cathelicidin LL-37 has garnered significant interest due to its potent antimicrobial, antiviral, antifungal, antiparasitic, and antitumor properties. However, the clinical application of LL-37 is [...] Read more.
Cathelicidins are a family of antimicrobial peptides (AMPs) with broad-spectrum activity and immunomodulatory functions. Among them, the only human cathelicidin LL-37 has garnered significant interest due to its potent antimicrobial, antiviral, antifungal, antiparasitic, and antitumor properties. However, the clinical application of LL-37 is hindered by several limitations, including low proteolytic stability, cytotoxicity, and high production costs. To overcome these challenges, a wide range of design strategies have been employed to modify LL-37 and improve its therapeutic potential. LL-37-based analogs represent promising candidates for the development of next-generation antimicrobial and immunomodulatory therapies. Despite significant progress, further research is required to optimize peptide design, ensure cost-effective production, and validate long-term safety and efficacy. Advances in computational modeling, high-throughput screening, and nanotechnology will play an important role in the translation of modified cathelicidins into clinical practice. This review summarizes key strategies of chemical and structural modifications of LL-37 aimed at enhancing its functional properties. Particular attention is given to truncated and retro-analogs, which preserve or improve biological activity while exhibiting reduced toxicity and increased proteolytic resistance. Furthermore, we highlight the use of nanoscale delivery systems, which facilitate targeted delivery, prolong peptide half-life, and mitigate cytotoxic effects. Full article
(This article belongs to the Special Issue Antimicrobial and Antiviral Peptides: 2nd Edition)
Show Figures

Figure 1

20 pages, 6354 KiB  
Article
Cloning and Functional Characterization of a Novel Brevinin-1-Type Peptide from Sylvirana guentheri with Anticancer Activity
by Huyen Thi La, Quynh Bach Thi Nhu, Hai Manh Tran, Huyen Thi Ngo, Phuc Minh Thi Le, Hanh Hong Hoang, Linh Trong Nguyen, Dat Tien Nguyen and Thanh Quang Ta
Curr. Issues Mol. Biol. 2025, 47(8), 673; https://doi.org/10.3390/cimb47080673 - 20 Aug 2025
Viewed by 223
Abstract
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial [...] Read more.
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial peptides (AMPs) have attracted attention due to their ability to selectively target microbial and cancer cells while exhibiting minimal toxicity toward normal cells. Although Vietnam possesses rich biodiversity, including a wide range of Anura species, studies on AMPs from these organisms remain limited. In this study, a novel AMP, brevinin-1 E8.13, was identified from the skin secretion of Sylvirana guentheri, a frog species native to Vietnam. The brevinin-1 E8.13 peptide was successfully cloned, sequenced, and chemically synthesized. Functional assays revealed that brevinin-1 E8.13 possesses strong antibacterial activity against Staphylococcus aureus and exerts significant antiproliferative effects on various human cancer cell lines, including A549 (lung), AGS (gastric), Jurkat (leukemia), HCT116 (colorectal), HL60 (leukemia), and HepG2 (liver). The peptide demonstrated moderate to potent cytotoxic activity, with IC50 values ranging from 7.5 to 14.8 μM, depending on the cell type. Notably, brevinin-1 E8.13 exhibited low cytotoxicity toward normal human dermal fibroblast (HDF) cells and even promoted cell proliferation at lower concentrations. Furthermore, Chemically Activated Fluorescent Expression (CAFLUX) bioassay results confirmed that the peptide significantly downregulated Cyp1a1 gene expression in HepG2 cells. Collectively, these findings highlight the therapeutic potential of brevinin-1 E8.13 as a dual-function antimicrobial and anticancer agent derived from the skin secretion of Sylvirana guentheri. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

25 pages, 4667 KiB  
Article
In Vitro and In Vivo Characterization of Novel Cathelicidin-Based Peptides with Antimicrobial Activity Against Pseudomonas aeruginosa
by Javier Moreno-Morales, Núria Martín-Vilardell, Salvador Guardiola, Xavier Vila-Farrés, Tania Cebrero, Marko Babić, Clara Ballesté-Delpierre, Daniela Kalafatović, Ernest Giralt, María Eugenia Pachón-Ibañez and Jordi Vila
Antibiotics 2025, 14(8), 838; https://doi.org/10.3390/antibiotics14080838 - 19 Aug 2025
Viewed by 143
Abstract
Background/Objectives: Infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa are steadily increasing, thus the discovery and development of new and effective agents are needed. Antimicrobial peptides (AMPs) are a heterogeneous group of innate defense system peptides with broad antimicrobial activity. In this study, [...] Read more.
Background/Objectives: Infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa are steadily increasing, thus the discovery and development of new and effective agents are needed. Antimicrobial peptides (AMPs) are a heterogeneous group of innate defense system peptides with broad antimicrobial activity. In this study, 17 AMPs were tested, identifying CAP-18, a cathelicidin-based compound, as the most active. CAP-18 was optimized by synthesizing structural derivatives, which were selected for further studies based on their activity against a collection of MDR and colistin-resistant P. aeruginosa strains. Methods: AMPs collection was initially tested against different P. aeruginosa strains, identifying CAP-18 as the most active. CAP-18 derivatives were synthetized and assessed by the Minimum Inhibitory Concentration (MIC), time-kill kinetics, cytotoxicity against human cell lines, hemolytic activity, and therapeutic index (IC50/MIC90). The mechanism of action was assessed by Transmission Electron Microscopy (TEM), and in vivo efficacy was determined through a murine skin infection model. Results: CAP-18 and D-CAP-18 had a MIC90 of 4 and 2 μg/mL, respectively, whereas CAP-1831 and D-CAP-1831 presented MIC90 values of 16 mg/L. The shorter derivatives of CAP-18 showed a lower activity. Time-kill curves revealed a fast bactericidal effect. These derivatives showed low toxicity against different human cell lines and low hemolysis, resulting in a wide therapeutic index (IC50/MIC90), with D-CAP-18 having the best therapeutic index (137.4). TEM provided insight into the mechanism of action, revealing bacterial membrane damage. In vivo studies of both CAP-18 and D-CAP-18 showed good activity with a 3 log decrease compared to the infected control group. Conclusions: Among the investigated four peptides, D-CAP-18 is the most promising candidate to treat skin infections caused by MDR P. aeruginosa since it shows potent activity both in vitro and in vivo, and a high therapeutic index. Full article
(This article belongs to the Section Antimicrobial Peptides)
Show Figures

Figure 1

28 pages, 2605 KiB  
Review
Exercise-Induced Muscle–Fat Crosstalk: Molecular Mediators and Their Pharmacological Modulation for the Maintenance of Metabolic Flexibility in Aging
by Amelia Tero-Vescan, Hans Degens, Antonios Matsakas, Ruxandra Ștefănescu, Bianca Eugenia Ősz and Mark Slevin
Pharmaceuticals 2025, 18(8), 1222; https://doi.org/10.3390/ph18081222 - 19 Aug 2025
Viewed by 227
Abstract
Regular physical activity induces a dynamic crosstalk between skeletal muscle and adipose tissue, modulating the key molecular pathways that underlie metabolic flexibility, mitochondrial function, and inflammation. This review highlights the role of myokines and adipokines—particularly IL-6, irisin, leptin, and adiponectin—in orchestrating muscle–adipose tissue [...] Read more.
Regular physical activity induces a dynamic crosstalk between skeletal muscle and adipose tissue, modulating the key molecular pathways that underlie metabolic flexibility, mitochondrial function, and inflammation. This review highlights the role of myokines and adipokines—particularly IL-6, irisin, leptin, and adiponectin—in orchestrating muscle–adipose tissue communication during exercise. Exercise stimulates AMPK, PGC-1α, and SIRT1 signaling, promoting mitochondrial biogenesis, fatty acid oxidation, and autophagy, while also regulating muscle hypertrophy through the PI3K/Akt/mTOR and Wnt/β-catenin pathways. Simultaneously, adipose-derived factors like leptin and adiponectin modulate skeletal muscle metabolism via JAK/STAT3 and AdipoR1-mediated AMPK activation. Additionally, emerging exercise mimetics such as the mitochondrial-derived peptide MOTS-c and myostatin inhibitors are highlighted for their roles in increasing muscle mass, the browning of white adipose tissue, and improving systemic metabolic function. The review also addresses the role of anti-inflammatory compounds, including omega-3 polyunsaturated fatty acids and low-dose aspirin, in mitigating NF-κB and IL-6 signaling to protect mitochondrial health. The resulting metabolic flexibility, defined as the ability to efficiently switch between lipid and glucose oxidation, is enhanced through repeated exercise, counteracting age- and disease-related mitochondrial and functional decline. Together, these adaptations demonstrate the importance of inter-tissue signaling in maintaining energy homeostasis and preventing sarcopenia, obesity, and insulin resistance. Finally, here we propose a stratified treatment algorithm based on common age-related comorbidities, offering a framework for precision-based interventions that may offer a promising strategy to preserve metabolic plasticity and delay the age-associated decline in cardiometabolic health. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 3437 KiB  
Article
Adaptation of the Protocol for the Isolation of Biotinylated Protein Complexes for Drosophila melanogaster Tissues
by Igor A. Shokodko, Rustam H. Ziganshin and Nadezhda E. Vorobyeva
Int. J. Mol. Sci. 2025, 26(16), 8009; https://doi.org/10.3390/ijms26168009 - 19 Aug 2025
Viewed by 169
Abstract
Proximity biotinylation, which utilizes various biotin ligating enzymes (BioID, TurboID, etc.), is widely used as a powerful tool for identifying novel protein–protein interactions. However, this method has a significant limitation: the use of streptavidin on beads for enriching biotinylated proteins often results in [...] Read more.
Proximity biotinylation, which utilizes various biotin ligating enzymes (BioID, TurboID, etc.), is widely used as a powerful tool for identifying novel protein–protein interactions. However, this method has a significant limitation: the use of streptavidin on beads for enriching biotinylated proteins often results in a high background of peptides from streptavidin itself, which interferes with identification by peptide mass fingerprinting. This limitation makes it practically impossible to study samples containing a small amount of material, such as individual insect tissues. In this study, we compared different precipitation and elution conditions for the purification of biotinylated proteins from protein extracts of Drosophila melanogaster S2 cells. We found that biotinylated proteins can be purified using anti-biotin antibodies, although with lower efficiency than streptavidin-based resin. We also demonstrated that protease-resistant streptavidin (prS), previously tested in mammalian cells, can be used effectively to purify biotinylated proteins from tissues of D. melanogaster. In our experiments, prS showed precipitation efficiency comparable to regular streptavidin but generated a lower background in peptide fingerprinting. To further demonstrate the applicability of prS for studying protein–protein interactions in D. melanogaster tissues, we carried out experiments to identify interaction partners of the ecdysone receptor (EcR) in D. melanogaster ovarian tissue using TurboID-based proximity biotinylation. As a result, EcR was found to interact with both previously described and novel protein partners in Drosophila ovaries. Full article
(This article belongs to the Special Issue Drosophila: A Versatile Model in Biology and Medicine—2nd Edition)
Show Figures

Figure 1

21 pages, 2606 KiB  
Article
Transcriptomics and Metabolomics Combined to Analyze the Response Mechanism of Silkworm Eggs to High-Temperature Stress
by Yang Xiao, Qingrong Li, Zhenbo Sun, Bing Fu, Qiong Yang, Mangui Jiang, Weilong Zhang, Xuhua Huang and Dongxu Xing
Insects 2025, 16(8), 862; https://doi.org/10.3390/insects16080862 - 19 Aug 2025
Viewed by 252
Abstract
Conventional immediate and high-temperature immediate acid treatment are crucial techniques for breaking the diapause state of silkworm eggs, but their molecular mechanisms remain unclear. This study prepared diapause eggs (CK), conventional immediate acid-treated eggs (46 °C, 5 min, and CG), and high-temperature immediate [...] Read more.
Conventional immediate and high-temperature immediate acid treatment are crucial techniques for breaking the diapause state of silkworm eggs, but their molecular mechanisms remain unclear. This study prepared diapause eggs (CK), conventional immediate acid-treated eggs (46 °C, 5 min, and CG), and high-temperature immediate acid-treated eggs (47.5 °C, 7 min, and GW) and analyzed the transcriptome and metabolome to screen for key expressed genes and key metabolites. Transcriptome results showed that 688, 823, and 222 differentially expressed genes (DEGs) were obtained from CK vs. CG, CK vs. GW, and CG vs. GW, respectively, and 12 DEGs significantly upregulated in all three comparisons (CK vs. CG, CK vs. GW, and CG vs. GW), including glycine-N-methyltransferase, choline dehydrogenase, Hsp68, and Hsp70. The LC-MS analysis results showed that 854, 711, and 506 differential metabolites (DMs) were obtained from CK vs. CG, CK vs. GW, and CG vs. GW, respectively. A total of seven DMs upregulated in all three comparisons and with |log2Fold Change| ≥ 0.5 in CG vs. GW, including tyrosine-isoleucine-histidine, phenylalanyl-tyrosine, tyrosine-phenylalanine-glutamate-lysine, and histidylleucine, as well as 12 downregulated DMs, were identified. Additionally, it was found that γ-linolenic acid and triglycerides were upregulated in CG vs. GW. The conjoint analysis results revealed that four small peptides, including tyrosine-isoleucine-histidine, phenylalanyl-tyrosine, tyrosine-phenylalanine-glutamate-lysine, and histidylleucine, exhibited a highly significant positive correlation with Hsp70 family genes such as Hsp68 and Hsp70. This suggests that these small peptides, along with γ-linolenic acid and triglycerides, may play a crucial role in the resistance of silkworm eggs to high-temperature stress and the associated oxidative stress. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

41 pages, 868 KiB  
Review
Reconstructing the Antibiotic Pipeline: Natural Alternatives to Antibacterial Agents
by Chiemerie T. Ekwueme, Ifeoma V. Anyiam, David C. Ekwueme, Christian K. Anumudu and Helen Onyeaka
Biomolecules 2025, 15(8), 1182; https://doi.org/10.3390/biom15081182 - 18 Aug 2025
Viewed by 396
Abstract
The discovery of penicillin led to remarkable progress in the treatment of diseases and far-reaching advancements in novel antibiotics’ development and use. However, the uncontrolled use and abuse of antibiotics in subsequent years have led to the emergence of the antimicrobial resistance (AMR) [...] Read more.
The discovery of penicillin led to remarkable progress in the treatment of diseases and far-reaching advancements in novel antibiotics’ development and use. However, the uncontrolled use and abuse of antibiotics in subsequent years have led to the emergence of the antimicrobial resistance (AMR) crisis, which now threatens modern medicine. There is an increasing number of emerging and reemerging infectious diseases, which have worsened the state of AMR and pose a serious threat to global health. The World Health Organization (WHO) reports the inadequacy of the drug development pipeline to meet the needs of the pharmaceutical sector in the face of AMR, and this poses a significant challenge in the treatment of diseases. Natural products (NPs) represent a promising group of antibiotic alternatives that can potentially mitigate AMR, as they bypass the pharmacodynamics of traditional antibiotics, thereby making them immune to the mechanisms of AMR. NPs, including plant derivatives, bacteriophages, metals, antimicrobial peptides, enzymes, and immune modulators, as monotherapies or in synergism with existing antibiotics, are gaining attention in a bid to reconstruct the antibiotic pipeline. Harnessing these as antimicrobial agents to curb AMR can help to provide sufficient defence against these infectious pathogens. The current review provides a comprehensive overview of the state of AMR and the potential of the above-mentioned antibiotic alternatives. Additionally, we discuss progress made and research breakthroughs in the application of these alternative therapies in humans, exploring findings from clinical trials and experimental models. The review further evaluates the advancement in technology, interdisciplinary approaches to the formulation and utilisation of NPs, and collaborations in alternative drug development. The research gaps present in this ever-evolving field are highlighted and evaluated together with regulatory issues, safety concerns, and technical difficulties in implementation. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

23 pages, 717 KiB  
Review
Unmasking MRSA’s Armor: Molecular Mechanisms of Resistance and Pioneering Therapeutic Countermeasures
by Yichen Liu, Hao Lu, Gaowei Hu, Jiaqi Liu, Siqi Lian, Shengmei Pang, Guoqiang Zhu and Xueyan Ding
Microorganisms 2025, 13(8), 1928; https://doi.org/10.3390/microorganisms13081928 - 18 Aug 2025
Viewed by 388
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), characterized by high-level β-lactam resistance and increasing multi-drug resistance, poses a severe and growing global threat to human health and public safety. This review examines MRSA’s complex resistance mechanisms, including mecA/mecC-mediated expression of low-affinity PBP2a, regulatory [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), characterized by high-level β-lactam resistance and increasing multi-drug resistance, poses a severe and growing global threat to human health and public safety. This review examines MRSA’s complex resistance mechanisms, including mecA/mecC-mediated expression of low-affinity PBP2a, regulatory roles of auxiliary genes like fem and vanA, enzymatic inactivation by β-lactamases and modifying enzymes, efflux pump activity, and biofilm formation. We also systematically review novel therapeutic strategies, such as combination therapies, phage-derived biofilm disruptors, membrane-targeting silver nanoparticles, cell-penetrating antimicrobial peptides, colonization-competitive probiotics, and antibiotic-synergizing phytochemicals. These advances provide critical insights for developing effective countermeasures against MRSA, while highlighting the urgent need for global collaboration, antibiotic stewardship, and innovative drug development to combat antimicrobial resistance. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

21 pages, 3929 KiB  
Article
Heterologous Expression and Antimicrobial Targets of a Novel Glycine-Rich Antimicrobial Peptide from Artemia franciscana
by Ming Tao, Aobo Sun, Huishi Shao, Huaiyuan Ye, Guangming Yu, Daigeng Chen and Wei Zhang
Mar. Drugs 2025, 23(8), 330; https://doi.org/10.3390/md23080330 - 17 Aug 2025
Viewed by 360
Abstract
The growing problem of antimicrobial resistance in aquaculture, caused by the excessive and unregulated use of antibiotics, highlights the critical necessity for developing new anti-infective solutions. Based on the characteristics of glycine-rich antimicrobial peptides (AMPs) and transcriptomic data, an antimicrobial peptide, namely Af [...] Read more.
The growing problem of antimicrobial resistance in aquaculture, caused by the excessive and unregulated use of antibiotics, highlights the critical necessity for developing new anti-infective solutions. Based on the characteristics of glycine-rich antimicrobial peptides (AMPs) and transcriptomic data, an antimicrobial peptide, namely AfRgly1, was discovered in this study. Subsequently, the peptide was obtained through heterologous expression in E. coli, and its antibacterial spectrum was determined. Molecular dynamics simulation and molecular biology experiments were conducted to explore the antibacterial target of AfRgly1. Results showed that the mRNA expression level of AfRgly1 was significantly upregulated after Vibrio alginolyticus infection. AfRgly1 has broad-spectrum antibacterial activity targeting on bacterial cell membrane, and it may also interact with bacterial DNA. AfRgly1 displayed low selectivity for fish red blood cells. These results indicate that AfRgly1 is an antimicrobial peptide with considerable potential for application in the development of therapeutic agents. Full article
Show Figures

Figure 1

23 pages, 3637 KiB  
Article
Screening and Assessment of Hypoglycemic Active Peptide from Natural Edible Pigment Phycobiliprotein Based on Molecular Docking, Network Pharmacology, Enzyme Inhibition Assay Analyses, and Cell Experiments
by Zhimin Zhu, Yan Zhang, Bingbing He, Limin He, Guihong Fang, Yi Ning, Pengcheng Fu and Jing Liu
Mar. Drugs 2025, 23(8), 331; https://doi.org/10.3390/md23080331 - 17 Aug 2025
Viewed by 470
Abstract
Phycobiliproteins have gained increasing attention for their antidiabetic potential, yet the specific bioactive peptides and their targets and molecular mechanisms have remained unclear. In this study, four peptides with potential hypoglycemic activity were identified through virtual screening. Network pharmacology was employed to elucidate [...] Read more.
Phycobiliproteins have gained increasing attention for their antidiabetic potential, yet the specific bioactive peptides and their targets and molecular mechanisms have remained unclear. In this study, four peptides with potential hypoglycemic activity were identified through virtual screening. Network pharmacology was employed to elucidate their hypoglycemic mechanism in the treatment of T2DM. A subsequent in vitro assay confirmed that the synthesized peptides, GR-5, SA-6, VF-6, and IR-7, exhibited significant inhibitory activity against α-glucosidase and DPP-IV. In insulin-resistant HepG2 models, all four peptides exhibited no cytotoxicity. Among them, GR-5 demonstrated the most promising therapeutic potential by remarkably enhancing cellular glucose consumption capacity. Furthermore, GR-5 administration substantially increased glycogen synthesis and enzymatic activities of hexokinase and pyruvate kinase with statistically significant improvements compared to the control groups. This study provides novel peptide candidates for T2DM treatment and validates an integrative strategy for targeted bioactive peptide discovery, advancing the development of algal protein-based therapeutics. Full article
(This article belongs to the Special Issue Marine Nutraceuticals and Functional Foods: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 1594 KiB  
Article
Isolation, Identification, and Virulence Properties of Enterobacter bugandensis Pathogen from Big-Belly Seahorse Hippocampus abdominalis
by Haibin Ye, Chenhao Teng, Yueqi Yang, Yiyao Liu, Li Li, Ying Fan, Youhong Wang, Jing Diao, Lingling Yu, Chunlei Gai and Haipeng Cao
Fishes 2025, 10(8), 411; https://doi.org/10.3390/fishes10080411 - 14 Aug 2025
Viewed by 245
Abstract
Nowadays, members of the genus Enterobacter have been documented as human and aquaculture pathogens. To date, no reports have described Enterobacter bugandensis infecting Hippocampus abdominalis. In the present study, an isolate of E. bugandensis, designated H4, was identified as a causative pathogen [...] Read more.
Nowadays, members of the genus Enterobacter have been documented as human and aquaculture pathogens. To date, no reports have described Enterobacter bugandensis infecting Hippocampus abdominalis. In the present study, an isolate of E. bugandensis, designated H4, was identified as a causative pathogen in cultured H. abdominalis following Koch’s postulate, and its virulence properties were further described. The isolate’s genome consisted of a single circular chromosome and harbored several virulence and resistance genes, including, but not limited to, csgG, acrB, hcp, gndA, galF, rpoS, fur, rcsB, and phoP involved in adherence, antimicrobial activity, effector delivery systems, immune modulation, and regulation, as well as baeR, blaACT-49, ramA, hns, ftsI, acrA, gyrA, fabI, crp, oqxB, parE, gyrB, phoP, rpoB, tuf, ptsI, and fosA2 functioning against aminoglycoside, cephamycin, disinfecting agent and antiseptic, fluoroquinolone, macrolide, peptide, and other antimicrobials. Additionally, the isolate exhibited multiple resistance to cephalosporins, penicillins, and tetracyclines and demonstrated a median lethal dose (LD50) of 4.47 × 105 CFU/mL in H. abdominalis. To our knowledge, this is the first study to describe E. bugandensis infecting H. abdominalis. These findings highlight the zoonotic potential of E. bugandensis and underscore the need for targeted health management in seahorse farming. Full article
Show Figures

Figure 1

Back to TopTop