Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (971)

Search Parameters:
Keywords = peptide-based therapies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1732 KB  
Review
Noninvasive Biomarkers for Cardiac Allograft Rejection Monitoring: Advances, Challenges, and Future Directions
by Yijie Luo, Junlin Lai, Chenghao Li and Guohua Wang
J. Clin. Med. 2026, 15(3), 986; https://doi.org/10.3390/jcm15030986 (registering DOI) - 26 Jan 2026
Abstract
Cardiac transplantation remains an important therapy for end-stage heart failure, although allograft rejection continues to pose significant clinical challenges. This review evaluates both established and emerging blood-based biomarkers for noninvasive monitoring of rejection in heart transplant recipients. Donor-derived cell-free DNA (ddcfDNA) and gene [...] Read more.
Cardiac transplantation remains an important therapy for end-stage heart failure, although allograft rejection continues to pose significant clinical challenges. This review evaluates both established and emerging blood-based biomarkers for noninvasive monitoring of rejection in heart transplant recipients. Donor-derived cell-free DNA (ddcfDNA) and gene expression profiling (GEP) represent well-validated, commercially available molecular tools that demonstrate strong discriminative capacity for acute rejection episodes. Additionally, microRNAs (miRs) and extracellular vesicles (EVs) show considerable potential as novel biomarkers, although further validation is required. In contrast, conventional biomarkers such as B-type natriuretic peptide (BNP), cardiac troponins, and creatine kinase-MB (CK-MB) offer limited specificity in the context of rejection. This review synthesizes current evidence on the clinical utility, methodological challenges, and integration strategies of these biomarkers, highlighting a shift toward molecular-based approaches for improving post-transplant surveillance and patient outcomes. Full article
(This article belongs to the Special Issue The Role of Biomarkers in Cardiovascular Diseases)
Show Figures

Figure 1

25 pages, 1544 KB  
Review
Preserved Ejection, Lost Rhythm: A Narrative Review of the Pathophysiology and Management of Heart Failure with Preserved Ejection Fraction and Concomitant Atrial Fibrillation
by Andrea Ballatore, Alan Poggio, Andrew P. Sullivan, Andrea Saglietto, Gaetano Maria De Ferrari and Matteo Anselmino
J. Clin. Med. 2026, 15(3), 969; https://doi.org/10.3390/jcm15030969 (registering DOI) - 25 Jan 2026
Abstract
Atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) coexist in 40–60% of cases and mutually reinforce each other through adverse electrical, cellular, and functional remodelling. There is considerable overlap in signs and symptoms, and diagnosis may be challenging due to [...] Read more.
Atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) coexist in 40–60% of cases and mutually reinforce each other through adverse electrical, cellular, and functional remodelling. There is considerable overlap in signs and symptoms, and diagnosis may be challenging due to nonspecific clinical presentations and chronic course. AF is clearly linked with worsening morbidity and mortality in HFpEF with higher rates of HF hospitalizations, HF progression, stroke, systemic embolism, and all-cause death. Optimal management of HFpEF-AF patients requires aggressive treatment of comorbidities and risk factor modification. Sodium-glucose cotransporter 2 (SGLT2) inhibitors have demonstrated consistent benefit with respect to HF hospitalizations, symptoms and exercise haemodynamics, and potential to reduce AF burden. Gastric inhibitory polypeptide (GIP)/glucagon-like peptide-1 (GLP-1) agonists, mineralocorticoid receptor antagonists (MRAs), angiotensin receptor-neprilysin inhibitors (ARNIs), and statins may provide benefit in selected phenotypes, though evidence remains heterogeneous. A rhythm control strategy in the early clinical course of HFpEF might be a reasonable strategy to improve symptoms and delay both AF and HFpEF disease progression. Catheter ablation appears to improve exercise haemodynamics and quality of life, and observational data suggest it may reduce mortality and HF hospitalization, though current evidence is inconsistent and not yet definitive. Emerging device-based and molecular therapies could represent promising avenues for future research. Overall, early detection of AF, comprehensive risk-factor modification, and tailored rhythm-control strategies are central to improving outcomes in the HFpEF-AF overlap syndrome. Full article
17 pages, 6141 KB  
Article
Human DRG Glucocorticoid Receptor Profiling Reveals Targets for Regionally Delivered Steroid Analgesia
by Shaaban A. Mousa, Elsayed Y. Metwally, Xiongjuan Li, Sascha Tafelski, Oscar Andrés Retana Romero, Jörg Piontek, Sascha Treskatsch, Michael Schäfer and Mohammed Shaqura
Cells 2026, 15(3), 223; https://doi.org/10.3390/cells15030223 - 24 Jan 2026
Viewed by 58
Abstract
Corticosteroid receptor signaling in primary afferent neurons of the dorsal root ganglion (DRG) has emerged as a potential target to modulate nociception via genomic and nongenomic mechanisms shown in animal pain models. However, the expression landscape of glucocorticoid receptors (GRs) relative to mineralocorticoid [...] Read more.
Corticosteroid receptor signaling in primary afferent neurons of the dorsal root ganglion (DRG) has emerged as a potential target to modulate nociception via genomic and nongenomic mechanisms shown in animal pain models. However, the expression landscape of glucocorticoid receptors (GRs) relative to mineralocorticoid receptors (MRs) in human DRG, their association with pain-related markers, and their functional relevance remain incompletely defined. We analyzed human and rat DRG by mRNA profiling and immunofluorescence confocal microscopy to assess GR/MR expression and complemented these studies with a clinical evaluation of neuraxial corticosteroid delivery. Here, GR transcripts in human DRG were the most abundant among corticosteroid receptor-related genes examined (including MR) and were observed alongside transcripts of pain-signaling molecules. Human DRG immunofluorescence analysis revealed substantial colocalization of GR with calcitonin gene-related peptide (CGRP), a marker of nociceptive unmyelinated C-fibers and thinly myelinated Aδ-fibers, as well as with gial fibrillary acidic protein (GFAP), a marker of satellite glial cells (SGCs), but minimal expression in myelinated neurofilament 200 (RT-200) immunoreactive (IR) human DRG neurons. In addition, GR immunoreactivity was primarily distributed to medium-diameter neurons (40–65 µm). Functionally, preclinical experiments showed that GR activation and MR blockade attenuate inflammatory pain via rapid, nongenomic neuronal mechanisms that counter an intrinsic mineralocorticoid receptor-mediated pronociceptive drive. Consistently, clinical analgesia over at least 3 months after transforaminal plus caudal epidural delivery of GR agonists in chronic radicular pain supports a functional role for neuronal GR signaling within spinal cord and DRG circuits. Together, these molecular, functional, and clinical findings identify GR as a key modulator of sensory neuron excitability and pain, highlight MR as a pronociceptive counterpart, and suggest that selectively enhancing GR signaling or inhibiting MR signaling may offer a potential strategy for improving corticosteroid-based analgesic therapies. Full article
37 pages, 5704 KB  
Review
β-Hairpin-Based Peptide Hydrogels: The Case of MAX1
by Mariantonietta Pizzella, Valéria Gomes, Enrico Gallo, Sérgio Veloso, Célio Fernandes, Antonella Accardo and Carlo Diaferia
Gels 2026, 12(2), 100; https://doi.org/10.3390/gels12020100 - 24 Jan 2026
Viewed by 61
Abstract
This review explores the advancements and applications of β-hairpin peptide hydrogels, starting from the paradigmatic case of MAX1 and its highly versatile analogue MAX8. MAX1 (H-VKVKVKVKVDPPTKVKVKVKV-NH2) has been identified as the first synthetic β-hairpin peptide for the preparation of [...] Read more.
This review explores the advancements and applications of β-hairpin peptide hydrogels, starting from the paradigmatic case of MAX1 and its highly versatile analogue MAX8. MAX1 (H-VKVKVKVKVDPPTKVKVKVKV-NH2) has been identified as the first synthetic β-hairpin peptide for the preparation of stimuli-responsive peptide-based hydrogels. At low ionic strength or neutral pH, MAX1 remains unfolded and soluble. However, under physiological conditions, it folds into a β-hairpin structure, then producing a self-supporting matrix within minutes. The formed gel is shear-thinning and self-healing, making it suitable for injectable therapies. To explore MAX1 molecular space and enhance its practical clinical use, the primary sequence was engineered via chemical modification, with specific single amino acid substitution and relative net charge alteration. This approach generates MAX1 analogues, differing in gelation kinetics, mechanical response and biological performances. The β-hairpin peptide hydrogels are categorized into five different groups: MAX1, MAX1 analogues, MAX8, MAX8 analogues and non-MAX peptides sequences. Collectively, the review outcomes demonstrate the use of β-hairpin peptide matrices as tunable platforms for the development of predictable and stable biomaterials for advanced tissue engineering and drug delivery applications. Full article
(This article belongs to the Special Issue Innovations in Application of Biofunctional Hydrogels)
Show Figures

Figure 1

41 pages, 3913 KB  
Review
Advancing Bioconjugated Quantum Dots with Click Chemistry and Artificial Intelligence to Image and Treat Glioblastoma
by Pranav Kalaga and Swapan K. Ray
Cells 2026, 15(2), 185; https://doi.org/10.3390/cells15020185 - 19 Jan 2026
Viewed by 409
Abstract
Glioblastoma (GB) is one of the most aggressive and invasive cancers. Current treatment protocols for GB include surgical resection, radiotherapy, and chemotherapy with temozolomide. However, despite these treatments, physicians still struggle to effectively image, diagnose, and treat GB. As such, patients frequently experience [...] Read more.
Glioblastoma (GB) is one of the most aggressive and invasive cancers. Current treatment protocols for GB include surgical resection, radiotherapy, and chemotherapy with temozolomide. However, despite these treatments, physicians still struggle to effectively image, diagnose, and treat GB. As such, patients frequently experience recurrence of GB, demanding innovative strategies for early detection and effective therapy. Bioconjugated quantum dots (QDs) have emerged as powerful nanoplatforms for precision imaging and targeted drug delivery due to their unique optical properties, tunable size, and surface versatility. Due to their extremely small size, QDs can cross the blood–brain barrier and be used for precision imaging of GB. This review explores the integration of QDs with click chemistry for robust bioconjugation, focusing on artificial intelligence (AI) to advance GB therapy, mechanistic insights into cellular uptake and signaling, and strategies for mitigating toxicity. Click chemistry enables site-specific and stable conjugation of targeting ligands, peptides, and therapeutic agents to QDs, enhancing selectivity and functionalization. Algorithms driven by AI may facilitate predictive modeling, image reconstruction, and personalized treatment planning, optimizing QD design and therapeutic outcomes. We discuss molecular mechanisms underlying interactions of QDs with GB, including receptor-mediated endocytosis and intracellular trafficking, which influence biodistribution and therapeutic efficacy. Use of QDs in photodynamic therapy, which uses reactive oxygen species to induce apoptotic cell death in GB cells, is an innovative therapy that is covered in this review. Finally, this review addresses concerns associated with the toxicity of metal-based QDs and highlights how QDs can be coupled with AI to develop new methods for precision imaging for detecting and treating GB for induction of apoptosis. By converging nanotechnology and computational intelligence, bioconjugated QDs represent a transformative platform for paving a safer path to smarter and more effective clinical interventions of GB. Full article
(This article belongs to the Special Issue Cell Death Mechanisms and Therapeutic Opportunities in Glioblastoma)
Show Figures

Figure 1

29 pages, 667 KB  
Review
Bovine Mastitis Therapy at a Crossroads: Pharmacokinetic Barriers, Biofilms, Antimicrobial Resistance, and Emerging Solutions
by Alexandra Ban-Cucerzan, Adriana Morar, Emil Tîrziu, Iulia-Maria Bucur, Sebastian-Alexandru Popa and Kálmán Imre
Pharmaceuticals 2026, 19(1), 175; https://doi.org/10.3390/ph19010175 - 19 Jan 2026
Viewed by 131
Abstract
Bovine mastitis remains a major challenge in dairy production despite extensive antimicrobial use, with therapeutic failure increasingly attributed to factors beyond classical antimicrobial resistance (AMR). Growing evidence indicates that treatment inefficacy arises from the combined effects of pharmacokinetic/pharmacodynamic (PK/PD) constraints, biofilm-mediated tolerance, intracellular [...] Read more.
Bovine mastitis remains a major challenge in dairy production despite extensive antimicrobial use, with therapeutic failure increasingly attributed to factors beyond classical antimicrobial resistance (AMR). Growing evidence indicates that treatment inefficacy arises from the combined effects of pharmacokinetic/pharmacodynamic (PK/PD) constraints, biofilm-mediated tolerance, intracellular persistence, and the adaptive capacity of mastitis pathogens. Intramammary therapy is particularly limited by poor tissue penetration, episodic drug elimination via milk flow, and inactivation by milk components, frequently resulting in subtherapeutic exposure at the site of infection. These limitations are amplified in chronic and subclinical mastitis, where biofilms and intracellular reservoirs reduce antimicrobial susceptibility and promote relapse and resistance selection. This narrative review integrates current knowledge on pharmacokinetic and pharmacodynamic (PK/PD) barriers, microbial survival strategies, and antimicrobial resistance (AMR) mechanisms that underlie treatment failure in bovine mastitis. It critically evaluates conventional antimicrobial therapies alongside emerging approaches, including antimicrobial peptides, bacteriophages and endolysins, nanoparticle-based delivery systems, immunomodulators, CRISPR-guided antimicrobials, and drug repurposing strategies. Overall, available evidence highlights the potential of these approaches to enhance therapeutic durability, particularly in settings where biofilm formation, intracellular persistence, and resistance limit conventional treatment efficacy. By mapping research coverage across mastitis phenotypes and therapeutic outcomes, this review identifies key gaps in long-term efficacy and resistance mitigation and underscores the need for PK/PD-guided, biofilm-aware, and resistance-conscious strategies to support durable next-generation mastitis management. Full article
(This article belongs to the Special Issue Antibiotic Resistance and Misuse)
Show Figures

Figure 1

12 pages, 1419 KB  
Article
Alpha Therapy Beyond TOC and TATE—Production, Quality Control, and In-Human Results for the SSTR2 Antagonist DOTA-LM3
by Lukas Greifenstein, Marcel Martin, Sarah Stephan, Aleksandr Eismant, Carsten S. Kramer, Christian Landvogt, Corinna Mueller, Frank Rösch and Richard P. Baum
Pharmaceuticals 2026, 19(1), 172; https://doi.org/10.3390/ph19010172 - 19 Jan 2026
Viewed by 147
Abstract
Objectives: Peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NETs) commonly relies on somatostatin receptor subtype 2 (SSTR2) agonists such as DOTA-TOC/TATE, which may show limited efficacy due to high hepatic uptake and therapy resistance in some patients. SSTR2 antagonists have demonstrated [...] Read more.
Objectives: Peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NETs) commonly relies on somatostatin receptor subtype 2 (SSTR2) agonists such as DOTA-TOC/TATE, which may show limited efficacy due to high hepatic uptake and therapy resistance in some patients. SSTR2 antagonists have demonstrated superior tumor targeting. This study aimed to establish the production and quality control of the Actinium-225-labeled SSTR2 antagonist [225Ac]Ac-DOTA-LM3 and to report in-human clinical experience with targeted alpha therapy (TAT). Methods: [225Ac]Ac-DOTA-LM3 was produced by radiolabeling DOTA-LM3 with Actinium-225 under validated conditions. Radiochemical conversion, purity, yield, and stability were assessed using radio-TLC, fractionated radio-HPLC combined with gamma spectroscopy, and in vitro serum stability testing. Clinical feasibility and therapeutic response were evaluated in a patient with metastatic neuroendocrine pancreatic neoplasm refractory to prior 177Lu-based PRRT. Results: Radiolabeling achieved reproducibly high radiochemical purity (>97%) and decay-corrected yields exceeding 80%. The radiopharmaceutical showed high in vitro stability with minimal release of free Actinium-225 over five days. Fractionated radio-HPLC enabled indirect purity assessment. In the reported patient, [225Ac]Ac-DOTA-LM3 therapy resulted in partial remission without clinically relevant hematologic, renal, or hepatic toxicity and was associated with marked clinical improvement. Conclusions: [225Ac]Ac-DOTA-LM3 can be produced with high purity and stability using clinically applicable procedures. In-human results suggest promising efficacy and safety, supporting further clinical investigation of Actinium-225-labeled SSTR2 antagonists for advanced NETs. Full article
(This article belongs to the Special Issue Advancements in Radiopharmaceutical Theranostics)
Show Figures

Figure 1

20 pages, 8243 KB  
Review
Advances in the Diagnosis and Management of High-Risk Cardiovascular Conditions: Biomarkers, Intracoronary Imaging, Artificial Intelligence, and Novel Anticoagulants
by Clarissa Campo Dall’Orto, Rubens Pierry Ferreira Lopes, Gilvan Vilella Pinto, Pedro Gabriel Senger Braga and Marcos Raphael da Silva
J. Cardiovasc. Dev. Dis. 2026, 13(1), 52; https://doi.org/10.3390/jcdd13010052 - 19 Jan 2026
Viewed by 197
Abstract
Understanding thrombosis in acute coronary syndromes (ACSs) has evolved through advances in biomarkers, intracoronary imaging, and emerging analytical tools, improving diagnostic accuracy and risk stratification in high-risk patients. This narrative review provides an integrative overview of contemporary evidence from clinical trials, meta-analyses, and [...] Read more.
Understanding thrombosis in acute coronary syndromes (ACSs) has evolved through advances in biomarkers, intracoronary imaging, and emerging analytical tools, improving diagnostic accuracy and risk stratification in high-risk patients. This narrative review provides an integrative overview of contemporary evidence from clinical trials, meta-analyses, and international guidelines addressing circulating biomarkers, intracoronary imaging modalities—including optical coherence tomography (OCT), intravascular ultrasound (IVUS), and near-infrared spectroscopy (NIRS)—artificial intelligence–based analytical approaches, and emerging antithrombotic therapies. High-sensitivity cardiac troponins and natriuretic peptides remain the most robust and guideline-supported biomarkers for diagnosis and prognostic assessment in ACS, whereas inflammatory markers and multimarker strategies offer incremental prognostic information but lack definitive validation for routine therapeutic guidance. Intracoronary imaging with IVUS or OCT is supported by current guidelines to guide percutaneous coronary intervention in selected patients with ACS and complex coronary lesions, leading to improved procedural optimization and clinical outcomes compared with angiography-guided strategies. Beyond procedural guidance, OCT enables detailed plaque characterization and mechanistic insights into ACS, while NIRS provides complementary information on lipid-rich plaque burden, primarily for risk stratification based on observational evidence. Artificial intelligence represents a rapidly evolving tool for integrating clinical, laboratory, and imaging data, with promising results in retrospective and observational studies; however, its clinical application in thrombosis management remains investigational due to the lack of outcome-driven randomized trials. In the therapeutic domain, factor XI inhibitors have demonstrated favorable safety profiles with reduced bleeding and preserved antithrombotic efficacy in phase II and early phase III studies, but their definitive role in ACS management awaits confirmation in large, outcome-driven randomized trials. Overall, the integration of biomarkers, intracoronary imaging, and emerging analytical and pharmacological strategies highlights the potential for more individualized cardiovascular care. Nevertheless, careful interpretation of existing evidence, rigorous validation, and alignment with guideline-directed practice remain essential before widespread clinical adoption. Full article
(This article belongs to the Special Issue Advances in Thrombosis Diagnosis and Antithrombotic Therapy)
Show Figures

Graphical abstract

8 pages, 483 KB  
Case Report
Case Report of Overlap of Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic State in a 5-Year-Old with New-Onset Type 1 Diabetes Mellitus: Diagnostic and Management Considerations
by Filippos Filippatos, Georgios Themelis, Maria Dolianiti, Christina Kanaka-Gantenbein and Konstantinos Kakleas
Reports 2026, 9(1), 27; https://doi.org/10.3390/reports9010027 - 16 Jan 2026
Viewed by 153
Abstract
Background and Clinical Significance: Overlap of diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) in children is a rare but life-threatening metabolic emergency. The coexistence of hyperosmolality and ketoacidosis increases neurologic vulnerability and complicates fluid and insulin management. Early identification and osmolality-guided therapy [...] Read more.
Background and Clinical Significance: Overlap of diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) in children is a rare but life-threatening metabolic emergency. The coexistence of hyperosmolality and ketoacidosis increases neurologic vulnerability and complicates fluid and insulin management. Early identification and osmolality-guided therapy are essential to prevent cerebral edema and other complications. This case describes a 5-year-old boy with new-onset type 1 diabetes mellitus (T1D) presenting with DKA/HHS overlap two weeks after influenza vaccination—an unusual temporal association without proven causality. Case Presentation: A previously healthy 5-year-old presented with progressive polyuria, polydipsia, nocturnal enuresis, fatigue, and drowsiness. Two weeks earlier, he had received the influenza vaccine. Examination revealed moderate dehydration without Kussmaul respiration or altered consciousness. Laboratory evaluation showed glucose 45.9 mmol/L (826 mg/dL; reference 3.9–7.8 mmol/L), venous pH 7.29 (reference 7.35–7.45), bicarbonate 12 mmol/L (reference 22–26 mmol/L), moderate ketonuria, and measured serum osmolality 344 mOsm/kg (reference 275–295 mOsm/kg), fulfilling diagnostic criteria for DKA/HHS overlap. After an initial 20 mL/kg 0.9% NaCl bolus, fluids were adjusted to maintenance plus approximately 10% deficit using 0.45–0.75% NaCl according to sodium/osmolality trajectory. Intravenous insulin (approximately 0.03–0.05 IU/kg/h) was initiated once blood glucose no longer decreased adequately with fluids alone and had stabilized near 22.4 mmol/L (≈400 mg/dL). Dextrose was added when glucose reached 13.9 mmol/L (250 mg/dL) to avoid rapid osmolar shifts. Hourly neurological and biochemical monitoring ensured a glucose decline of 2.8–4.2 mmol/L/h (50–75 mg/dL/h) and osmolality decrease ≤3 mOsm/kg/h. The patient recovered fully without cerebral edema or neurologic sequelae. IA-2 antibody positivity with low C-peptide and markedly elevated HbA1c confirmed new-onset T1D. Conclusions: This case highlights the diagnostic and therapeutic challenges of pediatric DKA/HHS overlap. Osmolality-based management, conservative insulin initiation, and vigilant monitoring are crucial for preventing complications. The temporal proximity to influenza vaccination remains incidental. Full article
(This article belongs to the Section Paediatrics)
Show Figures

Figure 1

40 pages, 579 KB  
Review
Advances in Diagnosis and Treatment of Acute and Chronic Heart Failure: A Comprehensive Review
by Courtney R. Kenyon, Laura Van Wyk, Andrew Flom, Ramzi Ibrahim, Hoang Nhat Pham, Sofia Lakhdar, Momina Iftikhar and Mahmoud Abdelnabi
J. Clin. Med. 2026, 15(2), 618; https://doi.org/10.3390/jcm15020618 - 12 Jan 2026
Viewed by 992
Abstract
Heart failure (HF) remains a major cause of morbidity and mortality worldwide, with its prevalence continuing to rise due to an aging population and the increasing burden of cardiometabolic diseases. Advances in understanding HF pathophysiology—neurohormonal, inflammatory, and metabolic mechanisms—have led to significant improvements [...] Read more.
Heart failure (HF) remains a major cause of morbidity and mortality worldwide, with its prevalence continuing to rise due to an aging population and the increasing burden of cardiometabolic diseases. Advances in understanding HF pathophysiology—neurohormonal, inflammatory, and metabolic mechanisms—have led to significant improvements in diagnosis and management, emphasizing earlier detection and patient-centered approaches. Novel biomarkers have the potential to enhance risk assessment beyond traditional natriuretic peptides. Imaging advances can enhance structural and functional assessment, enabling more accurate phenotyping, disease characterization, and risk stratification. Recent advances and real-world data have been used to implement and optimize guideline-directed medical therapy (GDMT) for HF to reduce HF hospitalizations and cardiovascular mortality across the spectrum of HF etiologies. Adjunctive therapies are reserved for select patients with persistent symptoms or high-risk features despite optimal GDMT. Device- and transcatheter-based interventions include established and emerging technologies that address persistent symptoms, structural abnormalities, and hemodynamic abnormalities despite optimal GDMT, thereby expanding treatment options for high-risk patients. Collectively, these advancements highlight a paradigm shift toward precise, personalized approaches to HF management, thereby improving long-term outcomes across the spectrum of HF etiologies. Full article
17 pages, 388 KB  
Article
Considering Glucagon-like Peptide-1 Receptor Agonists (GLP-1RAs) for Weight Loss: Insights from a Pragmatic Mixed-Methods Study of Patient Beliefs and Barriers
by Regina DePietro, Isabella Bertarelli, Chloe M. Zink, Shannon M. Canfield, Jamie Smith and Jane A. McElroy
Healthcare 2026, 14(2), 186; https://doi.org/10.3390/healthcare14020186 - 12 Jan 2026
Viewed by 270
Abstract
Background/Objective: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have received widespread attention as effective obesity treatments. However, limited research has examined the perspectives of patients contemplating GLP-1RAs. This study explored perceptions, motivations, and barriers among individuals considering GLP-1RA therapy for obesity treatment, with the [...] Read more.
Background/Objective: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have received widespread attention as effective obesity treatments. However, limited research has examined the perspectives of patients contemplating GLP-1RAs. This study explored perceptions, motivations, and barriers among individuals considering GLP-1RA therapy for obesity treatment, with the goal of informing patient-centered care and enhancing clinician engagement. Methods: Adults completed surveys and interviews between June and November 2025. In this pragmatic mixed-methods study, both survey and interview questions explored perceived benefits, barriers, and decision-making processes. Qualitative data, describing themes based on the Health Belief Model, were analyzed using Dedoose (version 9.0.107), and quantitative data were analyzed using SAS (version 9.4). Participant characteristics included marital status, income, educational attainment, employment status, insurance status, age, race/ethnicity, and sex. Anticipated length on GLP-1RA medication and selected self-reported health conditions (depression, anxiety, hypertension, heart disease, back pain, joint pain), reported physical activity level, and perceived weight loss competency were also recorded. Results: Among the 31 non-diabetic participants who were considering GLP-1RA medication for weight loss, cost emerged as the most significant barrier. Life course events, particularly (peri)menopause among women over 44, were commonly cited as contributors to weight gain. Participants expressed uncertainty about eligibility, long-term safety, and treatment expectations. Communication gaps were evident, as few participants initiated discussions and clinician outreach was rare, reflecting limited awareness and discomfort around the topic. Conclusions: Findings highlight that individuals considering GLP-1RA therapy face multifaceted emotional, financial, and informational barriers. Proactive, empathetic clinician engagement, through validation of prior efforts, clear communication of risks and benefits, and correction of misconceptions, can support informed decision-making and align treatment with patient goals. Full article
Show Figures

Figure 1

33 pages, 1027 KB  
Review
Peptide-Based Approaches for Pain Relief and Healing in Wounds
by Klaudia Kołodyńska, Wojciech Kamysz and Patrycja Kleczkowska
Int. J. Mol. Sci. 2026, 27(2), 685; https://doi.org/10.3390/ijms27020685 - 9 Jan 2026
Viewed by 217
Abstract
A wound has been defined as a disruption of tissue integrity. Pain, bleeding, and the risk of infection are inherent features of wounds, while chronic wounds are often accompanied by serous exudate. Pain associated with chronic wounds is usually underestimated and inadequately addressed [...] Read more.
A wound has been defined as a disruption of tissue integrity. Pain, bleeding, and the risk of infection are inherent features of wounds, while chronic wounds are often accompanied by serous exudate. Pain associated with chronic wounds is usually underestimated and inadequately addressed in routine clinical care, despite being considered by patients as one of the most burdensome factors affecting their quality of life. Traditionally, management of wound-related pain has relied primarily on systemic analgesics, commonly administered orally. However, recently, there has been accumulated interest in the potential of topical analgesics. Unfortunately, both systemic and local administrations of conventional analgesics (e.g., NSAIDs, opioids) might carry risks of adverse effects, including delayed wound healing and systemic absorption. In this review, we summarize current research on the use of local analgesia for painful wounds and explore the potential of topically applied peptides with analgesic activity as a promising alternative to conventional pain management strategies. We also discuss recent innovations in the development of therapeutic peptides, including those with anti-inflammatory and regenerative activities, which might further enhance outcomes in the wound healing process. Finally, we address challenges associated with topical peptide delivery across compromised skin barriers and examine strategies to overcome these limitations, while outlining future directions for formulation and clinical application of peptide-based wound therapies. Full article
(This article belongs to the Special Issue Recent Approaches for Wound Treatment: 3rd Edition)
Show Figures

Figure 1

21 pages, 880 KB  
Review
Addressing Unmet Needs in Heart Failure with Preserved Ejection Fraction: Multi-Omics Approaches to Therapeutic Discovery
by Taemin Kim, Michael Sheen, Daniel Ryan and Jacob Joseph
Int. J. Mol. Sci. 2026, 27(2), 673; https://doi.org/10.3390/ijms27020673 - 9 Jan 2026
Viewed by 342
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for about half of heart failure cases and is linked to aging, obesity, diabetes, and multimorbidity, yet disease-modifying therapies remain limited. A major barrier is heterogeneity: HFpEF comprises overlapping inflammatory, fibrotic, cardiometabolic, and hemodynamic/vascular endophenotypes [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) accounts for about half of heart failure cases and is linked to aging, obesity, diabetes, and multimorbidity, yet disease-modifying therapies remain limited. A major barrier is heterogeneity: HFpEF comprises overlapping inflammatory, fibrotic, cardiometabolic, and hemodynamic/vascular endophenotypes embedded within systemic cardiorenal and cardiohepatic cross-talk, which conventional metrics such as left ventricular ejection fraction (LVEF), natriuretic peptides (NPs), and standard imaging capture incompletely. In this narrative review, we synthesize clinical, mechanistic, and trial data to describe HFpEF endophenotypes and their multi-organ interactions; critically appraise why traditional diagnostic and enrollment strategies contributed to neutral outcomes in landmark trials; and survey emerging cardiovascular multi-omics studies. We then outline an integrative systems-biology framework that applies (i) within-layer analyses and cross-layer integration, (ii) network-based driver nomination and biomarker discovery, and (iii) target nomination to link molecular programs with circulating markers and candidate therapies. Finally, we discuss practical challenges in implementing multi-omics HFpEF research and highlight future directions such as artificial intelligence (AI)-enabled multi-omics integration, cross-organ profiling, and biomarker-guided, endotype-enriched platform trials. Collectively, these advances position HFpEF as a proving ground for precision cardiology, in which therapies are matched to molecularly defined disease programs rather than ejection-fraction cutoffs alone. Full article
(This article belongs to the Special Issue Cardiovascular Research: From Molecular Mechanisms to Novel Therapies)
Show Figures

Figure 1

41 pages, 1895 KB  
Review
Mitochondrial Redox Vulnerabilities in Triple-Negative Breast Cancer: Integrative Perspectives and Emerging Therapeutic Strategies
by Alfredo Cruz-Gregorio
Metabolites 2026, 16(1), 60; https://doi.org/10.3390/metabo16010060 - 9 Jan 2026
Viewed by 340
Abstract
Breast cancer is a significant public health concern, with triple-negative breast cancer (TNBC) being the most aggressive subtype characterized by considerable heterogeneity and the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Currently, there [...] Read more.
Breast cancer is a significant public health concern, with triple-negative breast cancer (TNBC) being the most aggressive subtype characterized by considerable heterogeneity and the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Currently, there are no practical alternatives to chemotherapy, which is associated with a poor prognosis. Therefore, developing new treatments for TNBC is an urgent need. Reactive oxygen species (ROS) and redox adaptation play central roles in TNBC biology. Targeting the redox state has emerged as a promising therapeutic approach, as it is vital to the survival of tumors, including TNBC. Although TNBC does not produce high levels of ROS compared to ER- or PR-positive breast cancers, it relies on mitochondria and oxidative phosphorylation (OXPHOS) to sustain ROS production and create an environment conducive to tumor progression. As a result, novel treatments that can modulate redox balance and target organelles essential for redox homeostasis, such as mitochondria, could be promising for TNBC—an area not yet reviewed in the current scientific literature, thus representing a critical gap. This review addresses that gap by synthesizing current evidence on TNBC biology and its connections to redox state and mitochondrial metabolism, with a focus on innovative strategies such as metal-based compounds (e.g., copper, gold), redox nanoparticles that facilitate anticancer drug delivery, mitochondrial-targeted therapies, and immunomodulatory peptides like GK-1. By integrating mechanistic insights into the redox state with emerging therapeutic approaches, I aim to highlight new redox-centered opportunities to improve TNBC treatments. Moreover, this review uniquely integrates mitochondrial metabolism, redox imbalance, and emerging regulated cell-death pathways, including ferroptosis, cuproptosis, and disulfidptosis, within the context of TNBC metabolic heterogeneity, highlighting translational vulnerabilities and subtype-specific therapeutic opportunities. Full article
(This article belongs to the Special Issue Mitochondrial Metabolism, Redox State and Immunology in Cancer)
Show Figures

Graphical abstract

21 pages, 413 KB  
Review
Klebsiella pneumoniae Infections in Dogs: A One Health Review of Antimicrobial Resistance, Virulence Factors, Zoonotic Risk, and Emerging Alternatives
by Mălina Lorena Mihu, George Cosmin Nadăş, Cosmina Maria Bouari, Nicodim Iosif Fiț and Sorin Răpuntean
Microorganisms 2026, 14(1), 149; https://doi.org/10.3390/microorganisms14010149 - 9 Jan 2026
Viewed by 411
Abstract
Klebsiella pneumoniae is increasingly reported in canine medicine, with growing attention to multidrug-resistant (MDR) and hypervirulent strains. Although its overall prevalence in dogs appears relatively low, published studies indicate that affected animals may harbor clinically important resistance determinants, including extended-spectrum β-lactamases and, less [...] Read more.
Klebsiella pneumoniae is increasingly reported in canine medicine, with growing attention to multidrug-resistant (MDR) and hypervirulent strains. Although its overall prevalence in dogs appears relatively low, published studies indicate that affected animals may harbor clinically important resistance determinants, including extended-spectrum β-lactamases and, less frequently, carbapenemases. Canine isolates described in the literature also carry virulence-associated traits such as hypermucoviscosity and enhanced iron-acquisition systems, which overlap with features of high-risk human lineages and suggest potential, but largely inferred, interspecies links. These observations highlight the relevance of a One Health perspective and the importance of coordinated surveillance that includes companion animals. This narrative review synthesizes available literature on the epidemiology, clinical presentations, antimicrobial resistance, virulence traits, and molecular characteristics of K. pneumoniae in dogs. We critically evaluate evidence suggesting that dogs may function as reservoirs, sentinels, or amplifiers of MDR strains, particularly in clinical settings or following antimicrobial exposure. In addition, we summarize emerging alternative and adjunctive strategies—such as bacteriophage therapy, antimicrobial peptides, anti-virulence approaches, microbiome-based interventions, as well as strengthened antimicrobial stewardship and infection-control practices—that are under investigation as complements to conventional antibiotics. Overall, published evidence indicates that K. pneumoniae infections in dogs represent an under recognized but potentially important clinical and One Health concern. Continued surveillance, responsible antimicrobial use, and rigorous evaluation of non-antibiotic strategies will be essential to inform future veterinary practice and public health policy. Full article
(This article belongs to the Special Issue Antibiotic Resistance and Alternatives)
Back to TopTop