Advances in Diagnosis and Treatment of Acute and Chronic Heart Failure: A Comprehensive Review
Abstract
1. Introduction
1.1. Epidemiology of Heart Failure
1.2. Pathophysiology of Heart Failure
1.3. Emerging Biomarkers in Heart Failure
1.4. Biomarkers in Chronic Kidney Disease and Heart Failure
1.5. Emerging Imaging Modalities in Heart Failure
2. Point-of-Care Ultrasound (POCUS)
3. Echocardiogram
4. Speckle Tracking Strain Echocardiography
5. Three-Dimensional Echocardiography
6. Cardiac Computed Tomography (CT)
7. Cardiac Magnetic Resonance Imaging
8. Nuclear and Molecular Imaging
9. Vortex Dynamics Imaging
| Modality | Key Features | Clinical Utility | Supporting Evidence/Guidelines | Limitations |
|---|---|---|---|---|
| Point-of-Care Ultrasound (POCUS) |
|
|
|
|
| Echocardiography |
|
|
|
|
| Cardiac CT |
|
|
|
|
| Cardiac MRI (CMR) |
|
|
|
|
| Nuclear and Molecular Imaging |
|
|
|
|
| Vortex Dynamics Imaging |
|
|
|
|
10. Emerging Therapies in Heart Failure
Pharmacological Therapies
11. Angiotensin Receptor-Neprilysin Inhibitors (ARNIs)
12. Sodium-Glucose Co-Transporter-2 Inhibitors (SGLT2i)
13. GLP-1 Receptor Agonists and Receptor Agonists (GLP-1/GLP-1RAs)
14. Ivabradine
15. Finerenone
16. Omecamtiv Mecarbil
17. Vericiguat
| Therapy | Mechanism/Target | Key Evidence and Trials | Clinical Benefits | Populations with Evidence | Safety Considerations | Future Directions |
|---|---|---|---|---|---|---|
| ARNI (Sacubitril/Valsartan) | Neprilysin inhibition + RAAS blockade | PARADIGM-HF, PIONEER-HF, TRANSITION, PARAGON-HF | ↓ CV mortality, ↓ HF hospitalizations, reverse remodeling, ↓ arrhythmic burden, ↑ CRT pacing percentage | Strong in HFrEF (Class I, LOE A); modest in HFmrEF/HFpEF (Class IIb), women, LVEF ≤ 57% | Hypotension, angioedema (lower hyperkalemia/renal dysfunction vs. ACEi/ARB) | Optimal use in HFpEF, combo with SGLT2i, post-MI and advanced HF |
| SGLT2 Inhibitors | Glucose and sodium reabsorption inhibition in proximal tubule; pleiotropic cardiac effects | DAPA-HF, EMPEROR-Reduced, EMPEROR-Preserved, DELIVER | ↓ CV death/HF hospitalization (~30%), improved renal outcomes, benefits across EF spectrum, rapid onset of effect | HFrEF, HFmrEF, HFpEF (regardless of diabetes); observational evidence in LVADs, transplant, HCM, ATTR-CM | Generally well tolerated; mild BP reduction; minimal glycemic effects; careful in transplant/LVAD | Role in infiltrative/restrictive cardiomyopathies, ATTR-CM, upfront initiation in acute HF |
| GLP-1 Receptor Agonists | Enhances incretin signaling, improves metabolic/inflammatory profile | STEP-HFpEF (semaglutide), other trials/meta-analyses | ↓ HF hospitalizations in HFpEF with obesity/diabetes, improved symptoms, QoL, functional capacity; weight loss, BP and lipid benefits | HFpEF + obesity/diabetes; no benefit in HFrEF | ↑ HR possible, no mortality benefit, not HF disease-modifying | Ongoing trials to clarify role beyond obesity/diabetes |
| Ivabradine | If-channel inhibitor → ↓ HR in sinus rhythm | SHIFT trial | ↓ HF hospitalization, modest ↑ LVEF, reverse remodeling; HR control when β-blockers inadequate | HFrEF (LVEF ≤ 35%), NYHA II–III, sinus rhythm HR ≥ 70 bpm, on GDMT | Bradycardia, phosphenes; no significant mortality benefit | Sustained-release formulations, broader phenotypes, pleiotropic (anti-fibrotic/anti-inflammatory) effects |
| Finerenone | Nonsteroidal mineralocorticoid receptor antagonist (MRA) | FINEARTS-HF; pooled analyses from FIDELIO-DKD, FIGARO-DKD | ↓ Total HF events (hospitalizations/urgent visits) in HFmrEF/HFpEF, modest KCCQ symptom score improvement, pooled analyses suggest ↓ CV death or HF hospitalization | HFmrEF/HFpEF, diabetic kidney disease | Hyperkalemia risk; limited data in advanced CKD (eGFR < 25 mL/min/1.73 m2) or high hyperkalemia risk | Clarify role across EF spectrum, optimize GDMT combinations, define effect on CV/all-cause mortality |
| Omecamtiv Mecarbil | Selective cardiac myosin activator (↑ systolic function without ↑ O2 demand) | GALACTIC-HF, METEORIC-HF | ↓ HF events/CV death (GALACTIC-HF), safe in severe HFrEF; no improvement in exercise capacity/QoL | Severe HFrEF (NYHA III–IV, LVEF ≤ 30%, recent hospitalization) | Generally safe; no effect on BP/renal function | Role in severe HF not tolerating GDMT; combination strategies; long-term outcomes |
| Vericiguat | Soluble guanylate cyclase stimulator → enhances NO–sGC–cGMP signaling | VICTORIA trial | ↓ CV death or HF hospitalization in high-risk HFrEF; especially recent worsening HF | High-risk HFrEF with recent decompensation; less robust in very high NT-proBNP | Hypotension, syncope, anemia | Ongoing trials in HFpEF (VALOR, others); refining patient selection; expanded indications |
18. Device Therapies in Heart Failure
18.1. Implantable Cardioverter-Defibrillators (ICDs)
18.2. Cardiac Contractility Modulation (CCM)
18.3. Baroreflex Activation Therapy (BAT)
18.4. Wearable and Implantable Sensors in Heart Failure Management
18.5. Implantable Pulmonary Artery Pressure Sensors
18.6. Cardiac Implantable Electronic Devices
18.7. Bioimpedance-Based Wearables
18.8. Chest Patches and Multisensor Wearables
18.9. Photoplethysmography (PPG) and Electrocardiographic (ECG) Sensors
18.10. Acoustic Sensors and Skin-Impedance Technologies
| Device/Technology | Mechanism and Features | Key Evidence and Findings | Limitations/Evidence Gaps |
|---|---|---|---|
| Implantable Pulmonary Artery Pressure Sensors (e.g., CardioMEMS) | Direct hemodynamic monitoring of PA pressures to detect pre-symptomatic congestion and guide therapy |
|
|
| Cardiac Implantable Electronic Devices (CIEDs) (ICDs, CRT, pacemakers with monitoring functions) | Continuous monitoring: arrhythmias, HR, thoracic impedance (pulmonary congestion), activity, respiratory rate. Multiparametric algorithms (e.g., OptiVol, HeartLogic) integrate signals to predict decompensation. |
|
|
| Bioimpedance-Based Wearables | Noninvasive continuous monitoring of cardiac output and stroke volume. Comparable to Doppler echocardiography in some studies. |
|
|
| Chest Patches and Multisensor Wearables | Sensors for HR, RR, activity, thoracic impedance, lung fluid volume. Some use AI to integrate signals. |
|
|
| Photoplethysmography (PPG) and Electrocardiographic (ECG) Sensors | Wrist/garment-based monitoring of HR, rhythm, pulse arrival time for arrhythmia detection and volume status. |
|
|
| Acoustic Sensors and Skin-Impedance Technologies | Acoustic sensors: phonocardiograms (heart sounds). Skin impedance: fluid status assessment. Often integrated into patches/garments. |
|
|
19. Transcatheter Valvular Interventions in Heart Failure
20. Left Ventricular Assist Devices (LVADs)
21. Heart Transplantation
22. Heart Failure Management in Special Populations
Elderly Population
23. Pregnancy and Peripartum Cardiomyopathy
24. Heart Failure and Comorbidities
25. Diabetes Mellitus
26. Chronic Kidney Disease (CKD)
27. Autoimmune Diseases
28. Telehealth in Heart Failure
28.1. Artificial Intelligence and Machine Learning in Heart Failure
28.2. Classification and Diagnosis
28.3. Management and Follow-Up
28.4. Prognosis
29. Precision Medicine in Heart Failure
30. Gene and Cell-Based Therapies in Heart Failure
31. Challenges in Heart Failure Management
- HFpEF Therapies: HFpEF is particularly challenging due to its multifactorial etiology and multiple comorbidities, making diagnosis and management complex [10,289]. Due to the limited pharmacologic options currently available, novel therapeutic strategies tailored to specific HFpEF sub-phenotypes are needed [289].
- Comorbidities: Effective and safe treatment options for HF patients with comorbid conditions such as CKD, Diabetes Mellitus, chronic lung disease, depression, cognitive disorders, and iron deficiency remain a significant challenge [1].
- Advanced Disease Management: Interventional and device-based therapies, such as MCS devices, percutaneous mitral valve repair, and atrial fibrillation ablation, are being studied for their efficacy in advanced HF management. However, these therapies’ high complication rates and costs remain significant barriers to widespread clinical use [290,291].
- Clinical Trial Representation: Special populations, including older adults, women, and minorities, remain underrepresented in clinical trials, requiring attempts to increase the diversity in study cohorts [1].
- Disparities in Access: Addressing the social determinants of health and healthcare disparities is crucial. Strategies to eliminate disparities in healthcare access and socioeconomic factors are needed [291].
- Long-Term Outcomes: While new therapies show promising short-term outcomes, data regarding their impact on long-term survival and quality of life warrant further investigation [1].
32. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACC | American College of Cardiology |
| ACEi | Angiotensin-Converting Enzyme Inhibitor |
| ACCP | American College of Chest Physicians |
| ACEP | American College of Emergency Physicians |
| AF | Atrial Fibrillation |
| AHA | American Heart Association |
| AL | Amyloid Light-chain |
| ARNI | Angiotensin Receptor–Neprilysin Inhibitor |
| ARB | Angiotensin Receptor Blocker |
| AS | Aortic Stenosis |
| ATTR-CM | Transthyretin Amyloid Cardiomyopathy |
| AUC | Area Under the Curve |
| BAT | Baroreflex Activation Therapy |
| BNP | B-type Natriuretic Peptide |
| BP | Blood Pressure |
| CAD | Coronary Artery Disease |
| CCM | Cardiac Contractility Modulation |
| CKD | Chronic Kidney Disease |
| CIED | Cardiac Implantable Electronic Device |
| CMR | Cardiac Magnetic Resonance Imaging |
| CRT | Cardiac Resynchronization Therapy |
| CCTA | Coronary Computed Tomography Angiography |
| CysC | Cystatin C |
| CV | Cardiovascular |
| cGMP | Cyclic Guanosine Monophosphate |
| DECT | Dual-Energy Computed Tomography |
| ECG | Electrocardiogram |
| ECV | Extracellular Volume |
| EF | Ejection Fraction |
| ESC | European Society of Cardiology |
| FoCUS | Focused Cardiac Ultrasound |
| GDF-15 | Growth Differentiation Factor-15 |
| GDMT | Guideline-Directed Medical Therapy |
| GLP-1RA | Glucagon-Like Peptide-1 Receptor Agonist |
| GLS | Global Longitudinal Strain |
| HCM | Hypertrophic Cardiomyopathy |
| HF | Heart Failure |
| HFpEF | Heart Failure with Preserved Ejection Fraction |
| HFrEF | Heart Failure with Reduced Ejection Fraction |
| HFmrEF | Heart Failure with Mildly Reduced Ejection Fraction |
| HFimpEF | Heart Failure with Improved Ejection Fraction |
| HFA | Heart Failure Association |
| hs-cTn | High-Sensitivity Cardiac Troponin |
| HR | Heart Rate |
| ICD | Implantable Cardioverter-Defibrillator |
| IL-6 | Interleukin-6 |
| IVC | Inferior Vena Cava |
| IVUS | Intravascular Ultrasound |
| KCCQ | Kansas City Cardiomyopathy Questionnaire |
| KEF | Kinetic Energy Fluctuation |
| LGE | Late Gadolinium Enhancement |
| LV | Left Ventricle |
| LVAD | Left Ventricular Assist Device |
| LUS | Lung Ultrasound |
| LVEF | Left Ventricular Ejection Fraction |
| MI | Myocardial Infarction |
| MIBG | Metaiodobenzylguanidine |
| MR-proADM | Mid-Regional Pro-Adrenomedullin |
| MRI | Magnetic Resonance Imaging |
| MRA | Mineralocorticoid Receptor Antagonist |
| NO | Nitric Oxide |
| NP | Natriuretic Peptide |
| NT-proBNP | N-terminal pro-B-type Natriuretic Peptide |
| NYHA | New York Heart Association |
| O2 | Oxygen |
| PA | Pulmonary Artery |
| PARADIGM-HF | Prospective Comparison of ARNI with ACEi to Determine Impact on Global Mortality and Morbidity in Heart Failure |
| PET | Positron Emission Tomography |
| POCUS | Point-of-Care Ultrasound |
| PPG | Photoplethysmography |
| PYP | Technetium-99m Pyrophosphate |
| QoL | Quality of Life |
| RAAS | Renin–Angiotensin–Aldosterone System |
| RV | Right Ventricle |
| sGC | Soluble Guanylate Cyclase |
| sST2 | Soluble Suppression of Tumorigenicity 2 |
| SGLT2i | Sodium–Glucose Co-Transporter-2 Inhibitor |
| SNS | Sympathetic Nervous System |
| SPECT | Single-Photon Emission Computed Tomography |
| STE | Speckle Tracking Echocardiography |
| SU | Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) |
| TAVR | Transcatheter Aortic Valve Replacement |
| TEER | Transcatheter Edge-to-Edge Repair |
| TNF-α | Tumor Necrosis Factor-Alpha |
| VO2 | Oxygen Consumption |
| VCAM-1 | Vascular Cell Adhesion Molecule-1 |
References
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef]
- Bozkurt, B.; Ahmad, T.; Alexander, K.; Baker, W.L.; Bosak, K.; Breathett, K.; Carter, S.; Drazner, M.H.; Dunlay, S.M.; Fonarow, G.C.; et al. HF STATS 2024: Heart failure epidemiology and outcomes statistics an updated 2024 report from the heart failure society of America. J. Card. Fail. 2025, 31, 66–116. [Google Scholar] [CrossRef]
- Khan, M.S.; Shahid, I.; Bennis, A.; Rakisheva, A.; Metra, M.; Butler, J. Global epidemiology of heart failure. Nat. Rev. Cardiol. 2024, 21, 717–734. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Li, A.; McNamara, J.; Dos Remedios, C.; Lal, S. Pathogenesis and pathophysiology of heart failure with reduced ejection fraction: Translation to human studies. Heart Fail. Rev. 2019, 24, 743–758. [Google Scholar] [CrossRef]
- D’Amato, A.; Cestiè, C.; Ferranti, F.; Segato, C.; Prosperi, S.; Germanò, R.; Myftari, V.; Bartimoccia, S.; Castellani, V.; Badagliacca, R.; et al. Implications of Oxidative Stress in the Pathophysiological Pathways of Heart Failure. Int. J. Mol. Sci. 2025, 26, 5165. [Google Scholar] [CrossRef] [PubMed]
- Kemp, C.D.; Conte, J.V. The pathophysiology of heart failure. Cardiovasc. Pathol. 2012, 21, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Rubattu, S.; Volpe, M. Mitochondrial dysfunction in heart failure: From pathophysiological mechanisms to therapeutic opportunities. Int. J. Mol. Sci. 2024, 25, 2667. [Google Scholar] [CrossRef]
- Fonseka, O.; Gare, S.R.; Chen, X.; Zhang, J.; Alatawi, N.H.; Ross, C.; Liu, W. Molecular mechanisms underlying heart failure and their therapeutic potential. Cells 2025, 14, 324. [Google Scholar] [CrossRef]
- Triposkiadis, F.; Xanthopoulos, A.; Parissis, J.; Butler, J.; Farmakis, D. Pathogenesis of chronic heart failure: Cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart Fail. Rev. 2022, 27, 337–344. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Panjrath, G.S.; Amancherla, K.; Davis, L.L.; Deswal, A.; Dixon, D.L.; Januzzi, J.L.; Yancy, C.W. 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure With Preserved Ejection Fraction. JACC 2023, 81, 1835–1878. [Google Scholar] [CrossRef]
- Murphy, S.P.; Ibrahim, N.E.; Januzzi, J.L. Heart failure with reduced ejection fraction: A review. JAMA 2020, 324, 488–504. [Google Scholar] [CrossRef]
- Campbell, P.; Rutten, F.H.; Lee, M.M.; Hawkins, N.M.; Petrie, M.C. Heart failure with preserved ejection fraction: Everything the clinician needs to know. Lancet 2024, 403, 1083–1092. [Google Scholar] [CrossRef]
- Maddox, T.M.; Januzzi, J.L., Jr.; Allen, L.A.; Breathett, K.; Brouse, S.; Butler, J.; Davis, L.L.; Fonarow, G.C.; Ibrahim, N.E.; Lindenfeld, J.; et al. 2024 ACC expert consensus decision pathway for treatment of heart failure with reduced ejection fraction: A report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2024, 83, 1444–1488. [Google Scholar] [CrossRef]
- Parlati, A.L.M.; Madaudo, C.; Nuzzi, V.; Manca, P.; Gentile, P.; Di Lisi, D.; Jordán-Ríos, A.; Shamsi, A.; Manzoni, M.; Sadler, M.; et al. Biomarkers for Congestion in Heart Failure: State-of-the-art and Future Directions. Card. Fail. Rev. 2025, 11, e01. [Google Scholar] [CrossRef] [PubMed]
- Cortés, M.; Lumpuy-Castillo, J.; García-Talavera, C.S.; Arroyo Rivera, M.B.; de Miguel, L.; Bollas, A.J.; Romero-Otero, J.M.; Esteban Chapel, J.A.; Taibo-Urquía, M.; Pello, A.M.; et al. New Biomarkers in the Prognostic Assessment of Acute Heart Failure with Reduced Ejection Fraction: Beyond Natriuretic Peptides. Int. J. Mol. Sci. 2025, 26, 986. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.; Blankenberg, S. Biomarkers for heart failure: Small molecules with high clinical relevance. J. Intern. Med. 2018, 283, 530–543. [Google Scholar] [CrossRef]
- Dong, T.; Zhu, W.; Yang, Z.; Pires, N.M.M.; Lin, Q.; Jing, W.; Zhao, L.; Wei, X.; Jiang, Z. Advances in heart failure monitoring: Biosensors targeting molecular markers in peripheral bio-fluids. Biosens. Bioelectron. 2024, 255, 116090. [Google Scholar] [CrossRef]
- Darden, D.; Nishimura, M.; Sharim, J.; Maisel, A. An update on the use and discovery of prognostic biomarkers in acute decompensated heart failure. Expert Rev. Mol. Diagn. 2019, 19, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Fröhling, T.; Semo, D.; Mirna, M.; Paar, V.; Shomanova, Z.; Motloch, L.J.; Rukosujew, A.; Sindermann, J.R.; Lichtenauer, M.; Pistulli, R. Novel Biomarkers as Potential Predictors of Decompensated Advanced Chronic Heart Failure—Single Center Study. J. Clin. Med. 2024, 13, 6866. [Google Scholar] [CrossRef]
- Meijers, W.C.; Bayes-Genis, A.; Mebazaa, A.; Bauersachs, J.; Cleland, J.G.; Coats, A.J.; Januzzi, J.L.; Maisel, A.S.; McDonald, K.; Mueller, T.; et al. Circulating heart failure biomarkers beyond natriuretic peptides: Review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). Eur. J. Heart Fail. 2021, 23, 1610–1632. [Google Scholar] [CrossRef]
- Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the diagnosis and management of heart failure. Heart Fail. Rev. 2022, 27, 625–643. [Google Scholar] [CrossRef]
- Chow, S.L.; Maisel, A.S.; Anand, I.; Bozkurt, B.; De Boer, R.A.; Felker, G.M.; Fonarow, G.C.; Greenberg, B.; Januzzi, J.L., Jr.; Kiernan, M.S.; et al. Role of biomarkers for the prevention, assessment, and management of heart failure: A scientific statement from the American Heart Association. Circulation 2017, 135, e1054–e1091. [Google Scholar] [CrossRef] [PubMed]
- Bastos, J.M.; Scala, N.; Perpétuo, L.; Mele, B.H.; Vitorino, R. Integrative bioinformatic analysis of prognostic biomarkers in heart failure: Insights from clinical trials. Eur. J. Clin. Investig. 2025, 55, e70010. [Google Scholar] [CrossRef]
- Markousis-Mavrogenis, G.; Tromp, J.; Ouwerkerk, W.; Devalaraja, M.; Anker, S.; Cleland, J.; Dickstein, K.; Filippatos, G.; van der Harst, P.; Lang, C.; et al. The clinical significance of interleukin-6 in heart failure: Results from the BIOSTAT-CHF study. Eur. J. Heart Fail. 2019, 21, 965–973. [Google Scholar] [CrossRef]
- Gullestad, L.; Ueland, T.; Vinge, L.E.; Finsen, A.; Yndestad, A.; Aukrust, P. Inflammatory cytokines in heart failure: Mediators and markers. Cardiology 2012, 122, 23–35. [Google Scholar] [CrossRef]
- Matsumori, A.; Shimada, T.; Nakatani, E.; Shimada, M.; Tracy, S.; Chapman, N.M.; Drayson, M.T.; Hartz, V.L.; Mason, J.W. Immunoglobulin free light chains as an inflammatory biomarker of heart failure with myocarditis. Clin. Immunol. 2020, 217, 108455. [Google Scholar] [CrossRef]
- Gudowska-Sawczuk, M.; Mroczko, B. Free light chains κ and λ as new biomarkers of selected diseases. Int. J. Mol. Sci. 2023, 24, 9531. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.A.; Pieri, M.; Marchei, M.; Sergi, D.; Bernardini, S.; Romeo, F. Serum free light chains in patients with ST elevation myocardial infarction (STEMI): A possible correlation with left ventricle dysfunction. Int. J. Cardiol. 2019, 292, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.E.; Haig, C.; Welsh, P.; Dalzell, J.R.; Tsorlalis, I.K.; McConnachie, A.; Preiss, D.; McInnes, I.B.; Sattar, N.; Petrie, M.C.; et al. Combined free light chains are novel predictors of prognosis in heart failure. JACC Heart Fail. 2015, 3, 618–625. [Google Scholar] [CrossRef]
- Welsh, P.; Kou, L.; Yu, C.; Anand, I.; van Veldhuisen, D.J.; Maggioni, A.P.; Desai, A.S.; Solomon, S.D.; Pfeffer, M.A.; Cheng, S.; et al. Prognostic importance of emerging cardiac, inflammatory, and renal biomarkers in chronic heart failure patients with reduced ejection fraction and anaemia: RED-HF study. Eur. J. Heart Fail. 2018, 20, 268–277. [Google Scholar] [CrossRef]
- Bansal, N.; Anderson, A.H.; Yang, W.; Christenson, R.H.; DeFilippi, C.R.; Deo, R.; Dries, D.L.; Go, A.S.; He, J.; Kusek, J.W.; et al. High-sensitivity troponin T and N-terminal pro-B-type natriuretic peptide (NT-proBNP) and risk of incident heart failure in patients with CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study. J. Am. Soc. Nephrol. 2015, 26, 946–956. [Google Scholar] [CrossRef]
- Bansal, N.; Zelnick, L.; Go, A.; Anderson, A.; Christenson, R.; Deo, R.; Defilippi, C.; Lash, J.; He, J.; Ky, B.; et al. Cardiac biomarkers and risk of incident heart failure in chronic kidney disease: The CRIC (Chronic Renal Insufficiency Cohort) Study. J. Am. Heart Assoc. 2019, 8, e012336. [Google Scholar] [CrossRef] [PubMed]
- Vasan, S.K.; Chinnadurai, R.; Rengarajan, S.; Green, D.; Alderson, H.; Vuilleumier, N.; Kalra, P.A. Utility of cardiac biomarkers (NT-proBNP and Hs-Troponin-T) in predicting mortality, cardiovascular and renal outcomes in patients with chronic kidney disease. Am. J. Nephrol. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Xie, H.; Wang, S.; Qian, L.; Yu, P.; Chen, X.; Tang, S.; Shen, L. Associations of cardiac biomarkers with chronic kidney disease and mortality in US individuals without prevalent cardiovascular disease. Sci. Rep. 2025, 15, 15001. [Google Scholar] [CrossRef] [PubMed]
- Kula, A.; Bansal, N. Applications of cardiac biomarkers in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2022, 31, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Januzzi, J.L., Jr.; Vergaro, G.; Ripoli, A.; Latini, R.; Masson, S.; Magnoli, M.; Anand, I.S.; Cohn, J.N.; Tavazzi, L.; et al. High-sensitivity troponin T, NT-proBNP and glomerular filtration rate: A multimarker strategy for risk stratification in chronic heart failure. Int. J. Cardiol. 2019, 277, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Janus, S.E.; Hajjari, J.; Chami, T.; Mously, H.; Badhwar, A.K.; Karnib, M.; Carneiro, H.; Rahman, M.; Al-Kindi, S.G. Multi-variable biomarker approach in identifying incident heart failure in chronic kidney disease: Results from the Chronic Renal Insufficiency Cohort study. Eur. J. Heart Fail. 2022, 24, 988–995. [Google Scholar] [CrossRef]
- Rangaswami, J.; Bhalla, V.; Blair, J.E.; Chang, T.I.; Costa, S.; Lentine, K.L.; Lerma, E.V.; Mezue, K.; Molitch, M.; Mullens, W.; et al. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies: A scientific statement from the American Heart Association. Circulation 2019, 139, e840–e878. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, J.; Zhang, M.; Shen, C.; Jiang, Z.; Zhang, T.; Gao, F. The diagnostic accuracy of N-terminal Pro-B-type natriuretic peptide and soluble ST2 for heart failure in chronic kidney disease patients: A comparative analysis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2023, 29, e940641. [Google Scholar] [CrossRef]
- Gottlieb, M.; Riddell, J.; Cooney, R.; King, A.; Fung, C.-C.; Sherbino, J. Clinical Policy: Critical Issues in the Evaluation and Management of Adult Patients Presenting to the Emergency Department With Acute Heart Failure Syndromes: Approved by ACEP Board of Directors, 23 June 2022. Ann. Emerg. Med. 2022, 80, e31–e59, Erratum in Ann. Emerg. Med. 2023, 81, 383. [Google Scholar]
- Pivetta, E.; Goffi, A.; Nazerian, P.; Castagno, D.; Tozzetti, C.; Tizzani, P.; Tizzani, M.; Porrino, G.; Ferreri, E.; Busso, V.; et al. Lung ultrasound integrated with clinical assessment for the diagnosis of acute decompensated heart failure in the emergency department: A randomized controlled trial. Eur. J. Heart Fail. 2019, 21, 754–766. [Google Scholar] [CrossRef]
- Hacıalioğulları, F.; Yılmaz, F.; Yılmaz, A.; Sönmez, B.M.; Demir, T.A.; Karadaş, M.A.; Duyan, M.; Ayaz, G.; Özdemir, M. Role of point-of-care lung and inferior vena cava ultrasound in clinical decisions for patients presenting to the emergency department with symptoms of acute decompensated heart failure. J. Ultrasound Med. 2021, 40, 751–761. [Google Scholar] [CrossRef]
- Gundersen, G.H.; Norekval, T.M.; Haug, H.H.; Skjetne, K.; Kleinau, J.O.; Graven, T.; Dalen, H. Adding point of care ultrasound to assess volume status in heart failure patients in a nurse-led outpatient clinic. A Randomised study. Heart 2016, 102, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Čelutkienė, J.; Lainscak, M.; Anderson, L.; Gayat, E.; Grapsa, J.; Harjola, V.P.; Manka, R.; Nihoyannopoulos, P.; Filardi, P.P.; Vrettou, R.; et al. Imaging in patients with suspected acute heart failure: Timeline approach position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Price, S.; Platz, E.; Cullen, L.; Tavazzi, G.; Christ, M.; Cowie, M.R.; Maisel, A.S.; Masip, J.; Miro, O.; McMurray, J.J.; et al. Echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat. Rev. Cardiol. 2017, 14, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Abou Hassan, O.K.; Higgins, A.R. The role of multimodality imaging in patients with heart failure with reduced and preserved ejection fraction. Curr. Opin. Cardiol. 2022, 37, 285–293. [Google Scholar] [CrossRef]
- Flachskampf, F.A.; Baron, T. The Role of Novel Cardiac Imaging for Contemporary Management of Heart Failure. J. Clin. Med. 2022, 11, 6201. [Google Scholar] [CrossRef]
- Galzerano, D.; Savo, M.T.; Castaldi, B.; Kholaif, N.; Khaliel, F.; Pozza, A.; Aljheish, S.; Cattapan, I.; Martini, M.; Lassandro, E.; et al. Transforming Heart Failure Management: The Power of Strain Imaging, 3D Imaging, and Vortex Analysis in Echocardiography. J. Clin. Med. 2024, 13, 5759. [Google Scholar] [CrossRef]
- Smiseth, O.A.; Donal, E.; Boe, E.; Ha, J.-W.; Fernandes, J.F.; Lamata, P. Phenotyping heart failure by echocardiography: Imaging of ventricular function and haemodynamics at rest and exercise. Eur. Heart J.-Cardiovasc. Imaging 2023, 24, 1329–1342. [Google Scholar] [CrossRef]
- Pastore, M.C.; De Carli, G.; Mandoli, G.E.; D’Ascenzi, F.; Focardi, M.; Contorni, F.; Mondillo, S.; Cameli, M. The prognostic role of speckle tracking echocardiography in clinical practice: Evidence and reference values from the literature. Heart Fail. Rev. 2021, 26, 1371–1381. [Google Scholar] [CrossRef]
- Marwick, T.H.; Shah, S.J.; Thomas, J.D. Myocardial strain in the assessment of patients with heart failure: A review. JAMA Cardiol. 2019, 4, 287–294. [Google Scholar] [CrossRef]
- Smiseth, O.A.; Torp, H.; Opdahl, A.; Haugaa, K.H.; Urheim, S. Myocardial strain imaging: How useful is it in clinical decision making? Eur. Heart J. 2016, 37, 1196–1207. [Google Scholar] [CrossRef]
- White, R.D.; Kirsch, J.; Bolen, M.A.; Batlle, J.C.; Brown, R.K.; Eberhardt, R.T.; Hurwitz, L.M.; Inacio, J.R.; Jin, J.O.; Krishnamurthy, R.; et al. ACR Appropriateness Criteria® suspected new-onset and known nonacute heart failure. J. Am. Coll. Radiol. 2018, 15, S418–S431. [Google Scholar] [CrossRef] [PubMed]
- Martini, L.; Lisi, M.; Pastore, M.C.; Righini, F.M.; Rubboli, A.; Henein, M.Y.; Cameli, M. The Role of Speckle Tracking Echocardiography in the Evaluation of Advanced-Heart-Failure Patients. J. Clin. Med. 2024, 13, 4037. [Google Scholar] [CrossRef] [PubMed]
- Čelutkienė, J.; Plymen, C.M.; Flachskampf, F.A.; de Boer, R.A.; Grapsa, J.; Manka, R.; Anderson, L.; Garbi, M.; Barberis, V.; Filardi, P.P.; et al. Innovative imaging methods in heart failure: A shifting paradigm in cardiac assessment. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1615–1633. [Google Scholar] [CrossRef]
- Baldea, S.M.; Velcea, A.E.; Rimbas, R.C.; Andronic, A.; Matei, L.; Calin, S.I.; Muraru, D.; Badano, L.P.; Vinereanu, D. 3-D echocardiography is feasible and more reproducible than 2-D echocardiography for in-training echocardiographers in follow-up of patients with heart failure with reduced ejection fraction. Ultrasound Med. Biol. 2021, 47, 499–510. [Google Scholar] [CrossRef]
- Cheung, Y.-f. The role of 3D wall motion tracking in heart failure. Nat. Rev. Cardiol. 2012, 9, 644–657. [Google Scholar] [CrossRef]
- Xu, T.-Y.; Sun, J.P.; Lee, A.P.-W.; Yang, X.S.; Qiao, Z.; Luo, X.; Fang, F.; Li, Y.; Yu, C.-M.; Wang, J.-G. Three-dimensional speckle strain echocardiography is more accurate and efficient than 2D strain in the evaluation of left ventricular function. Int. J. Cardiol. 2014, 176, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Luis, S.A.; Yamada, A.; Khandheria, B.K.; Speranza, V.; Benjamin, A.; Ischenko, M.; Platts, D.G.; Hamilton-Craig, C.R.; Haseler, L.; Burstow, D.; et al. Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: A comparative study to three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 2014, 27, 285–291. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Zhang, L.; Tian, F.; Wang, B.; Xie, Y.; Sun, W.; Sun, Z.; Yang, Y.; Lv, Q.; et al. Assessment of myocardial fibrosis using two-dimensional and three-dimensional speckle tracking echocardiography in dilated cardiomyopathy with advanced heart failure. J. Card. Fail. 2021, 27, 651–661. [Google Scholar] [CrossRef]
- Gao, L.; Lin, Y.; Ji, M.; Wu, W.; Li, H.; Qian, M.; Zhang, L.; Xie, M.; Li, Y. Clinical utility of three-dimensional speckle-tracking echocardiography in heart failure. J. Clin. Med. 2022, 11, 6307. [Google Scholar] [CrossRef]
- Graversen, C.B.; Rasmussen, L.D.; Sundbøll, J.; Würtz, M.; Kragholm, K.H.; Bøttcher, M.; Winther, S. Cardiac computed tomography for rule-out of ischaemic heart disease in patients with new-onset heart failure. Eur. Heart J.-Cardiovasc. Imaging 2025, 26, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, B.; Zsarnoczay, E.; Varga-Szemes, A.; Schoepf, U.J.; Meinel, F.G.; van Assen, M.; De Cecco, C.N. Dual-energy computed tomography in cardiac imaging. Radiol. Clin. 2023, 61, 995–1009. [Google Scholar] [CrossRef] [PubMed]
- Doherty, J.U.; Kort, S.; Mehran, R.; Schoenhagen, P.; Soman, P.; Dehmer, G.J.; Doherty, J.U.; Schoenhagen, P.; Bashore, T.M.; Bhave, N.M.; et al. ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 appropriate use criteria for multimodality imaging in the assessment of cardiac structure and function in nonvalvular heart disease: A report of the American college of cardiology appropriate use criteria task force, American association for thoracic surgery, American heart association, American society of echocardiography, American society of nuclear cardiology, heart rhythm society, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, society for cardiovascular magnetic resonance, and the society of thoracic surgeons. J. Am. Coll. Cardiol. 2019, 73, 488–516. [Google Scholar]
- Chow, B.J.; Coyle, D.; Hossain, A.; Laine, M.; Hanninen, H.; Ukkonen, H.; Rajda, M.; Larose, E.; Hartikainen, J.; Mielniczuk, L.; et al. Computed tomography coronary angiography for patients with heart failure (CTA-HF): A randomized controlled trial (IMAGE-HF 1C). Eur. Heart J.-Cardiovasc. Imaging 2021, 22, 1083–1090. [Google Scholar] [CrossRef]
- Widmer, R.J.; Rosol, Z.P.; Banerjee, S.; Sandoval, Y.; Schussler, J.M. Cardiac Computed Tomography Angiography in the Evaluation of Coronary Artery Disease: An Interventional Perspective. J. Soc. Cardiovasc. Angiogr. Interv. 2024, 3, 101301. [Google Scholar] [CrossRef]
- Im, D.J.; Youn, J.-C.; Lee, H.-J.; Nam, K.; Suh, Y.J.; Hong, Y.J.; Hur, J.; Kim, Y.J.; Choi, B.W.; Kang, S.-M. Role of cardiac computed tomography for etiology evaluation of newly diagnosed heart failure with reduced ejection fraction. J. Clin. Med. 2020, 9, 2270. [Google Scholar] [CrossRef] [PubMed]
- Ohta, Y.; Kitao, S.; Yunaga, H.; Fujii, S.; Mukai, N.; Yamamoto, K.; Ogawa, T. Myocardial delayed enhancement CT for the evaluation of heart failure: Comparison to MRI. Radiology 2018, 288, 682–691. [Google Scholar] [CrossRef]
- Chang, S.; Han, K.; Youn, J.-C.; Im, D.J.; Kim, J.Y.; Suh, Y.J.; Hong, Y.J.; Hur, J.; Kim, Y.J.; Choi, B.W.; et al. Utility of dual-energy CT-based monochromatic imaging in the assessment of myocardial delayed enhancement in patients with cardiomyopathy. Radiology 2018, 287, 442–451. [Google Scholar] [CrossRef]
- Lee, H.-J.; Im, D.J.; Youn, J.-C.; Chang, S.; Suh, Y.J.; Hong, Y.J.; Kim, Y.J.; Hur, J.; Choi, B.W. Assessment of myocardial delayed enhancement with cardiac computed tomography in cardiomyopathies: A prospective comparison with delayed enhancement cardiac magnetic resonance imaging. Int. J. Cardiovasc. Imaging 2017, 33, 577–584. [Google Scholar] [CrossRef]
- Jiang, Y.; Ye, J.; Yang, Y.; Zhang, Y.; Yan, X.; Qiang, W.; Chen, H.; Xu, S.; Zhou, L.; Qi, R.; et al. Prognostic value of measurement of myocardial extracellular volume using dual-energy CT in heart failure with preserved ejection fraction. Sci. Rep. 2024, 14, 7504. [Google Scholar] [CrossRef]
- Qi, R.-X.; Jiang, J.-S.; Shao, J.; Zhang, Q.; Zheng, K.-L.; Xiao, J.; Huang, S.; Gong, S.-C. Measurement of myocardial extracellular volume fraction in patients with heart failure with preserved ejection fraction using dual-energy computed tomography. Eur. Radiol. 2022, 32, 4253–4263. [Google Scholar] [CrossRef]
- Patel, A.R.; Kramer, C.M. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy. JACC Cardiovasc. Imaging 2017, 10, 1180–1193. [Google Scholar] [CrossRef]
- Hosadurg, N.; Lozano, P.R.; Patel, A.R.; Kramer, C.M. Cardiac Magnetic Resonance in the Evaluation and Management of Nonischemic Cardiomyopathies. JACC Heart Fail. 2025, 13, 102525. [Google Scholar] [CrossRef]
- Parlati, A.L.M.; Nardi, E.; Marzano, F.; Madaudo, C.; Di Santo, M.; Cotticelli, C.; Agizza, S.; Abbellito, G.M.; Perrone Filardi, F.; Del Giudice, M.; et al. Advancing cardiovascular diagnostics: The expanding role of CMR in heart failure and cardiomyopathies. J. Clin. Med. 2025, 14, 865. [Google Scholar] [CrossRef] [PubMed]
- Barison, A.; Aimo, A.; Todiere, G.; Grigoratos, C.; Aquaro, G.D.; Emdin, M. Cardiovascular magnetic resonance for the diagnosis and management of heart failure with preserved ejection fraction. Heart Fail. Rev. 2022, 27, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Rajiah, P.S.; François, C.J.; Leiner, T. Cardiac MRI: State of the art. Radiology 2023, 307, e223008. [Google Scholar] [CrossRef] [PubMed]
- Saraste, A.; Knuuti, J.; Bengel, F. Phenotyping heart failure by nuclear imaging of myocardial perfusion, metabolism, and molecular targets. Eur. Heart J.-Cardiovasc. Imaging 2023, 24, 1318–1328. [Google Scholar] [CrossRef]
- Tamaki, N.; Manabe, O. Current status and perspectives of nuclear cardiology. Ann. Nucl. Med. 2024, 38, 20–30. [Google Scholar] [CrossRef]
- Ståhle, M.; Popescu, C.; Rischpler, C.; Zhang, H.; Massalha, S.; Lopes, L.; Rominger, A.; Caobelli, F. New Promising Targets for Imaging in Cardiovascular Diseases. In Seminars in Nuclear Medicine; WB Saunders: Philadelphia, PA, USA, 2025. [Google Scholar]
- Saraste, A.; Ståhle, M.; Roivainen, A.; Knuuti, J. Molecular imaging of heart failure: An update and future trends. In Seminars in Nuclear Medicine; WB Saunders: Philadelphia, PA, USA, 2024; pp. 674–685. [Google Scholar]
- Chan, J.S.K.; Lau, D.H.H.; Fan, Y.; Lee, A.P.-W. Fragmented vortex in heart failure with reduced ejection fraction: A prospective vector flow mapping study. Ultrasound Med. Biol. 2023, 49, 982–988. [Google Scholar] [CrossRef]
- Kim, I.-C.; Hong, G.-R.; Pedrizzetti, G.; Shim, C.Y.; Kang, S.-M.; Chung, N. Usefulness of left ventricular vortex flow analysis for predicting clinical outcomes in patients with chronic heart failure: A quantitative vorticity imaging study using contrast echocardiography. Ultrasound Med. Biol. 2018, 44, 1951–1959. [Google Scholar] [CrossRef]
- Abe, H.; Caracciolo, G.; Kheradvar, A.; Pedrizzetti, G.; Khandheria, B.K.; Narula, J.; Sengupta, P.P. Contrast echocardiography for assessing left ventricular vortex strength in heart failure: A prospective cohort study. Eur. Heart J.-Cardiovasc. Imaging 2013, 14, 1049–1060. [Google Scholar] [CrossRef]
- Sarashina-Motoi, M.; Iwano, H.; Motoi, K.; Ishizaka, S.; Chiba, Y.; Tsujinaga, S.; Murayama, M.; Nakabachi, M.; Yokoyama, S.; Nishino, H.; et al. Functional significance of intra-left ventricular vortices on energy efficiency in normal, dilated, and hypertrophied hearts. J. Clin. Ultrasound 2021, 49, 358–367. [Google Scholar] [CrossRef]
- Fiorencis, A.; Pepe, M.; Smarrazzo, V.; Martini, M.; Severino, S.; Pergola, V.; Evangelista, M.; Incarnato, P.; Previtero, M.; Maglione, M.; et al. Noninvasive evaluation of intraventricular flow dynamics by the HyperDoppler technique: First application to normal subjects, athletes, and patients with heart failure. J. Clin. Med. 2022, 11, 2216. [Google Scholar] [CrossRef]
- Suwa, K.; Saitoh, T.; Takehara, Y.; Sano, M.; Saotome, M.; Urushida, T.; Katoh, H.; Satoh, H.; Sugiyama, M.; Wakayama, T.; et al. Intra-left ventricular flow dynamics in patients with preserved and impaired left ventricular function: Analysis with 3D cine phase contrast MRI (4D-Flow). J. Magn. Reson. Imaging 2016, 44, 1493–1503. [Google Scholar] [CrossRef]
- Faurie, J.; Baudet, M.; Assi, K.C.; Auger, D.; Gilbert, G.; Tournoux, F.; Garcia, D. Intracardiac vortex dynamics by high-frame-rate Doppler vortography—In vivo comparison with vector flow mapping and 4-D flow MRI. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 64, 424–432. [Google Scholar] [CrossRef]
- Leo, I.; Cersosimo, A.; Ielapi, J.; Sabatino, J.; Sicilia, F.; Strangio, A.; Figliozzi, S.; Torella, D.; De Rosa, S. Intracardiac fluid dynamic analysis: Available techniques and novel clinical applications. BMC Cardiovasc. Disord. 2024, 24, 716. [Google Scholar] [CrossRef]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Hollenberg, S.M.; Warner Stevenson, L.; Ahmad, T.; Amin, V.J.; Bozkurt, B.; Butler, J.; Davis, L.L.; Drazner, M.H.; Kirkpatrick, J.N.; Peterson, P.N.; et al. 2019 ACC expert consensus decision pathway on risk assessment, management, and clinical trajectory of patients hospitalized with heart failure: A report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2019, 74, 1966–2011. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Mentz, R.J.; Claggett, B.L.; Miao, Z.M.; Kulac, I.J.; Ward, J.H.; Hernandez, A.F.; Morrow, D.A.; Starling, R.C.; Velazquez, E.J.; et al. Sacubitril/valsartan in heart failure with mildly reduced or preserved ejection fraction: A pre-specified participant-level pooled analysis of PARAGLIDE-HF and PARAGON-HF. Eur. Heart J. 2023, 44, 2982–2993. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.S.; Vaduganathan, M.; Claggett, B.L.; Fonarow, G.C.; Packer, M.; Pfeffer, M.A.; Shah, S.J.; Shen, X.; Cristino, J.; Mcmurray, J.J.; et al. Health and economic evaluation of sacubitril-valsartan for heart failure management. JAMA Cardiol. 2023, 8, 1041–1048. [Google Scholar] [CrossRef]
- Pozzi, A.; Abete, R.; Tavano, E.; Kristensen, S.; Rea, F.; Iorio, A.; Iacovoni, A.; Corrado, G.; Wong, C. Sacubitril/valsartan and arrhythmic burden in patients with heart failure and reduced ejection fraction: A systematic review and meta-analysis. Heart Fail. Rev. 2023, 28, 1395–1403. [Google Scholar] [CrossRef]
- Huang, E.; Bernard, M.L.; Elise Hiltbold, A.; Khatib, S.; Polin, G.M.; Rogers, P.A.; Dominic, P.; Morin, D.P. Sacubitril/valsartan: An antiarrhythmic drug? J. Cardiovasc. Electrophysiol. 2022, 33, 2375–2381. [Google Scholar] [CrossRef] [PubMed]
- Curtain, J.P.; Jackson, A.M.; Shen, L.; Jhund, P.S.; Docherty, K.F.; Petrie, M.C.; Castagno, D.; Desai, A.S.; Rohde, L.E.; Lefkowitz, M.P.; et al. Effect of sacubitril/valsartan on investigator-reported ventricular arrhythmias in PARADIGM-HF. Eur. J. Heart Fail. 2022, 24, 551–561. [Google Scholar] [CrossRef] [PubMed]
- de Diego, C.; Gonzalez-Torres, L.; Núñez, J.M.; Inda, R.C.; Martin-Langerwerf, D.A.; Sangio, A.D.; Chochowski, P.; Casasnovas, P.; Blazquez, J.C.; Almendral, J. Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices. Heart Rhythm 2018, 15, 395–402. [Google Scholar] [CrossRef]
- Acquaro, M.; Scelsi, L.; Pasotti, B.; Seganti, A.; Spolverini, M.; Greco, A.; Schirinzi, S.; Turco, A.; Sanzo, A.; Savastano, S.; et al. Sacubitril/valsartan effects on arrhythmias and left ventricular remodelling in heart failure: An observational study. Vasc. Pharmacol. 2023, 152, 107196. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.; Nuyens, D.; Rivero-Ayerza, M.; van Herendael, H.; Vercammen, J.; Ceyssens, W.; Luwel, E.; Dupont, M.; Mullens, W. Sacubitril/valsartan reduces ventricular arrhythmias in parallel with left ventricular reverse remodeling in heart failure with reduced ejection fraction. Clin. Res. Cardiol. 2019, 108, 1074–1082. [Google Scholar] [CrossRef]
- Russo, V.; Bottino, R.; Rago, A.; Papa, A.A.; Liccardo, B.; Proietti, R.; Manna, V.; Golino, P.; D’Onofrio, A.; Nigro, G. The effect of sacubitril/valsartan on device detected arrhythmias and electrical parameters among dilated cardiomyopathy patients with reduced ejection fraction and implantable cardioverter defibrillator. J. Clin. Med. 2020, 9, 1111. [Google Scholar] [CrossRef]
- Rohde, L.E.; Chatterjee, N.A.; Vaduganathan, M.; Claggett, B.; Packer, M.; Desai, A.S.; Zile, M.; Rouleau, J.; Swedberg, K.; Lefkowitz, M.; et al. Sacubitril/valsartan and sudden cardiac death according to implantable cardioverter-defibrillator use and heart failure cause: A PARADIGM-HF analysis. Heart Fail. 2020, 8, 844–855. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, M.; Zhang, Q.; Gong, L.; Wang, X.; Wang, Z.; Gao, M.; Zhang, Z. A narrative review on sacubitril/valsartan and ventricular arrhythmias. Medicine 2022, 101, e29456. [Google Scholar] [CrossRef]
- Iovanovici, D.-C.; Bungau, S.G.; Vesa, C.M.; Moisi, M.; Babes, E.E.; Tit, D.M.; Horvath, T.; Behl, T.; Rus, M. Reviewing the modern therapeutical options and the outcomes of sacubitril/valsartan in heart failure. Int. J. Mol. Sci. 2022, 23, 11336. [Google Scholar] [CrossRef]
- Volpe, M.; Bauersachs, J.; Bayes-Genis, A.; Butler, J.; Cohen-Solal, A.; Gallo, G.; Deichl, A.S.; Khan, M.S.; Battistoni, A.; Pieske, B.; et al. Sacubitril/valsartan for the management of heart failure: A perspective viewpoint on current evidence. Int. J. Cardiol. 2021, 327, 138–145. [Google Scholar] [CrossRef]
- Skersick, P.T.; Proco, D.; Sharma-Huynh, P.; Montepara, C.A.; Rodgers, J.E. Evaluating the evidence for sacubitril/valsartan across the continuum of heart failure. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2022, 42, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Greene, S.J.; Butler, J.; Kosiborod, M.N. Clinical trials of sodium-glucose co-transporter-2 inhibitors for treatment of heart failure. Am. J. Med. 2024, 137, S25–S34. [Google Scholar] [CrossRef] [PubMed]
- Tomasoni, D.; Fonarow, G.C.; Adamo, M.; Anker, S.D.; Butler, J.; Coats, A.J.; Filippatos, G.; Greene, S.J.; McDonagh, T.A.; Ponikowski, P.; et al. Sodium–glucose co-transporter 2 inhibitors as an early, first-line therapy in patients with heart failure and reduced ejection fraction. Eur. J. Heart Fail. 2022, 24, 431–441. [Google Scholar] [CrossRef]
- Hasabo, E.A.; Isik, B.; Elgadi, A.; Eljack, M.M.F.; Yacoub, M.S.; Elzomor, H.; Sultan, S.; Caliskan, K.; Soliman, O. A systematic review and meta-analysis of the efficacy and safety of sodium-glucose cotransporter-2 inhibitor in patients using left ventricular assist devices. J. Clin. Med. 2024, 13, 7418. [Google Scholar] [CrossRef] [PubMed]
- Chavali, S.; Barua, S.; Adji, A.; Robson, D.; Raven, L.M.; Greenfield, J.R.; Eckford, H.; Macdonald, P.S.; Hayward, C.S.; Muthiah, K. Safety and tolerability of sodium-glucose cotransporter-2 inhibitors in bridge-to-transplant patients supported with centrifugal-flow left ventricular assist devices. Int. J. Cardiol. 2023, 391, 131259. [Google Scholar] [CrossRef]
- Fardman, A.; Kodesh, A.; Siegel, A.J.; Segev, A.; Regev, E.; Maor, E.; Berkovitch, A.; Kuperstein, R.; Morgan, A.; Nahum, E.; et al. The safety of sodium glucose transporter 2 inhibitors and trends in clinical and hemodynamic parameters in patients with left ventricular assist devices. Artif. Organs 2024, 48, 902–911. [Google Scholar] [CrossRef]
- Sammour, Y.; Nassif, M.; Magwire, M.; Thomas, M.; Fendler, T.; Khumri, T.; Sperry, B.W.; O’Keefe, J.; Kosiborod, M. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors in heart transplant patients with type 2 diabetes: Initial report from a cardiometabolic center of excellence. J. Heart Lung Transplant. 2021, 40, 426–429. [Google Scholar] [CrossRef]
- Ertuglu, L.A.; Porrini, E.; Hornum, M.; Demiray, A.; Afsar, B.; Ortiz, A.; Covic, A.; Rossing, P.; Kanbay, M. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors for diabetes after solid organ transplantation. Transpl. Int. 2021, 34, 1341–1359. [Google Scholar] [CrossRef]
- Armillotta, M.; Angeli, F.; Paolisso, P.; Belmonte, M.; Raschi, E.; Di Dalmazi, G.; Amicone, S.; Canton, L.; Fedele, D.; Suma, N.; et al. Cardiovascular therapeutic targets of sodium-glucose co-transporter 2 (SGLT2) inhibitors beyond heart failure. Pharmacol. Ther. 2025, 270, 108861. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, T.; Zhou, J. Effects of sodium-glucose cotransporter 2 inhibitors on cardiomyopathy: A meta-analysis. J. Endocrinol. Investig. 2025, 48, 2111–2122. [Google Scholar] [CrossRef]
- Nikolic, M.; Zivkovic, V.; Jovic, J.J.; Sretenovic, J.; Davidovic, G.; Simovic, S.; Djokovic, D.; Muric, N.; Bolevich, S.; Jakovljevic, V. SGLT2 inhibitors: A focus on cardiac benefits and potential mechanisms. Heart Fail. Rev. 2022, 27, 935–949. [Google Scholar] [CrossRef]
- Subramanian, M.; Sravani, V.; Krishna, S.P.; Bijjam, S.; Sunehra, C.; Yalagudri, S.; Saggu, D.K.; Narasimhan, C. Efficacy of SGLT2 inhibitors in patients with diabetes and nonobstructive hypertrophic cardiomyopathy. Am. J. Cardiol. 2023, 188, 80–86. [Google Scholar] [CrossRef]
- Jung, M.-H.; Cho, J.S.; Lee, S.-Y.; Youn, J.-C.; Choi, Y.; Chung, W.-B.; Lee, J.; Kang, D.; Kwon, W.; Kim, T.-S.; et al. Sodium–glucose cotransporter-2 inhibitors and clinical outcomes in patients with hypertrophic cardiomyopathy and diabetes: A population-based cohort study. Eur. J. Prev. Cardiol. 2025, 32, zwae345. [Google Scholar] [CrossRef]
- Wijnker, P.J.; Dinani, R.; van der Laan, N.C.; Algül, S.; Knollmann, B.C.; Verkerk, A.O.; Remme, C.A.; Zuurbier, C.J.; Kuster, D.W.; van der Velden, J. Hypertrophic cardiomyopathy dysfunction mimicked in human engineered heart tissue and improved by sodium–glucose cotransporter 2 inhibitors. Cardiovasc. Res. 2024, 120, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Augusto, S.N., Jr.; Issa, R.; Vanhentenrijk, S.; Kaelber, D.; Tang, W.W. Sodium-glucose cotransporter 2 inhibitors in patients with amyloidosis with or without heart failure. Am. J. Med. 2025, 138, 980–986. [Google Scholar] [CrossRef]
- Steinhardt, M.J.; Cejka, V.; Chen, M.; Bäuerlein, S.; Schäfer, J.; Adrah, A.; Ihne-Schubert, S.M.; Papagianni, A.; Kortüm, K.M.; Morbach, C.; et al. Safety and tolerability of SGLT2 inhibitors in cardiac amyloidosis—A clinical feasibility study. J. Clin. Med. 2024, 13, 283. [Google Scholar] [CrossRef] [PubMed]
- Porcari, A.; Cappelli, F.; Nitsche, C.; Tomasoni, D.; Sinigiani, G.; Longhi, S.; Bordignon, L.; Masri, A.; Serenelli, M.; Urey, M.; et al. SGLT2 inhibitor therapy in patients with transthyretin amyloid cardiomyopathy. J. Am. Coll. Cardiol. 2024, 83, 2411–2422. [Google Scholar] [CrossRef]
- Duhan, S.; Kurpad, K.; Keisham, B.; Shtembari, J.; Brener, A.; Kanakadandi, U.; Garg, A.; Adoni, N.A.; Mehta, S. GLP-1RA versus placebo in patients with heart failure and mildly reduced or preserved ejection fraction: An updated meta-analysis of randomized controlled trials. Int. J. Cardiol. 2025, 438, 133604. [Google Scholar] [CrossRef]
- Packer, M.; Zile, M.R.; Kramer, C.M.; Baum, S.J.; Litwin, S.E.; Menon, V.; Ge, J.; Weerakkody, G.J.; Ou, Y.; Bunck, M.C.; et al. Tirzepatide for heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 2025, 392, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-Y.; Yang, Q.; Cheng, X.-Y.; Ding, J.-C.; Hu, P.-F. Beyond weight loss: The potential of glucagon-like peptide-1 receptor agonists for treating heart failure with preserved ejection fraction. Heart Fail. Rev. 2025, 30, 17–38. [Google Scholar] [CrossRef]
- Huixing, L.; Di, F.; Daoquan, P. Effect of glucagon-like peptide-1 receptor agonists on prognosis of heart failure and cardiac function: A systematic review and meta-analysis of randomized controlled trials. Clin. Ther. 2023, 45, 17–30. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Januzzi, J.L.; Bruemmer, D.; Butalia, S.; Green, J.B.; Horton, W.B.; Knight, C.; Levi, M.; Rasouli, N.; Richardson, C.R. Heart failure: An underappreciated complication of diabetes. A consensus report of the American Diabetes Association. Diabetes Care 2022, 45, 1670–1690. [Google Scholar] [CrossRef] [PubMed]
- Ussher, J.R.; Drucker, D.J. Glucagon-like peptide 1 receptor agonists: Cardiovascular benefits and mechanisms of action. Nat. Rev. Cardiol. 2023, 20, 463–474. [Google Scholar] [CrossRef]
- Khalil, I.; Islam, M.R.; Kamrul-Hasan, A.; Nagendra, L.; Promi, S.A.; Sayed, M.A.; Rahman, M.T.; Sultana, N.; Tasmi, N.A.; Das, M.; et al. Comparative effectiveness of GLP-1 receptor agonists in patients with heart failure with preserved or minimally reduced ejection fraction: A comprehensive Bayesian network meta-analysis and network meta-regression. Endocr. Pract. 2025, 31, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Bryan Richard, S.; Huang, B.; Liu, G.; Yang, Y.; Luo, S. Impact of ivabradine on the cardiac function of chronic heart failure reduced ejection fraction: Meta-analysis of randomized controlled trials. Clin. Cardiol. 2021, 44, 463–471. [Google Scholar] [CrossRef]
- Benstoem, C.; Kalvelage, C.; Breuer, T.; Heussen, N.; Marx, G.; Stoppe, C.; Brandenburg, V. Ivabradine as adjuvant treatment for chronic heart failure. Cochrane Database Syst. Rev. 2020, 11, 1465–1858. [Google Scholar] [CrossRef]
- Ye, F.; Wang, X.; Wu, S.; Ma, S.; Zhang, Y.; Liu, G.; Liu, K.; Yang, Z.; Pang, X.; Xue, L.; et al. Sustained-release ivabradine hemisulfate in patients with systolic heart failure. J. Am. Coll. Cardiol. 2022, 80, 584–594. [Google Scholar] [CrossRef]
- Kamisah, Y.; Che Hassan, H.H. Therapeutic use and molecular aspects of ivabradine in cardiac remodeling: A review. Int. J. Mol. Sci. 2023, 24, 2801. [Google Scholar] [CrossRef]
- Kiuchi, S.; Ikeda, T. Heart Rate Reduction and the Prognosis of Heart Failure Focused on Ivabradine. J. Clin. Med. 2025, 14, 1074. [Google Scholar] [CrossRef] [PubMed]
- Bocchi, E.A.; Salemi, V.M.C. Ivabradine for treatment of heart failure. Expert Opin. Drug Saf. 2019, 18, 393–402. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.; Martinez, F.; et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Yang, M.; Henderson, A.D.; Talebi, A.; Atherton, J.J.; Chiang, C.-E.; Chopra, V.; Comin-Colet, J.; Kosiborod, M.N.; Kerr Saraiva, J.F.; Claggett, B.L.; et al. Effect of finerenone on the KCCQ in patients with HFmrEF/HFpEF: A prespecified analysis of FINEARTS-HF. J. Am. Coll. Cardiol. 2025, 85, 120–136. [Google Scholar] [CrossRef]
- Docherty, K.F.; Henderson, A.D.; Jhund, P.S.; Claggett, B.L.; Desai, A.S.; Mueller, K.; Viswanathan, P.; Scalise, A.; Lam, C.S.; Senni, M.; et al. Efficacy and safety of finerenone across the ejection fraction spectrum in heart failure with mildly reduced or preserved ejection fraction: A prespecified analysis of the FINEARTS-HF trial. Circulation 2025, 151, 45–58. [Google Scholar] [CrossRef]
- McDowell, K.; Docherty, K.F.; Campbell, R.T.; Henderson, A.D.; Jhund, P.S.; Claggett, B.L.; Desai, A.S.; Lay-Flurrie, J.; Hofmeister, L.; Scalise, A.; et al. Finerenone for heart failure and risk estimated by the PREDICT-HFpEF model: A secondary analysis of FINEARTS-HF. JAMA Cardiol. 2025, 10, 535–544. [Google Scholar] [CrossRef]
- Ostrominski, J.W.; Filippatos, G.; Claggett, B.L.; Miao, Z.M.; Desai, A.S.; Jhund, P.S.; Henderson, A.D.; Scheerer, M.F.; Rohwedder, K.; Amarante, F.; et al. Efficacy and Safety of Finerenone in Heart Failure With Preserved Ejection Fraction: A FINE-HEART Analysis. Heart Fail. 2025, 13, 102497. [Google Scholar]
- Vaduganathan, M.; Claggett, B.L.; Kulac, I.J.; Miao, Z.M.; Desai, A.S.; Jhund, P.S.; Henderson, A.D.; Brinker, M.; Lay-Flurrie, J.; Viswanathan, P.; et al. Effects of the nonsteroidal MRA finerenone with and without concomitant SGLT2 inhibitor use in heart failure. Circulation 2025, 151, 149–158. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Claggett, B.L.; Lam, C.S.; Pitt, B.; Senni, M.; Shah, S.J.; Voors, A.A.; Zannad, F.; Desai, A.S.; Jhund, P.S.; et al. Finerenone in patients with heart failure with mildly reduced or preserved ejection fraction: Rationale and design of the FINEARTS-HF trial. Eur. J. Heart Fail. 2024, 26, 1324–1333. [Google Scholar] [CrossRef] [PubMed]
- Ismahel, H.; Docherty, K.F. The role of finerenone in heart failure. Trends Cardiovasc. Med. 2025, 35, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.; Metra, M.; Solomon, S.D.; Adams, K.F.; Anand, I.; Arias-Mendoza, A.; Biering-Sørensen, T.; et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N. Engl. J. Med. 2021, 384, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Voors, A.A.; Cohen-Solal, A.; Metra, M.; Whellan, D.J.; Ezekowitz, J.A.; Böhm, M.; Teerlink, J.R.; Docherty, K.F.; Lopes, R.D.; et al. Effect of omecamtiv mecarbil on exercise capacity in chronic heart failure with reduced ejection fraction: The METEORIC-HF randomized clinical trial. JAMA 2022, 328, 259–269. [Google Scholar] [CrossRef]
- Ibrahim, R.; Olagunju, A.; Terrani, K.; Takamatsu, C.; Khludenev, G.; William, P. KCCQ total symptom score, clinical outcome measures, and adverse events associated with omecamtiv mecarbil for heart failure with reduced ejection fraction: A systematic review and meta-analysis of randomized controlled trials. Clin. Res. Cardiol. 2023, 112, 1067–1076. [Google Scholar] [CrossRef]
- Felker, G.M.; Solomon, S.D.; Claggett, B.; Diaz, R.; McMurray, J.J.; Metra, M.; Anand, I.; Crespo-Leiro, M.G.; Dahlström, U.; Goncalvesova, E.; et al. Assessment of omecamtiv mecarbil for the treatment of patients with severe heart failure: A post hoc analysis of data from the GALACTIC-HF randomized clinical trial. JAMA Cardiol. 2022, 7, 26–34. [Google Scholar] [CrossRef]
- Morelli, C.; Ingrasciotta, G.; Jacoby, D.; Masri, A.; Olivotto, I. Sarcomere protein modulation: The new frontier in cardiovascular medicine and beyond. Eur. J. Intern. Med. 2022, 102, 1–7. [Google Scholar] [CrossRef]
- Day, S.M.; Tardiff, J.C.; Ostap, E.M. Myosin modulators: Emerging approaches for the treatment of cardiomyopathies and heart failure. J. Clin. Investig. 2022, 132, e148557. [Google Scholar] [CrossRef] [PubMed]
- Shoji, S.; Mentz, R.J. Beyond quadruple therapy: The potential roles for ivabradine, vericiguat, and omecamtiv mecarbil in the therapeutic armamentarium. Heart Fail. Rev. 2024, 29, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Coats, A.J.; Tolppanen, H. Drug treatment of heart failure with reduced ejection fraction: Defining the role of vericiguat. Drugs 2021, 81, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Vitiello, L.; Milani, F.; Volterrani, M.; Rosano, G.M.; Tomino, C.; Bonassi, S. New therapeutics for heart failure worsening: Focus on vericiguat. J. Clin. Med. 2024, 13, 4209. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Reddy, Y.N.; Butler, J.; Anstrom, K.J.; Blaustein, R.O.; Bonaca, M.P.; Corda, S.; Ezekowitz, J.A.; Lam, C.S.; Lewis, E.F.; Lindenfeld, J.; et al. Vericiguat global study in participants with chronic heart failure: Design of the VICTOR trial. Eur. J. Heart Fail. 2025, 27, 209–218. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Lam, C.S.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; O’Connor, C.M.; Pieske, B.; Ponikowski, P.; Shah, S.J.; Solomon, S.D.; et al. Effect of vericiguat vs placebo on quality of life in patients with heart failure and preserved ejection fraction: The VITALITY-HFpEF randomized clinical trial. JAMA 2020, 324, 1512–1521. [Google Scholar] [CrossRef]
- Chew, D.S.; Li, Y.; Bigelow, R.; Cowper, P.A.; Anstrom, K.J.; Daniels, M.R.; Davidson-Ray, L.; Hernandez, A.F.; O’Connor, C.M.; Armstrong, P.W.; et al. Cost-effectiveness of vericiguat in patients with heart failure with reduced ejection fraction: The VICTORIA randomized clinical trial. Circulation 2023, 148, 1087–1098. [Google Scholar] [CrossRef]
- Chen, C.; Lv, J.; Liu, C. Vericiguat in patients with heart failure across the spectrum of left ventricular ejection fraction: A patient-level, pooled meta-analysis of VITALITY-HFpEF and VICTORIA. Front. Endocrinol. 2024, 15, 1335531. [Google Scholar] [CrossRef]
- Baddour, L.M.; Esquer Garrigos, Z.; Rizwan Sohail, M.; Havers-Borgersen, E.; Krahn, A.D.; Chu, V.H.; Radke, C.S.; Avari-Silva, J.; El-Chami, M.F.; Miro, J.M.; et al. Update on cardiovascular implantable electronic device infections and their prevention, diagnosis, and management: A scientific statement from the American Heart Association. Circulation 2024, 149, e201–e216. [Google Scholar] [CrossRef]
- Al-Khatib, S.M. Cardiac implantable electronic devices. N. Engl. J. Med. 2024, 390, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.M.; Desai, M.Y.; Do, M.M.; Butler, J.; Chung, M.K.; Epstein, A.E.; Guglin, M.E.; Levy, W.C.; Piccini, J.P.; Bhave, N.M.; et al. ACC/AHA/ASE/HFSA/HRS/SCAI/SCCT/SCMR 2025 Appropriate Use Criteria for Implantable Cardioverter-Defibrillators, Cardiac Resynchronization Therapy, and Pacing. J. Am. Coll. Cardiol. 2025, 85, 1213–1285. [Google Scholar] [CrossRef]
- Cevik, C.; Perez-Verdia, A.; Nugent, K. Implantable cardioverter defibrillators and their role in heart failure progression. Europace 2009, 11, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Tracy, C.M.; Epstein, A.E.; Darbar, D.; DiMarco, J.P.; Dunbar, S.B.; Estes, N.M.; Ferguson, T.B.; Hammill, S.C.; Karasik, P.E.; Link, M.S.; et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2013, 61, e6–e75. [Google Scholar]
- Wallace, N.; Wong, K.; Desmarais, T.; Park, J.J.; Krummen, D.; Lim, W.-H.; Campagnari, C.; Yagil, A.; Greenberg, B. Optimizing the primary prevention of sudden cardiac death in patients with heart failure. J. Am. Coll. Cardiol. 2025, 86, 374–395. [Google Scholar] [CrossRef]
- Abdelhamid, M.; Rosano, G.; Metra, M.; Adamopoulos, S.; Boehm, M.; Chioncel, O.; Filippatos, G.; Jankowska, E.A.; Lopatin, Y.; Lund, L.; et al. Prevention of sudden death in heart failure with reduced ejection fraction: Do we still need an implantable cardioverter-defibrillator for primary prevention? Eur. J. Heart Fail. 2022, 24, 1460–1466. [Google Scholar] [CrossRef]
- Cappannoli, L.; Scacciavillani, R.; Rocco, E.; Perna, F.; Narducci, M.L.; Vaccarella, M.; D’Amario, D.; Pelargonio, G.; Massetti, M.; Crea, F.; et al. Cardiac contractility modulation for patient with refractory heart failure: An updated evidence-based review. Heart Fail. Rev. 2021, 26, 227–235. [Google Scholar] [CrossRef]
- Patel, P.A.; Nadarajah, R.; Ali, N.; Gierula, J.; Witte, K.K. Cardiac contractility modulation for the treatment of heart failure with reduced ejection fraction. Heart Fail. Rev. 2021, 26, 217–226. [Google Scholar] [CrossRef]
- Suruagy-Motta, R.F.; Fukunaga, C.K.; da Silva, E.V.; Neves, G.R.; Dos Santos, K.D.; Vieira, L.L.; Sampaio, M.H.; de Pádua Carvalho, B.C.; Júnior, E.F.; Brígido, A.R.; et al. Cardiac Contractility Modulation In Symptomatic Heart Failure With Reduced Ejection Fraction: A Systematic Review and Single-Arm Meta-Analysis. J. Cardiovasc. Electrophysiol. 2025, 36, 2544–2555. [Google Scholar] [CrossRef]
- Kuschyk, J.; Falk, P.; Demming, T.; Marx, O.; Morley, D.; Rao, I.; Burkhoff, D. Long-term clinical experience with cardiac contractility modulation therapy delivered by the Optimizer Smart system. Eur. J. Heart Fail. 2021, 23, 1160–1169. [Google Scholar] [CrossRef]
- Talha, K.M.; Anker, S.D.; Burkhoff, D.; Filippatos, G.; Lam, C.S.; Stone, G.W.; Wazni, O.; Butler, J. Role of cardiac contractility modulation in heart failure with a higher ejection fraction. J. Card. Fail. 2022, 28, 1717–1726. [Google Scholar] [CrossRef]
- Tschöpe, C.; Kherad, B.; Klein, O.; Lipp, A.; Blaschke, F.; Gutterman, D.; Burkhoff, D.; Hamdani, N.; Spillmann, F.; van Linthout, S. Cardiac contractility modulation: Mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur. J. Heart Fail. 2019, 21, 14–22. [Google Scholar] [CrossRef]
- Carey, R.M.; Calhoun, D.A.; Bakris, G.L.; Brook, R.D.; Daugherty, S.L.; Dennison-Himmelfarb, C.R.; Egan, B.M.; Flack, J.M.; Gidding, S.S.; Judd, E. Resistant hypertension: Detection, evaluation, and management: A scientific statement from the American Heart Association. Hypertension 2018, 72, e53–e90. [Google Scholar] [CrossRef] [PubMed]
- Wallbach, M.; Boehning, E.; Lehnig, L.-Y.; Schroer, C.; Mueller, G.A.; Wachter, R.; Lueders, S.; Zenker, D.; Koziolek, M.J. Safety profile of baroreflex activation therapy (NEO) in patients with resistant hypertension. J. Hypertens. 2018, 36, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Halbach, M.; Grothaus, D.; Hoffmann, F.; Madershahian, N.; Kuhr, K.; Reuter, H. Baroreflex activation therapy reduces frequency and duration of hypertension-related hospitalizations in patients with resistant hypertension. Clin. Auton. Res. 2020, 30, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Coats, A.J.; Abraham, W.T.; Zile, M.R.; Lindenfeld, J.A.; Weaver, F.A.; Fudim, M.; Bauersachs, J.; Duval, S.; Galle, E.; Zannad, F. Baroreflex activation therapy with the Barostim™ device in patients with heart failure with reduced ejection fraction: A patient level meta-analysis of randomized controlled trials. Eur. J. Heart Fail. 2022, 24, 1665–1673. [Google Scholar] [CrossRef]
- Zile, M.R.; Lindenfeld, J.; Weaver, F.A.; Zannad, F.; Galle, E.; Rogers, T.; Abraham, W.T. Baroreflex activation therapy in patients with heart failure and a reduced ejection fraction: Long-term outcomes. Eur. J. Heart Fail. 2024, 26, 1051–1061. [Google Scholar] [CrossRef]
- Shi, R.; Sun, T.; Wang, M.; Xiang, Q.; Ding, Y.; Yin, S.; Chen, Y.; Shen, L.; Yu, P.; Chen, X. Baroreflex activation therapy for heart failure with reduced ejection fraction: A comprehensive systematic review and meta-analysis. Heliyon 2024, 10, e24177. [Google Scholar] [CrossRef]
- Spatz, E.S.; Ginsburg, G.S.; Rumsfeld, J.S.; Turakhia, M.P. Wearable digital health technologies for monitoring in cardiovascular medicine. N. Engl. J. Med. 2024, 390, 346–356. [Google Scholar] [CrossRef]
- Abraham, W.T.; Adamson, P.B.; Bourge, R.C.; Aaron, M.F.; Costanzo, M.R.; Stevenson, L.W.; Strickland, W.; Neelagaru, S.; Raval, N.; Krueger, S.; et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: A randomised controlled trial. Lancet 2011, 377, 658–666. [Google Scholar] [CrossRef]
- Zile, M.R.; Mehra, M.R.; Ducharme, A.; Sears, S.F.; Desai, A.S.; Maisel, A.; Paul, S.; Smart, F.; Grafton, G.; Kumar, S.; et al. Hemodynamically-guided management of heart failure across the ejection fraction spectrum: The GUIDE-HF trial. Heart Fail. 2022, 10, 931–944. [Google Scholar]
- Clephas, P.R.; Radhoe, S.P.; Boersma, E.; Gregson, J.; Jhund, P.S.; Abraham, W.T.; McMurray, J.J.; de Boer, R.A.; Brugts, J.J. Efficacy of pulmonary artery pressure monitoring in patients with chronic heart failure: A meta-analysis of three randomized controlled trials. Eur. Heart J. 2023, 44, 3658–3668. [Google Scholar] [CrossRef]
- Urban, S.; Szymański, O.; Grzesiak, M.; Tokarczyk, W.; Błaziak, M.; Jura, M.; Fułek, M.; Fułek, K.; Iwanek, G.; Gajewski, P.; et al. Effectiveness of remote pulmonary artery pressure estimating in heart failure: Systematic review and meta-analysis. Sci. Rep. 2024, 14, 12929. [Google Scholar] [CrossRef] [PubMed]
- Lindenfeld, J.; Costanzo, M.R.; Zile, M.R.; Ducharme, A.; Troughton, R.; Maisel, A.; Mehra, M.R.; Paul, S.; Sears, S.F.; Smart, F.; et al. Implantable hemodynamic monitors improve survival in patients with heart failure and reduced ejection fraction. J. Am. Coll. Cardiol. 2024, 83, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Brugts, J.J.; Radhoe, S.P.; Clephas, P.R.; Aydin, D.; van Gent, M.W.; Szymanski, M.K.; Rienstra, M.; Van den Heuvel, M.H.; Da Fonseca, C.A.; Linssen, G.C.; et al. Remote haemodynamic monitoring of pulmonary artery pressures in patients with chronic heart failure (MONITOR-HF): A randomised clinical trial. Lancet 2023, 401, 2113–2123. [Google Scholar] [CrossRef]
- Kennel, P.J.; Rosenblum, H.; Axsom, K.M.; Alishetti, S.; Brener, M.; Horn, E.; Kirtane, A.J.; Lin, E.; Griffin, J.M.; Maurer, M.S. Remote cardiac monitoring in patients with heart failure: A review. JAMA Cardiol. 2022, 7, 556–564. [Google Scholar] [CrossRef]
- Milligan, G.P.; Minniefield, N.; Raju, B.; Patel, N.; Michelis, K.; van Zyl, J.; Cheeran, D.; Alam, A. Effectiveness and safety profile of remote pulmonary artery hemodynamic monitoring in a “real-world” Veterans Affairs healthcare system. Am. J. Cardiol. 2022, 184, 56–62. [Google Scholar] [CrossRef]
- Boriani, G.; Imberti, J.F.; Bonini, N.; Carriere, C.; Mei, D.A.; Zecchin, M.; Piccinin, F.; Vitolo, M.; Sinagra, G. Remote multiparametric monitoring and management of heart failure patients through cardiac implantable electronic devices. Eur. J. Intern. Med. 2023, 115, 1–9. [Google Scholar] [CrossRef]
- Mastoris, I.; van Spall, H.G.; Sheldon, S.H.; Pimentel, R.C.; Steinkamp, L.; Shah, Z.; Al-Khatib, S.M.; Singh, J.P.; Sauer, A.J. Emerging implantable-device technology for patients at the intersection of electrophysiology and heart failure interdisciplinary care. J. Card. Fail. 2022, 28, 991–1015. [Google Scholar] [CrossRef]
- Hawkins, N.M.; Virani, S.A.; Sperrin, M.; Buchan, I.E.; McMurray, J.J.; Krahn, A.D. Predicting heart failure decompensation using cardiac implantable electronic devices: A review of practices and challenges. Eur. J. Heart Fail. 2016, 18, 977–986. [Google Scholar] [CrossRef]
- Schwamm, L.H.; Chumbler, N.; Brown, E.; Fonarow, G.C.; Berube, D.; Nystrom, K.; Suter, R.; Zavala, M.; Polsky, D.; Radhakrishnan, K.; et al. Recommendations for the implementation of telehealth in cardiovascular and stroke care: A policy statement from the American Heart Association. Circulation 2017, 135, e24–e44. [Google Scholar] [CrossRef] [PubMed]
- Ausin, J.L.; Ramos, J.; Lorido, A.; Molina, P.; Duque-Carrillo, J.F. Wearable and noninvasive device for integral congestive heart failure management in the IoMT paradigm. Sensors 2023, 23, 7055. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, R.C.; Kaza, N.; Charalambous, A.; Milne, A.C.; Sathiyamurthy, S.; Banerjee, J. Cardiac output measurement in neonates and children using noninvasive electrical bioimpedance compared with standard methods: A systematic review and meta-analysis. Crit. Care Med. 2022, 50, 126–137. [Google Scholar] [CrossRef]
- Cybulski, G.; Michalak, E.; Koźluk, E.; Piątkowska, A.; Niewiadomski, W. Stroke volume and systolic time intervals: Beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions. Med. Biol. Eng. Comput. 2004, 42, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Represas, A.; Mourot, L. Stroke volume and cardiac output measurement in cardiac patients during a rehabilitation program: Comparison between tonometry, impedancemetry and echocardiography. Int. J. Cardiovasc. Imaging 2020, 36, 447–455. [Google Scholar] [CrossRef]
- Cheung, C.H.; Khaw, M.L.; Tam, V.C.; Ying, M.T.; Lee, S.W. Performance evaluation of a portable bioimpedance cardiac output monitor for measuring hemodynamic changes in athletes during a head-up tilt test. J. Appl. Physiol. 2020, 128, 1146–1152. [Google Scholar] [CrossRef]
- Fellahi, J.-L.; Caille, V.; Charron, C.; Deschamps-Berger, P.-H.; Vieillard-Baron, A. Noninvasive assessment of cardiac index in healthy volunteers: A comparison between thoracic impedance cardiography and Doppler echocardiography. Anesth. Analg. 2009, 108, 1553–1559. [Google Scholar] [CrossRef]
- Armoundas, A.A.; Narayan, S.M.; Arnett, D.K.; Spector-Bagdady, K.; Bennett, D.A.; Celi, L.A.; Friedman, P.A.; Gollob, M.H.; Hall, J.L.; Kwitek, A.E.; et al. Use of artificial intelligence in improving outcomes in heart disease: A scientific statement from the American Heart Association. Circulation 2024, 149, e1028–e1050. [Google Scholar] [CrossRef] [PubMed]
- Nachman, D.; Rahamim, E.; Kolben, Y.; Mengesha, B.; Elbaz-Greener, G.; Amir, O.; Asleh, R. In search of clinical impact: Advanced monitoring technologies in daily heart failure care. J. Clin. Med. 2021, 10, 4692. [Google Scholar] [CrossRef] [PubMed]
- Committee, W.; Spooner, M.T.; Messé, S.R.; Chaturvedi, S.; Do, M.M.; Gluckman, T.J.; Han, J.K.; Russo, A.M.; Saxonhouse, S.J.; Wiggins, N.B. 2024 ACC Expert Consensus Decision Pathway on Practical Approaches for Arrhythmia Monitoring After Stroke: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2025, 85, 657–681. [Google Scholar]
- Li, Y.; Li, Y.; Zhang, R.; Li, S.; Liu, Z.; Zhang, J.; Fu, Y. Progress in wearable acoustical sensors for diagnostic applications. Biosens. Bioelectron. 2023, 237, 115509. [Google Scholar] [CrossRef]
- Mao, P.; Li, H.; Yu, Z. A review of skin-wearable sensors for non-invasive health monitoring applications. Sensors 2023, 23, 3673. [Google Scholar] [CrossRef]
- Bonow, R.O.; O’Gara, P.T.; Adams, D.H.; Badhwar, V.; Bavaria, J.E.; Elmariah, S.; Hung, J.W.; Lindenfeld, J.; Morris, A.A.; Satpathy, R.; et al. 2020 focused update of the 2017 ACC expert consensus decision pathway on the management of mitral regurgitation: A report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2020, 75, 2236–2270. [Google Scholar] [CrossRef]
- Dragona, V.-M.; Sideris, K.; Liori, S. The role of transcatheter edge-to-edge repair in functional mitral regurgitation: Key takeaways from the MATTERHORN and RESHAPE-HF2 trials. Heart Fail. Rev. 2025, 30, 1133–1138. [Google Scholar] [CrossRef]
- Anker, S.D.; Friede, T.; von Bardeleben, R.-S.; Butler, J.; Khan, M.-S.; Diek, M.; Heinrich, J.; Geyer, M.; Placzek, M.; Ferrari, R.; et al. Transcatheter valve repair in heart failure with moderate to severe mitral regurgitation. N. Engl. J. Med. 2024, 391, 1799–1809. [Google Scholar] [CrossRef] [PubMed]
- Davidson, L.J.; Davidson, C.J. Transcatheter treatment of valvular heart disease: A review. JAMA 2021, 325, 2480–2494. [Google Scholar] [CrossRef]
- Mengi, S.; Januzzi, J.L.; Cavalcante, J.L.; Avvedimento, M.; Galhardo, A.; Bernier, M.; Rodes-Cabau, J. Aortic stenosis, heart failure, and aortic valve replacement. JAMA Cardiol. 2024, 9, 1159–1168. [Google Scholar] [CrossRef]
- Rahhab, Z.; El Faquir, N.; Tchetche, D.; Delgado, V.; Kodali, S.; Mara Vollema, E.; Bax, J.; Leon, M.B.; van Mieghem, N.M. Expanding the indications for transcatheter aortic valve implantation. Nat. Rev. Cardiol. 2020, 17, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Sa, M.P.B.; Simonato, M.; van den Eynde, J.; Cavalcanti, L.R.P.; Roever, L.; Bisleri, G.; Dokollari, A.; Dvir, D.; Zhigalov, K.; Ruhparwar, A.; et al. Asymptomatic severe aortic stenosis, bicuspid aortic valves and moderate aortic stenosis in heart failure: New indications for transcatheter aortic valve implantation. Trends Cardiovasc. Med. 2021, 31, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Wang, L.; Tse, G.; Dai, T.; Wang, L.; Xiao, Z.; Liu, T.; Ren, F. Effectiveness and safety of transcatheter aortic valve replacement in elderly people with severe aortic stenosis with different types of heart failure. BMC Cardiovasc. Disord. 2023, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- Jalava, M.P.; Laakso, T.; Virtanen, M.; Niemelä, M.; Ahvenvaara, T.; Tauriainen, T.; Maaranen, P.; Husso, A.; Kinnunen, E.-M.; Dahlbacka, S.; et al. Transcatheter and surgical aortic valve replacement in patients with recent acute heart failure. Ann. Thorac. Surg. 2020, 109, 110–117. [Google Scholar] [CrossRef]
- Fairbairn, T.; Kemp, I.; Young, A.; Ronayne, C.; Barton, J.; Crowe, J.; McQuade, L.; Clarkson, N.; Sionas, M.; Tobin, A.; et al. Effect of transcatheter aortic valve implantation vs surgical aortic valve replacement on all-cause mortality in patients with aortic stenosis: A randomized clinical trial. JAMA 2022, 327, 1875–1887. [Google Scholar]
- Boskovski, M.T.; Nguyen, T.C.; McCabe, J.M.; Kaneko, T. Outcomes of transcatheter aortic valve replacement in patients with severe aortic stenosis: A review of a disruptive technology in aortic valve surgery. JAMA Surg. 2020, 155, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.C. Expanding TAVR Use in Younger Patients and Bicuspid Valves: Risks, Evidence Gaps, and Regulatory Action. Ann. Thorac. Surg. 2025, 119, 1166–1174. [Google Scholar]
- Beerkens, F.J.; Tang, G.H.; Kini, A.S.; Lerakis, S.; Dangas, G.D.; Mehran, R.; Khera, S.; Goldman, M.; Fuster, V.; Bhatt, D.L.; et al. Transcatheter aortic valve replacement beyond severe aortic stenosis: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2025, 85, 944–964. [Google Scholar]
- Members, W.C.; Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., III; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar]
- Donal, E.; Dreyfus, J.; Leurent, G.; Coisne, A.; Leroux, P.-Y.; Ganivet, A.; Sportouch, C.; Lavie-Badie, Y.; Guerin, P.; Rouleau, F.; et al. Transcatheter edge-to-edge repair for severe isolated tricuspid regurgitation: The Tri. Fr Randomized clinical trial. JAMA 2025, 333, 124–132. [Google Scholar] [CrossRef]
- Davidson, L.J.; Tang, G.H.; Ho, E.C.; Fudim, M.; Frisoli, T.; Camaj, A.; Bowers, M.T.; Masri, S.C.; Atluri, P.; Chikwe, J.; et al. The tricuspid valve: A review of pathology, imaging, and current treatment options: A scientific statement from the American Heart Association. Circulation 2024, 149, e1223–e1238. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.T. Tricuspid regurgitation. N. Engl. J. Med. 2023, 388, 1876–1891. [Google Scholar] [CrossRef] [PubMed]
- Taramasso, M.; Benfari, G.; van der Bijl, P.; Alessandrini, H.; Attinger-Toller, A.; Biasco, L.; Lurz, P.; Braun, D.; Brochet, E.; Connelly, K.A.; et al. Transcatheter versus medical treatment of patients with symptomatic severe tricuspid regurgitation. J. Am. Coll. Cardiol. 2019, 74, 2998–3008. [Google Scholar] [CrossRef]
- Praz, F.; Beyersdorf, F.; Haugaa, K.; Prendergast, B. Valvular heart disease: From mechanisms to management. Lancet 2024, 403, 1576–1589. [Google Scholar] [CrossRef] [PubMed]
- Parikh, P.B.; Mack, M.; Stone, G.W.; Anker, S.D.; Gilchrist, I.C.; Kalogeropoulos, A.P.; Packer, M.; Skopicki, H.A.; Butler, J. Transcatheter aortic valve replacement in heart failure. Eur. J. Heart Fail. 2024, 26, 460–470. [Google Scholar] [CrossRef]
- Metra, M.; Tomasoni, D.; Adamo, M.; Anker, S.D.; Bayes-Genis, A.; Von Bardeleben, R.S.; Böhm, M.; Donal, E.; Filippatos, G.S.; Maisano, F.; et al. Evidence Generation and Implementation of Transcatheter Interventions for Atrioventricular Valvular Heart Disease in Heart Failure: Current Status and Future Directions. Circulation 2025, 151, 1342–1363. [Google Scholar] [CrossRef]
- Gopinathannair, R.; Cornwell, W.K.; Dukes, J.W.; Ellis, C.R.; Hickey, K.T.; Joglar, J.A.; Pagani, F.D.; Roukoz, H.; Slaughter, M.S.; Patton, K.K. Device therapy and arrhythmia management in left ventricular assist device recipients: A scientific statement from the American Heart Association. Circulation 2019, 139, e967–e989. [Google Scholar] [CrossRef]
- Givertz, M.M.; DeFilippis, E.M.; Colvin, M.; Darling, C.E.; Elliott, T.; Hamad, E.; Hiestand, B.C.; Martindale, J.L.; Pinney, S.P.; Shah, K.B.; et al. HFSA/SAEM/ISHLT clinical expert consensus document on the emergency management of patients with ventricular assist devices. J. Card. Fail. 2019, 25, 494–515. [Google Scholar] [CrossRef]
- Aleksova, N.; Chih, S. The role of durable left ventricular assist devices in advanced heart failure: Would my patient benefit? Can. J. Cardiol. 2017, 33, 540–543. [Google Scholar] [CrossRef]
- Miller, L.W.; Rogers, J.G. Evolution of left ventricular assist device therapy for advanced heart failure: A review. JAMA Cardiol. 2018, 3, 650–658. [Google Scholar] [CrossRef]
- Estep, J.D.; Nicoara, A.; Cavalcante, J.; Chang, S.M.; Cole, S.P.; Cowger, J.; Daneshmand, M.A.; Hoit, B.D.; Kapur, N.K.; Kruse, E.; et al. Recommendations for multimodality imaging of patients with left ventricular assist devices and temporary mechanical support: Updated recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2024, 37, 820–871. [Google Scholar] [CrossRef]
- Varshney, A.S.; DeFilippis, E.M.; Cowger, J.A.; Netuka, I.; Pinney, S.P.; Givertz, M.M. Trends and outcomes of left ventricular assist device therapy: JACC focus seminar. J. Am. Coll. Cardiol. 2022, 79, 1092–1107. [Google Scholar] [CrossRef]
- Lander, M.; Bhardwaj, A.; Kanwar, M. Selection and management considerations to enhance outcomes in patients supported by left ventricular assist devices. Curr. Opin. Cardiol. 2022, 37, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Goldstein, D.J.; Cleveland, J.C.; Cowger, J.A.; Hall, S.; Salerno, C.T.; Naka, Y.; Horstmanshof, D.; Chuang, J.; Wang, A.; et al. Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial. JAMA 2022, 328, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Francica, A.; Loforte, A.; Attisani, M.; Maiani, M.; Iacovoni, A.; Nisi, T.; Comisso, M.; Terzi, A.; De Bonis, M.; Vendramin, I.; et al. Five-year outcome after continuous flow LVAD with full-magnetic (HeartMate 3) versus hybrid levitation system (HeartWare): A propensity-score matched study from an all-comers multicentre registry. Transpl. Int. 2023, 36, 11675. [Google Scholar] [CrossRef]
- Tedford, R.J.; Leacche, M.; Lorts, A.; Drakos, S.G.; Pagani, F.D.; Cowger, J. Durable mechanical circulatory support: JACC scientific statement. J. Am. Coll. Cardiol. 2023, 82, 1464–1481. [Google Scholar] [CrossRef]
- Moeller, C.M.; Valledor, A.F.; Oren, D.; Rubinstein, G.; Sayer, G.T.; Uriel, N. Evolution of Mechanical Circulatory Support for advanced heart failure. Prog. Cardiovasc. Dis. 2024, 82, 135–146. [Google Scholar] [CrossRef]
- Guglin, M.; Zucker, M.J.; Borlaug, B.A.; Breen, E.; Cleveland, J.; Johnson, M.R.; Panjrath, G.S.; Patel, J.K.; Starling, R.C.; Bozkurt, B. Evaluation for heart transplantation and LVAD implantation: JACC council perspectives. J. Am. Coll. Cardiol. 2020, 75, 1471–1487. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Leiro, M.G.; Costanzo, M.R.; Gustafsson, F.; Khush, K.K.; Macdonald, P.S.; Potena, L.; Stehlik, J.; Zuckermann, A.; Mehra, M.R. Heart transplantation: Focus on donor recovery strategies, left ventricular assist devices, and novel therapies. Eur. Heart J. 2022, 43, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Isath, A.; Vukićević, M.; Moayedifar, R.; Zuckermann, A.; Mehra, M.R. Evolving Paradigms and Future Frontiers in Heart Transplantation in the Modern Era: A State-of-Art Focus Review. J. Card. Fail. 2025; in press. [Google Scholar] [CrossRef]
- Coniglio, A.C.; Patel, C.B.; Kittleson, M.; Schlendorf, K.; Schroder, J.N.; DeVore, A.D. Innovations in heart transplantation: A review. J. Card. Fail. 2022, 28, 467–476. [Google Scholar] [CrossRef]
- DeFilippis, E.M.; Khush, K.K.; Farr, M.A.; Fiedler, A.; Kilic, A.; Givertz, M.M. Evolving characteristics of heart transplantation donors and recipients: JACC focus seminar. J. Am. Coll. Cardiol. 2022, 79, 1108–1123. [Google Scholar] [CrossRef] [PubMed]
- Chrysakis, N.; Magouliotis, D.E.; Spiliopoulos, K.; Athanasiou, T.; Briasoulis, A.; Triposkiadis, F.; Skoularigis, J.; Xanthopoulos, A. Heart transplantation. J. Clin. Med. 2024, 13, 558. [Google Scholar] [CrossRef]
- Zhou, A.L.; Etchill, E.W.; Giuliano, K.A.; Shou, B.L.; Sharma, K.; Choi, C.W.; Kilic, A. Bridge to transplantation from mechanical circulatory support: A narrative review. J. Thorac. Dis. 2021, 13, 6911. [Google Scholar] [CrossRef]
- Boulet, J.; Wanderley, M.R., Jr.; Mehra, M.R. Contemporary left ventricular assist device therapy as a bridge or alternative to transplantation. Transplantation 2024, 108, 1333–1341. [Google Scholar] [CrossRef]
- Lala, A.; Rowland, J.C.; Ferket, B.S.; Gelijns, A.C.; Bagiella, E.; Pinney, S.P.; Moskowitz, A.J.; Miller, M.A.; Pagani, F.D.; Mancini, D.M. Strategies of wait-listing for heart transplant vs durable mechanical circulatory support alone for patients with advanced heart failure. JAMA Cardiol. 2020, 5, 652–659. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Kobashigawa, J.A. Cardiac transplantation: Current outcomes and contemporary controversies. JACC Heart Fail. 2017, 5, 857–868. [Google Scholar] [CrossRef]
- Masarone, D.; Kittleson, M.M.; Falco, L.; Martucci, M.L.; Catapano, D.; Brescia, B.; Petraio, A.; De Feo, M.; Pacileo, G. The abc of heart transplantation—Part 1: Indication, eligibility, donor selection, and surgical technique. J. Clin. Med. 2023, 12, 5217. [Google Scholar] [CrossRef] [PubMed]
- Sciacqua, A.; Succurro, E.; Armentaro, G.; Miceli, S.; Pastori, D.; Rengo, G.; Sesti, G. Pharmacological treatment of type 2 diabetes in elderly patients with heart failure: Randomized trials and beyond. Heart Fail. Rev. 2023, 28, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Araujo, C.S.; Marco, I.; Restrepo-Cordoba, M.A.; Vila Costa, I.; Perez-Villacastin, J.; Goirigolzarri-Artaza, J. An observational study of evidence-based therapies in older patients with heart failure with reduced ejection fraction: Insights from a dedicated heart failure clinic. J. Clin. Med. 2024, 13, 7171. [Google Scholar] [CrossRef]
- Hashemi, A.; Kwak, M.J.; Goyal, P. Pharmacologic management of heart failure with preserved ejection fraction (HFpEF) in older adults. Drugs Aging 2025, 42, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Hellenkamp, K.; Nolte, K.; von Haehling, S. Pharmacological treatment options for heart failure with reduced ejection fraction: A 2022 update. Expert Opin. Pharmacother. 2022, 23, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Committee, W.; Hollenberg, S.M.; Stevenson, L.W.; Ahmad, T.; Bozkurt, B.; Butler, J.; Davis, L.L.; Drazner, M.H.; Kirkpatrick, J.N.; Morris, A.A.; et al. 2024 ACC expert consensus decision pathway on clinical assessment, management, and trajectory of patients hospitalized with heart failure focused update: A report of the American College of Cardiology solution set oversight committee. J. Am. Coll. Cardiol. 2024, 84, 1241–1267. [Google Scholar]
- Scheen, A.J.; Bonnet, F. Efficacy and safety profile of SGLT2 inhibitors in the elderly: How is the benefit/risk balance? Diabetes Metab. 2023, 49, 101419. [Google Scholar] [CrossRef]
- Aldafas, R.; Crabtree, T.; Alkharaiji, M.; Vinogradova, Y.; Idris, I. Sodium-glucose cotransporter-2 inhibitors (SGLT2) in frail or older people with type 2 diabetes and heart failure: A systematic review and meta-analysis. Age Ageing 2024, 53, afad254. [Google Scholar] [CrossRef]
- Taylor, R.S.; Dalal, H.M.; Zwisler, A.-D. Cardiac rehabilitation for heart failure:‘Cinderella’or evidence-based pillar of care? Eur. Heart J. 2023, 44, 1511–1518. [Google Scholar] [CrossRef]
- Chen, Z.; Li, M.; Yin, C.; Fang, Y.; Zhu, Y.; Feng, J. Effects of cardiac rehabilitation on elderly patients with Chronic heart failure: A meta-analysis and systematic review. PLoS ONE 2022, 17, e0273251. [Google Scholar] [CrossRef]
- Pandey, A.; Kitzman, D.W.; Nelson, M.B.; Pastva, A.M.; Duncan, P.; Whellan, D.J.; Mentz, R.J.; Chen, H.; Upadhya, B.; Reeves, G.R. Frailty and effects of a multidomain physical rehabilitation intervention among older patients hospitalized for acute heart failure: A secondary analysis of a randomized clinical trial. JAMA Cardiol. 2023, 8, 167–176. [Google Scholar] [CrossRef]
- Arany, Z. Peripartum cardiomyopathy. N. Engl. J. Med. 2024, 390, 154–164. [Google Scholar] [CrossRef]
- Mehta, L.S.; Warnes, C.A.; Bradley, E.; Burton, T.; Economy, K.; Mehran, R.; Safdar, B.; Sharma, G.; Wood, M.; Valente, A.M.; et al. Cardiovascular considerations in caring for pregnant patients: A scientific statement from the American Heart Association. Circulation 2020, 141, e884–e903. [Google Scholar] [CrossRef]
- Sliwa, K.; Bauersachs, J.; Arany, Z.; Spracklen, T.F.; Hilfiker-Kleiner, D. Peripartum cardiomyopathy: From genetics to management. Eur. Heart J. 2021, 42, 3094–3102. [Google Scholar] [CrossRef]
- van der Meer, P.; van Essen, B.J.; Viljoen, C.; Böhm, M.; Jackson, A.; Hilfiker-Kleiner, D.; Hoevelmann, J.; Mebazaa, A.; Farhan, H.A.; Goland, S.; et al. Bromocriptine treatment and outcomes in peripartum cardiomyopathy: The EORP PPCM registry. Eur. Heart J. 2025, 46, 1017–1027. [Google Scholar] [CrossRef]
- Force, T. The International Society for Heart and Lung Transplantation/Heart Failure Society of America Guideline on Acute Mechanical Circulatory Support. J. Card. Fail. 2023, 29, 304–374. [Google Scholar] [CrossRef]
- Pandey, A.K.; Bhatt, D.L.; Pandey, A.; Marx, N.; Cosentino, F.; Pandey, A.; Verma, S. Mechanisms of benefits of sodium-glucose cotransporter 2 inhibitors in heart failure with preserved ejection fraction. Eur. Heart J. 2023, 44, 3640–3651. [Google Scholar] [CrossRef]
- Zou, X.; Shi, Q.; Vandvik, P.O.; Guyatt, G.; Lang, C.C.; Parpia, S.; Wang, S.; Agarwal, A.; Zhou, Y.; Zhu, Y.; et al. Sodium–glucose cotransporter-2 inhibitors in patients with heart failure: A systematic review and meta-analysis. Ann. Intern. Med. 2022, 175, 851–861. [Google Scholar] [CrossRef]
- Ndumele, C.E.; Neeland, I.J.; Tuttle, K.R.; Chow, S.L.; Mathew, R.O.; Khan, S.S.; Coresh, J.; Baker-Smith, C.M.; Carnethon, M.R.; Despres, J.-P.; et al. A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: A scientific statement from the American Heart Association. Circulation 2023, 148, 1636–1664. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Wang, A.Y.-M. Personalizing heart failure management in chronic kidney disease patients. Nephrol. Dial. Transplant. 2022, 37, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- De Luca, G.; Matucci-Cerinic, M.; Mavrogeni, S.I. Diagnosis and management of primary heart involvement in systemic sclerosis. Curr. Opin. Rheumatol. 2024, 36, 76–93. [Google Scholar] [CrossRef] [PubMed]
- De Luca, G.; De Santis, M.; Batani, V.; Tonutti, A.; Campochiaro, C.; Palmisano, A.; Vignale, D.; Motta, F.; Monti, L.; Francone, M.; et al. Immunosuppressive therapy to treat newly diagnosed primary heart involvement in patients with systemic sclerosis: An Italian cardiac magnetic resonance based study. In Seminars in Arthritis and Rheumatism; WB Saunders: Philadelphia, PA, USA, 2025; p. 152622. [Google Scholar]
- Takahashi, E.A.; Schwamm, L.H.; Adeoye, O.M.; Alabi, O.; Jahangir, E.; Misra, S.; Still, C.H.; on behalf of the American Heart Association Council on Cardiovascular Radiology and Intervention, Council on Hypertension, Council on the Kidney in Cardiovascular Disease, and Stroke Council. An overview of telehealth in the management of cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2022, 146, e558–e568. [Google Scholar] [CrossRef]
- Masterson Creber, R.; Dodson, J.A.; Bidwell, J.; Breathett, K.; Lyles, C.; Harmon Still, C.; Ooi, S.-Y.; Yancy, C.; Kitsiou, S. Telehealth and health equity in older adults with heart failure: A scientific statement from the American Heart Association. Circ. Cardiovasc. Qual. Outcomes 2023, 16, e000123. [Google Scholar] [CrossRef]
- Zhu, Y.; Gu, X.; Xu, C. Effectiveness of telemedicine systems for adults with heart failure: A meta-analysis of randomized controlled trials. Heart Fail. Rev. 2020, 25, 231–243. [Google Scholar] [CrossRef]
- Scholte, N.T.; Gürgöze, M.T.; Aydin, D.; Theuns, D.A.; Manintveld, O.C.; Ronner, E.; Boersma, E.; de Boer, R.A.; van der Boon, R.M.; Brugts, J.J. Telemonitoring for heart failure: A meta-analysis. Eur. Heart J. 2023, 44, 2911–2926. [Google Scholar] [CrossRef]
- Knoll, K.; Rosner, S.; Gross, S.; Dittrich, D.; Lennerz, C.; Trenkwalder, T.; Schmitz, S.; Sauer, S.; Hentschke, C.; Doerr, M.; et al. Combined telemonitoring and telecoaching for heart failure improves outcome. NPJ Digit. Med. 2023, 6, 193. [Google Scholar] [CrossRef]
- Spethmann, S.; Hindricks, G.; Koehler, K.; Stoerk, S.; Angermann, C.E.; Boehm, M.; Assmus, B.; Winkler, S.; Moeckel, M.; Mittermaier, M.; et al. Telemonitoring for Chronic Heart Failure: Narrative Review of the 20-Year Journey From Concept to Standard Care in Germany. J. Med. Internet Res. 2024, 26, e63391. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Arshad, M.S.; Greene, S.J.; van Spall, H.G.; Pandey, A.; Vemulapalli, S.; Perakslis, E.; Butler, J. Artificial intelligence and heart failure: A state-of-the-art review. Eur. J. Heart Fail. 2023, 25, 1507–1525. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, L.S.; Aminorroaya, A.; Sangha, V.; Pedroso, A.F.; Asselbergs, F.W.; Brant, L.C.; Barreto, S.M.; Ribeiro, A.L.P.; Krumholz, H.M.; Oikonomou, E.K.; et al. Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: A multinational study. Eur. Heart J. 2025, 46, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, L.S.; Aminorroaya, A.; Pedroso, A.F.; Khunte, A.; Sangha, V.; McIntyre, D.; Chow, C.K.; Asselbergs, F.W.; Brant, L.C.; Barreto, S.M.; et al. Artificial Intelligence–Enabled Prediction of Heart Failure Risk From Single-Lead Electrocardiograms. JAMA Cardiol. 2025, 10, 574–584. [Google Scholar] [CrossRef]
- Feher, A.; Bednarski, B.; Miller, R.J.; Shanbhag, A.; Lemley, M.; Miras, L.; Sinusas, A.J.; Miller, E.J.; Slomka, P.J. Artificial intelligence predicts hospitalization for acute heart failure exacerbation in patients undergoing myocardial perfusion imaging. J. Nucl. Med. 2024, 65, 768–774. [Google Scholar] [CrossRef]
- Costa, F.; Gomez Doblas, J.J.; Expósito, A.D.; Adamo, M.; D’Ascenzo, F.; Kołtowski, L.; Saba, L.; Mendieta, G.; Gragnano, F.; Calabrò, P.; et al. Artificial intelligence in cardiovascular pharmacotherapy: Applications and perspectives. Eur. Heart J. 2025, 46, ehaf474. [Google Scholar] [CrossRef]
- Kwon, J.-m.; Kim, K.-H.; Jeon, K.-H.; Lee, S.E.; Lee, H.-Y.; Cho, H.-J.; Choi, J.O.; Jeon, E.-S.; Kim, M.-S.; Kim, J.-J.; et al. Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PLoS ONE 2019, 14, e0219302. [Google Scholar] [CrossRef]
- Cho, Y.; Yoon, M.; Kim, J.; Lee, J.H.; Oh, I.-Y.; Lee, C.J.; Kang, S.-M.; Choi, D.-J. Artificial intelligence–based electrocardiographic biomarker for outcome prediction in patients with acute heart failure: Prospective cohort study. J. Med. Internet Res. 2024, 26, e52139. [Google Scholar] [CrossRef]
- Sabouri, M.; Rajabi, A.B.; Hajianfar, G.; Gharibi, O.; Mohebi, M.; Avval, A.H.; Naderi, N.; Shiri, I. Machine learning based readmission and mortality prediction in heart failure patients. Sci. Rep. 2023, 13, 18671. [Google Scholar] [CrossRef] [PubMed]
- Hajishah, H.; Kazemi, D.; Safaee, E.; Amini, M.J.; Peisepar, M.; Tanhapour, M.M.; Tavasol, A. Evaluation of machine learning methods for prediction of heart failure mortality and readmission: Meta-analysis. BMC Cardiovasc. Disord. 2025, 25, 264. [Google Scholar] [CrossRef] [PubMed]
- Weldy, C.S.; Ashley, E.A. Towards precision medicine in heart failure. Nat. Rev. Cardiol. 2021, 18, 745–762. [Google Scholar] [CrossRef]
- Sethi, Y.; Patel, N.; Kaka, N.; Kaiwan, O.; Kar, J.; Moinuddin, A.; Goel, A.; Chopra, H.; Cavalu, S. Precision medicine and the future of cardiovascular diseases: A clinically oriented comprehensive review. J. Clin. Med. 2023, 12, 1799. [Google Scholar] [CrossRef] [PubMed]
- Cresci, S.; Pereira, N.L.; Ahmad, F.; Byku, M.; de Las Fuentes, L.; Lanfear, D.E.; Reilly, C.M.; Owens, A.T.; Wolf, M.J. Heart failure in the era of precision medicine: A scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 2019, 12, e000058. [Google Scholar] [CrossRef]
- Ferro, A.; Segreti, A.; Crispino, S.P.; Cricco, R.; Di Cristo, A.; Ciancio, M.; Gurrieri, F.; Ussia, G.P.; Grigioni, F. Exploring the Role of Genetic and Genomic Factors in Therapeutic Response to Heart Failure: A Comprehensive Analytical Review. Genes 2025, 16, 801. [Google Scholar] [CrossRef]
- Kim, Y.; Zharkinbekov, Z.; Sarsenova, M.; Yeltay, G.; Saparov, A. Recent advances in gene therapy for cardiac tissue regeneration. Int. J. Mol. Sci. 2021, 22, 9206. [Google Scholar] [CrossRef]
- Korpela, H.; Järveläinen, N.; Siimes, S.; Lampela, J.; Airaksinen, J.; Valli, K.; Turunen, M.; Pajula, J.; Nurro, J.; Ylä-Herttuala, S. Gene therapy for ischaemic heart disease and heart failure. J. Intern. Med. 2021, 290, 567–582. [Google Scholar] [CrossRef]
- Hulot, J.-S.; Ishikawa, K.; Hajjar, R.J. Gene therapy for the treatment of heart failure: Promise postponed. Eur. Heart J. 2016, 37, 1651–1658. [Google Scholar] [CrossRef]
- Bolli, R.; Solankhi, M.; Tang, X.-L.; Kahlon, A. Cell therapy in patients with heart failure: A comprehensive review and emerging concepts. Cardiovasc. Res. 2022, 118, 951–976. [Google Scholar] [CrossRef]
- Madonna, R.; van Laake, L.W.; Davidson, S.M.; Engel, F.B.; Hausenloy, D.J.; Lecour, S.; Leor, J.; Perrino, C.; Schulz, R.; Ytrehus, K.; et al. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: Cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur. Heart J. 2016, 37, 1789–1798. [Google Scholar] [CrossRef]
- Marotta, P.; Cianflone, E.; Aquila, I.; Vicinanza, C.; Scalise, M.; Marino, F.; Mancuso, T.; Torella, M.; Indolfi, C.; Torella, D. Combining cell and gene therapy to advance cardiac regeneration. Expert Opin. Biol. Ther. 2018, 18, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, R.; Cowie, M.R. Heart failure with preserved ejection fraction: Controversies, challenges and future directions. Heart 2018, 104, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.; Borlaug, B.A.; O’Connor, C.M.; Gersh, B.J. Novel approaches to the management of chronic systolic heart failure: Future directions and unanswered questions. Eur. Heart J. 2020, 41, 1764–1774. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.A.; Ashley, E.A.; Fedak, P.W.; Hawkins, N.; Januzzi, J.L.; McMurray, J.J.; Parikh, V.N.; Rao, V.; Svystonyuk, D.; Teerlink, J.R.; et al. Mind the gap: Current challenges and future state of heart failure care. Can. J. Cardiol. 2017, 33, 1434–1449. [Google Scholar] [CrossRef]
- O’Meara, E.; Thibodeau-Jarry, N.; Ducharme, A.; Rouleau, J.L. The epidemic of heart failure: A lucid approach to stemming the rising tide. Can. J. Cardiol. 2014, 30, S442–S454. [Google Scholar] [CrossRef]
| Biomarker | Pathophysiological Role | Clinical Utility | Notes |
|---|---|---|---|
| sST2 (Soluble ST2) | Myocardial fibrosis, systemic inflammation | Risk stratification, prognostic assessment | Independent predictor of mortality; adds value beyond natriuretic peptides |
| Galectin-3 (Gal-3) | Myocardial fibrosis, inflammation | Risk stratification, prognostic assessment | Associated with adverse outcomes in both acute and chronic HF |
| GDF-15 | Oxidative stress, myocardial inflammation | Mortality prediction, especially in acute HF | May exceed natriuretic peptides in prognostic accuracy |
| suPAR | Systemic inflammation | Prognostic marker, renal function assessment | Elevated levels associated with poor outcomes |
| MR-proADM | Neurohormonal activation | Prognostic marker | Reflects hemodynamic stress; complements natriuretic peptides |
| Cystatin C (CysC) | Renal dysfunction | Prognostic marker, renal function assessment | Useful in HF with comorbid kidney disease |
| High-sensitivity Troponins | Myocardial injury | Diagnosis and risk stratification | Remain standard; incremental value with other biomarkers |
| H-FABP | Myocardial injury | Early marker of myocardial stress | Rapidly released; complements troponins |
| VCAM-1 | Endothelial dysfunction, inflammation | Emerging role in vascular remodeling and inflammation | Limited current clinical use |
| Copeptin | Neurohormonal activation (vasopressin pathway) | Prognostic marker | Reflects endogenous stress response |
| IL-6 | Inflammation, adverse remodeling | Prognostic marker, reflects disease severity | Elevated in more symptomatic or severe HF |
| TNF-α | Inflammation, adverse cardiac remodeling | Prognostic marker, reflects disease progression | Associated with worse hemodynamics and poor outcomes |
| Population | Key Challenges | Guideline/Management Recommendations | Therapeutic Considerations and Evidence |
|---|---|---|---|
| Elderly (≥75–80 years) |
|
|
|
| Pregnancy and Peripartum Cardiomyopathy (PPCM) |
|
|
|
| HF with Diabetes Mellitus |
|
|
|
| HF with Chronic Kidney Disease (CKD) |
|
|
|
| HF with Autoimmune Disease (e.g., systemic sclerosis) |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kenyon, C.R.; Van Wyk, L.; Flom, A.; Ibrahim, R.; Nhat Pham, H.; Lakhdar, S.; Iftikhar, M.; Abdelnabi, M. Advances in Diagnosis and Treatment of Acute and Chronic Heart Failure: A Comprehensive Review. J. Clin. Med. 2026, 15, 618. https://doi.org/10.3390/jcm15020618
Kenyon CR, Van Wyk L, Flom A, Ibrahim R, Nhat Pham H, Lakhdar S, Iftikhar M, Abdelnabi M. Advances in Diagnosis and Treatment of Acute and Chronic Heart Failure: A Comprehensive Review. Journal of Clinical Medicine. 2026; 15(2):618. https://doi.org/10.3390/jcm15020618
Chicago/Turabian StyleKenyon, Courtney R., Laura Van Wyk, Andrew Flom, Ramzi Ibrahim, Hoang Nhat Pham, Sofia Lakhdar, Momina Iftikhar, and Mahmoud Abdelnabi. 2026. "Advances in Diagnosis and Treatment of Acute and Chronic Heart Failure: A Comprehensive Review" Journal of Clinical Medicine 15, no. 2: 618. https://doi.org/10.3390/jcm15020618
APA StyleKenyon, C. R., Van Wyk, L., Flom, A., Ibrahim, R., Nhat Pham, H., Lakhdar, S., Iftikhar, M., & Abdelnabi, M. (2026). Advances in Diagnosis and Treatment of Acute and Chronic Heart Failure: A Comprehensive Review. Journal of Clinical Medicine, 15(2), 618. https://doi.org/10.3390/jcm15020618

