Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (920)

Search Parameters:
Keywords = peptide structure modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 2406 KiB  
Review
Apolipoprotein A (ApoA) in Neurological Disorders: Connections and Insights
by Humam Emad Rajha, Ahmed Hassanein, Rowan Mesilhy, Zainab Nurulhaque, Nebras Elghoul, Patrick G. Burgon, Rafif Mahmood Al Saady and Shona Pedersen
Int. J. Mol. Sci. 2025, 26(16), 7908; https://doi.org/10.3390/ijms26167908 (registering DOI) - 16 Aug 2025
Abstract
Apolipoprotein A (ApoA) proteins, ApoA-I, ApoA-II, ApoA-IV, and ApoA-V, play critical roles in lipid metabolism, neuroinflammation, and blood–brain barrier integrity, making them pivotal in neurological diseases such as Alzheimer’s disease (AD), stroke, Parkinson’s disease (PD), and multiple sclerosis (MS). This review synthesizes current [...] Read more.
Apolipoprotein A (ApoA) proteins, ApoA-I, ApoA-II, ApoA-IV, and ApoA-V, play critical roles in lipid metabolism, neuroinflammation, and blood–brain barrier integrity, making them pivotal in neurological diseases such as Alzheimer’s disease (AD), stroke, Parkinson’s disease (PD), and multiple sclerosis (MS). This review synthesizes current evidence on their structural and functional contributions to neuroprotection, highlighting their dual roles as biomarkers and therapeutic targets. ApoA-I, the most extensively studied, exhibits anti-inflammatory, antioxidant, and amyloid-clearing properties, with reduced levels associated with AD progression and cognitive decline. ApoA-II modulates HDL metabolism and stroke risk, while ApoA-IV influences neuroinflammation and amyloid processing. ApoA-V, although less explored, is implicated in stroke susceptibility through its regulation of triglycerides. Genetic polymorphisms (e.g., APOA1 rs670, APOA5 rs662799) further complicate disease risk, showing population-specific associations with stroke and neurodegeneration. Therapeutic strategies targeting ApoA proteins, including reconstituted HDL, mimetic peptides, and gene-based approaches, show promise in preclinical models but face translational challenges in human trials. Clinical trials, such as those with CSL112, highlight the need for neuro-specific optimization. Further research should prioritize human-relevant models, advanced neuroimaging techniques, and functional assays to elucidate ApoA mechanisms inside the central nervous system. The integration of genetic, lipidomic, and clinical data offers potential for enhancing precision medicine in neurological illnesses by facilitating the generation of ApoA-targeted treatments and bridging current deficiencies in disease comprehension and therapy. Full article
Show Figures

Figure 1

16 pages, 2155 KiB  
Article
Molecular Insights into Tumor Immunogenicity
by Irini Doytchinova, Stanislav Sotirov and Ivan Dimitrov
Curr. Issues Mol. Biol. 2025, 47(8), 641; https://doi.org/10.3390/cimb47080641 - 11 Aug 2025
Viewed by 145
Abstract
Tumor immunogenicity depends on the ability of peptides to form stable and specific interactions with both HLA molecules and T-cell receptors (TCRs). While HLA binding is essential, not all HLA-binding peptides elicit T-cell responses. This study investigates the molecular features distinguishing immunogenic T-cell [...] Read more.
Tumor immunogenicity depends on the ability of peptides to form stable and specific interactions with both HLA molecules and T-cell receptors (TCRs). While HLA binding is essential, not all HLA-binding peptides elicit T-cell responses. This study investigates the molecular features distinguishing immunogenic T-cell epitopes from non-immunogenic HLA binders. Two datasets of nonamer peptides—38 T-cell epitopes and 144 non-epitopes—were compiled and analyzed using sequence logo models and molecular dynamics (MD) simulations of TCR–peptide–HLA complexes. A comparative logo analysis revealed strong amino acid preferences at central positions (p4–p8) in T-cell epitopes and absences in non-epitopes. A representative epitope–non-epitope pair was selected for structural modeling and 100 ns MD simulations. The T-cell epitope formed a more stable complex with the TCR and exhibited greater flexibility, supporting an induced-fit recognition mechanism. It also established a broader and longer-lasting network of hydrogen bonds and π interactions across the residues at positions p4–p8. In contrast, the non-epitope engaged TCR at only two positions. These findings highlight the critical role of the peptide’s central region in TCR engagement and provide structural insights useful for neoantigen prediction, vaccine design, and TCR-based immunotherapies. Full article
(This article belongs to the Special Issue Molecular Biology in Drug Design and Precision Therapy)
Show Figures

Figure 1

19 pages, 525 KiB  
Review
Nociceptin and the NOP Receptor in Pain Management: From Molecular Insights to Clinical Applications
by Michelle Wu, Brandon Park and Xiang-Ping Chu
Anesth. Res. 2025, 2(3), 18; https://doi.org/10.3390/anesthres2030018 - 11 Aug 2025
Viewed by 179
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a neuropeptide that activates the nociceptin opioid peptide (NOP) receptor, a G protein-coupled receptor structurally similar to classical opioid receptors but with distinct pharmacological properties. Unlike μ-opioid receptor (MOR) agonists, NOP receptor agonists provide analgesia with a reduced risk [...] Read more.
Nociceptin/orphanin FQ (N/OFQ) is a neuropeptide that activates the nociceptin opioid peptide (NOP) receptor, a G protein-coupled receptor structurally similar to classical opioid receptors but with distinct pharmacological properties. Unlike μ-opioid receptor (MOR) agonists, NOP receptor agonists provide analgesia with a reduced risk of respiratory depression, tolerance, and dependence. This review synthesizes current evidence from molecular studies, animal models, and clinical trials to evaluate the therapeutic potential of the N/OFQ–NOP system in pain management and anesthesia. A literature review was conducted through a PubMed search of English language articles published between 2015 and 2025 using keywords such as “nociceptin,” “NOP receptor,” “bifunctional NOP/MOR agonists,” and “analgesia.” Primary research articles, clinical trials, and relevant reviews were selected based on their relevance to NOP pharmacology and therapeutic application. Additional references were included through citation tracking of seminal papers. Comparisons with classical opioid systems were made to highlight key pharmacological differences, and therapeutic developments involving NOP-selective and bifunctional NOP/MOR agonists were examined. In preclinical models of chronic inflammatory and neuropathic pain, NOP receptor ago-nists reduced hyperalgesia by 30–70%, while producing minimal effects in acute pain as-says. In healthy human volunteers, bifunctional NOP/MOR agonists such as cebrano-padol provided significant pain relief, achieving ≥30% reduction in pain intensity in up to 70% of subjects, with lower incidence of respiratory depression compared with morphine. Sunobinop, another NOP/MOR agent, demonstrated reduced next-day residual effects and a favorable cognitive safety profile. Clinical data also suggest that co-activation of NOP and MOR may attenuate opioid-induced hyperalgesia and tolerance. However, challenges remain, including variability in receptor signaling and limited human trial data. The N/OFQ–NOP receptor system represents a promising and potentially safer target for analgesia and perioperative care. Future efforts should focus on developing optimized NOP ligands, incorporating personalized approaches based on receptor variability, and advancing clinical trials to integrate these agents into multimodal pain management and enhanced recovery protocols. Full article
Show Figures

Graphical abstract

24 pages, 15698 KiB  
Article
Cardioprotective Effects of SAR Through Attenuating Cardiac-Specific Markers, Inflammatory Markers, Oxidative Stress, and Anxiety in Rats Challenged with 5-Fluorouracil
by Roza Haroon Rasheed and Tavga Ahmed Aziz
J. Xenobiot. 2025, 15(4), 130; https://doi.org/10.3390/jox15040130 - 10 Aug 2025
Viewed by 226
Abstract
This study aimed to evaluate the cardioprotective effects of two different doses of saroglitazar (SAR) in an animal model of cardiotoxicity induced by 5-fluorouracil (5-FU). Thirty-five rats were randomly allocated into five groups: the negative control, which received distilled water; the 5-FU (150 [...] Read more.
This study aimed to evaluate the cardioprotective effects of two different doses of saroglitazar (SAR) in an animal model of cardiotoxicity induced by 5-fluorouracil (5-FU). Thirty-five rats were randomly allocated into five groups: the negative control, which received distilled water; the 5-FU (150 mg/kg as I.P.) group; the N-acetylcysteine (100 mg/kg) group; and the SAR (0.5 and 5 mg/kg) groups. The last three groups received 5-FU on day 10 along with their treatment. An open field test was performed at zero-time and at the end of the study. On day eleven the animals were euthanized and blood samples were used for measuring troponin I, CK-MB, natriuretic peptide, lipid profile, LDH, ALT, AST, CRP, ESR, TNF-α, IL1β, MDA, and total antioxidant capacity (TAOC). Cardiac tissues were sent for histopathological examination. The study revealed that 5-FU elevated the levels of cardiac-specific and injury-related biomarkers, inflammatory and oxidative stress markers, and that the use of SAR, particularly the high dose, decreased all the cardiac- and other injury-related biomarkers as well as attenuating inflammatory and oxidative stress biomarkers. SAR-treated groups exhibited a significant increase in locomotor activity and a decrease in anxiety-like behavior, indicated by a reduction in time spent in one square and an increase in total movement time. Additionally, the histopathological findings greatly supported the biochemical results evidenced by stopping the detrimental effects caused by 5-FU through structural and functional alterations of cardiac tissues manifested as ameliorating congestion, inflammation, degeneration, arterial wall thinning, and endothelial loss. The dual-acting PPAR agonist SAR demonstrated cardiac protection activity, particularly the high dose, by attenuating cardiac-specific and nonspecific injury biomarkers along with anti-inflammatory and antioxidant activities and attenuated anxiety induced by 5-FU. These findings render SAR a promising candidate to be tested in clinical trials. Further studies are warranted with other cardiotoxicants to confirm these findings. Full article
(This article belongs to the Section Drug Therapeutics)
Show Figures

Graphical abstract

23 pages, 4165 KiB  
Article
Structural and Functional Effects of the Interaction Between an Antimicrobial Peptide and Its Analogs with Model Bacterial and Erythrocyte Membranes
by Michele Lika Furuya, Gustavo Penteado Carretero, Marcelo Porto Bemquerer, Sumika Kiyota, Magali Aparecida Rodrigues, Tarcillo José de Nardi Gaziri, Norma Lucia Buritica Zuluaga, Danilo Kiyoshi Matsubara, Marcio Nardelli Wandermuren, Karin do Amaral Riske, Hernan Chaimovich, Shirley Schreier and Iolanda Midea Cuccovia
Biomolecules 2025, 15(8), 1143; https://doi.org/10.3390/biom15081143 - 7 Aug 2025
Viewed by 297
Abstract
Antimicrobial peptides (AMPs) are a primary defense against pathogens. Here, we examined the interaction of two BP100 analogs, R2R5-BP100 (where Arg substitutes Lys 2 and 5) and R2R5-BP100-A-NH-C16 (where an Ala and a C [...] Read more.
Antimicrobial peptides (AMPs) are a primary defense against pathogens. Here, we examined the interaction of two BP100 analogs, R2R5-BP100 (where Arg substitutes Lys 2 and 5) and R2R5-BP100-A-NH-C16 (where an Ala and a C16 hydrocarbon chain are added to the R2R5-BP100 C-terminus), with membrane models. Large unilamellar vesicles (LUVs) and giant unilamellar vesicles (GUVs) were prepared with the major lipids in Gram-positive (GP) and Gram-negative (GN) bacteria, as well as red blood cells (RBCs). Fluorescence data, dynamic light scattering (DLS), and zeta potential measurements revealed that upon achieving electroneutrality through peptide binding, vesicle aggregation occurred. Circular dichroism (CD) spectra corroborated these observations, and upon vesicle binding, the peptides acquired α-helical conformation. The peptide concentration, producing a 50% release of carboxyfluorescein (C50) from LUVs, was similar for GP-LUVs. With GN and RBC-LUVs, C50 decreased in the following order: BP100 > R2R5-BP100 > R2R5BP100-A-NH-C16. Optical microscopy of GP-, GN-, and RBC-GUVs revealed the rupture or bursting of the two former membranes, consistent with a carpet mechanism of action. Using GUVs, we confirmed RBC aggregation by BP100 and R2R5-BP100. We determined the minimal inhibitory concentrations (MICs) of peptides for a GN bacterium (Escherichia coli (E. coli)) and two GP bacteria (two strains of Staphylococcus aureus (S. aureus) and one strain of Bacillus subtilis (B. subtilis)). The MICs for S. aureus were strain-dependent. These results demonstrate that Lys/Arg replacement can improve the parent peptide’s antimicrobial activity while increasing hydrophobicity renders the peptide less effective and more hemolytic. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
Show Figures

Graphical abstract

29 pages, 6672 KiB  
Article
Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway
by Nuttapon Songnaka, Adisorn Ratanaphan, Namfa Sermkaew, Somchai Sawatdee, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul and Apichart Atipairin
Antibiotics 2025, 14(8), 805; https://doi.org/10.3390/antibiotics14080805 - 6 Aug 2025
Viewed by 632
Abstract
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial activity of an AMP from a soil-derived bacterial isolate against Gram-negative bacteria. Method: Soil bacteria were isolated and screened for antimicrobial activity. The bioactive peptide was purified and determined its structure and antimicrobial efficacy. Genomic analysis was conducted to predict the biosynthetic gene clusters (BGCs) responsible for AMP production. Results: Genomic analysis identified the isolate as Paenibacillus sp. Na14, which exhibited low genomic similarity (61.0%) to other known Paenibacillus species, suggesting it may represent a novel species. The AMP from the Na14 strain exhibited heat stability up to 90 °C for 3 h and retained its activity across a broad pH range from 3 to 11. Structural analysis revealed that the Na14 peptide consisted of 14 amino acid residues, adopting an α-helical structure. This peptide exhibited bactericidal activity at concentrations of 2–4 µg/mL within 6–12 h, and its killing rate was concentration-dependent. The peptide was found to disrupt the bacterial membranes. The Na14 peptide shared 64.29% sequence similarity with brevibacillin 2V, an AMP from Brevibacillus sp., which also belongs to the Paenibacillaceae family. Genomic annotation identified BGCs associated with secondary metabolism, with a particular focus on non-ribosomal peptide synthetase (NRPS) gene clusters. Structural modeling of the predicted NRPS enzymes showed high similarity to known NRPS modules in Brevibacillus species. These genomic findings provide evidence supporting the similarity between the Na14 peptide and brevibacillin 2V. Conclusions: This study highlights the discovery of a novel AMP with potent activity against Gram-negative pathogens and provides new insight into conserved AMP biosynthetic enzymes within the Paenibacillaceae family. Full article
Show Figures

Graphical abstract

21 pages, 6211 KiB  
Article
In Silico and In Vitro Potential Antifungal Insights of Insect-Derived Peptides in the Management of Candida sp. Infections
by Catarina Sousa, Alaka Sahoo, Shasank Sekhar Swain, Payal Gupta, Francisco Silva, Andreia S. Azevedo and Célia Fortuna Rodrigues
Int. J. Mol. Sci. 2025, 26(15), 7449; https://doi.org/10.3390/ijms26157449 - 1 Aug 2025
Viewed by 345
Abstract
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the [...] Read more.
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the target-specific binding efficacy of insect-derived antifungal peptides (n = 37) as possible alternatives to traditional antifungal treatments. Using computational methods, namely the HPEPDOCK and HDOCK platforms, molecular docking was performed to evaluate the interactions between selected key fungal targets, lanosterol 14-demethylase, or LDM (PDB ID: 5V5Z), secreted aspartic proteinase-5, or Sap-5 (PDB ID: 2QZX), N-myristoyl transferase, or NMT (PDB ID: 1NMT), and dihydrofolate reductase, or DHFR, of C. albicans. The three-dimensional peptide structure was modelled through the PEP-FOLD 3.5 tool. Further, we predicted the physicochemical properties of these peptides through the ProtParam and PEPTIDE 2.0 tools to assess their drug-likeness and potential for therapeutic applications. In silico results show that Blap-6 from Blaps rhynchopeter and Gomesin from Acanthoscurria gomesiana have the most antifungal potential against all four targeted proteins in Candida sp. Additionally, a molecular dynamics simulation study of LDM-Blap-6 was carried out at 100 nanoseconds. The overall predictions showed that both have strong binding abilities and are good candidates for drug development. In in vitro studies, Gomesin achieved complete biofilm eradication in three out of four Candida species, while Blap-6 showed moderate but consistent reduction across all species. C. tropicalis demonstrated relative resistance to complete eradication by both peptides. The present study provides evidence to support the antifungal activity of certain insect peptides, with potential to be used as alternative drugs or as a template for a new synthetic or modified peptide in pursuit of effective therapies against Candida spp. Full article
Show Figures

Figure 1

18 pages, 2263 KiB  
Article
Predicting Antimicrobial Peptide Activity: A Machine Learning-Based Quantitative Structure–Activity Relationship Approach
by Eliezer I. Bonifacio-Velez de Villa, María E. Montoya-Alfaro, Luisa P. Negrón-Ballarte and Christian Solis-Calero
Pharmaceutics 2025, 17(8), 993; https://doi.org/10.3390/pharmaceutics17080993 - 31 Jul 2025
Viewed by 403
Abstract
Background: Peptides are a class of molecules that can be presented as good antimicrobials and with mechanisms that avoid resistance, and the design of peptides with good activity can be complex and laborious. The study of their quantitative structure–activity relationships through machine [...] Read more.
Background: Peptides are a class of molecules that can be presented as good antimicrobials and with mechanisms that avoid resistance, and the design of peptides with good activity can be complex and laborious. The study of their quantitative structure–activity relationships through machine learning algorithms can shed light on a rational and effective design. Methods: Information on the antimicrobial activity of peptides was collected, and their structures were characterized by molecular descriptors generation to design regression and classification models based on machine learning algorithms. The contribution of each descriptor in the generated models was evaluated by determining its relative importance and, finally, the antimicrobial activity of new peptides was estimated. Results: A structured database of antimicrobial peptides and their descriptors was obtained, with which 56 machine learning models were generated. Random Forest-based models showed better performance, and of these, regression models showed variable performance (R2 = 0.339–0.574), while classification models showed good performance (MCC = 0.662–0.755 and ACC = 0.831–0.877). Those models based on bacterial groups showed better performance than those based on the entire dataset. The properties of the new peptides generated are related to important descriptors that encode physicochemical properties such as lower molecular weight, higher charge, propensity to form alpha-helical structures, lower hydrophobicity, and higher frequency of amino acids such as lysine and serine. Conclusions: Machine learning models allowed to establish the structure–activity relationships of antimicrobial peptides. Classification models performed better than regression models. These models allowed us to make predictions and new peptides with high antimicrobial potential were proposed. Full article
Show Figures

Graphical abstract

9 pages, 2757 KiB  
Article
Externally Triggered Activation of Nanostructure-Masked Cell-Penetrating Peptides
by Gayong Shim
Molecules 2025, 30(15), 3205; https://doi.org/10.3390/molecules30153205 - 30 Jul 2025
Viewed by 385
Abstract
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon [...] Read more.
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon complexation with a DNA-based nanostructure. Upon localized plasma exposure, DNA masking was disrupted, restoring the biological functions of the peptides. Transmission electron microscopy revealed that the synthesized DNA nanoflower structures were approximately 150–250 nm in size. Structural and functional analyses confirmed that the system remained inert under physiological conditions and was rapidly activated by plasma treatment. Fluorescence recovery, cellular uptake assays, and cytotoxicity measurements demonstrated that the peptide activity could be precisely controlled in both monolayer and three-dimensional spheroid models. This externally activatable nanomaterial-based system enables the spatial and temporal regulation of peptide function without requiring biochemical triggers or permanent chemical modifications. This platform provides a modular strategy for the development of potential peptide therapeutics that require precise control of activation in complex biological environments. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

46 pages, 2278 KiB  
Review
Melanin-Concentrating Hormone (MCH): Role in Mediating Reward-Motivated and Emotional Behavior and the Behavioral Disturbances Produced by Repeated Exposure to Reward Substances
by Olga Karatayev and Sarah F. Leibowitz
Int. J. Mol. Sci. 2025, 26(15), 7143; https://doi.org/10.3390/ijms26157143 - 24 Jul 2025
Viewed by 459
Abstract
Clinical and animal studies suggest that multiple brain systems are involved in mediating reward-motivated and related emotional behavior including the consumption of commonly used drugs and palatable food, and there is evidence that the repeated ingestion of or exposure to these rewarding substances [...] Read more.
Clinical and animal studies suggest that multiple brain systems are involved in mediating reward-motivated and related emotional behavior including the consumption of commonly used drugs and palatable food, and there is evidence that the repeated ingestion of or exposure to these rewarding substances may in turn stimulate these brain systems to produce an overconsumption of these substances along with co-occurring emotional disturbances. To understand this positive feedback loop, this review focuses on a specific population of hypothalamic peptide neurons expressing melanin-concentrating hormone (MCH), which are positively related to dopamine reward and project to forebrain areas that mediate this behavior. It also examines neurons expressing the peptide hypocretin/orexin (HCRT) that are anatomically and functionally linked to MCH neurons and the molecular systems within these peptide neurons that stimulate their development and ultimately affect behavior. This report first describes evidence in animals that exposure in adults and during adolescence to rewarding substances, such as the drugs alcohol, nicotine and cocaine and palatable fat-rich food, stimulates the expression of MCH as well as HCRT and their intracellular molecular systems. It also increases reward-seeking and emotional behavior, leading to excess consumption and abuse of these substances and neurological conditions, completing this positive feedback loop. Next, this review focuses on the model involving embryonic exposure to these rewarding substances. In addition to revealing a similar positive feedback circuit, this model greatly advances our understanding of the diverse changes that occur in these neuropeptide/molecular systems in the embryo and how they relate, perhaps causally, to the disturbances in behavior early in life that predict a later increased risk of developing substance use disorders. Studies using this model demonstrate in animals that embryonic exposure to these rewarding substances, in addition to stimulating the expression of peptide neurons, increases the intracellular molecular systems in neuroprogenitor cells that promote their development. It also alters the morphology, migration, location and neurochemical profile of the peptide neurons and causes them to develop aberrant neuronal projections to forebrain structures. Moreover, it produces disturbances in behavior at a young age, which are sex-dependent and occur in females more than in males, that can be directly linked to the neuropeptide/molecular changes in the embryo and predict the development of behavioral disorders later in life. These results supporting the close relationship between the brain and behavior are consistent with clinical studies, showing females to be more vulnerable than males to developing substance use disorders with co-occurring emotional conditions and female offspring to respond more adversely than male offspring to prenatal exposure to rewarding substances. It is concluded that the continued consumption of or exposure to rewarding substances at any stage of life can, through such peptide brain systems, significantly increase an individual’s vulnerability to developing neurological disorders such as substance use disorders, anxiety, depression, or cognitive impairments. Full article
(This article belongs to the Special Issue The Role of Neurons in Human Health and Disease—3rd Edition)
Show Figures

Figure 1

41 pages, 2824 KiB  
Review
Assessing Milk Authenticity Using Protein and Peptide Biomarkers: A Decade of Progress in Species Differentiation and Fraud Detection
by Achilleas Karamoutsios, Pelagia Lekka, Chrysoula Chrysa Voidarou, Marilena Dasenaki, Nikolaos S. Thomaidis, Ioannis Skoufos and Athina Tzora
Foods 2025, 14(15), 2588; https://doi.org/10.3390/foods14152588 - 23 Jul 2025
Viewed by 828
Abstract
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a [...] Read more.
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a focus on the discovery and application of protein and peptide biomarkers for species differentiation and fraud detection. Recent innovations in both top-down and bottom-up proteomics have markedly improved the sensitivity and specificity of detecting key molecular targets, including caseins and whey proteins. Peptide-based methods are especially valuable in processed dairy products due to their thermal stability and resilience to harsh treatment, although their species specificity may be limited when sequences are conserved across related species. Robust chemometric approaches are increasingly integrated with proteomic pipelines to handle high-dimensional datasets and enhance classification performance. Multivariate techniques, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), are frequently employed to extract discriminatory features and model adulteration scenarios. Despite these advances, key challenges persist, including the lack of standardized protocols, variability in sample preparation, and the need for broader validation across breeds, geographies, and production systems. Future progress will depend on the convergence of high-resolution proteomics with multi-omics integration, structured data fusion, and machine learning frameworks, enabling scalable, specific, and robust solutions for milk authentication in increasingly complex food systems. Full article
Show Figures

Figure 1

19 pages, 3486 KiB  
Article
3-O Sulfated Heparan Sulfate (G2) Peptide Ligand Impairs the Infectivity of Chlamydia muridarum
by Weronika Hanusiak, Purva Khodke, Jocelyn Mayen, Kennedy Van, Ira Sigar, Balbina J. Plotkin, Amber Kaminski, James Elste, Bajarang Vasant Kumbhar and Vaibhav Tiwari
Biomolecules 2025, 15(7), 999; https://doi.org/10.3390/biom15070999 - 12 Jul 2025
Viewed by 579
Abstract
Background: Heparan sulfate (HS) is widely implicated as a receptor for Chlamydia cell attachment and infectivity. However, the enzymatic modification of HS modified by the 3-O sulfotransferase-3 (3-OST-3) enzyme in chlamydial cell entry remains unknown. Methodology: To rule out the possibility that host [...] Read more.
Background: Heparan sulfate (HS) is widely implicated as a receptor for Chlamydia cell attachment and infectivity. However, the enzymatic modification of HS modified by the 3-O sulfotransferase-3 (3-OST-3) enzyme in chlamydial cell entry remains unknown. Methodology: To rule out the possibility that host cell 3-O sulfated heparan sulfate (3-OS HS) plays a significant role in C. muridarum entry, a Chinese hamster ovary (CHO-K1) cell model lacking endogenous 3-OST-3 was used. In addition, we further tested the efficacy of the phage-display-derived cationic peptides recognizing heparan sulfate (G1 peptide) and the moieties of 3-O sulfated heparan sulfate (G2 peptide) against C. muridarum entry using human cervical adenocarcinoma (HeLa 229) and human vaginal epithelial (VK2/E6E7) cell lines. Furthermore, molecular dynamics simulations were conducted to investigate the interactions of the Chlamydia lipid bilayer membrane with the G1 and G2 peptides, focusing on their binding modes and affinities. Results: The converse effect of 3-OST-3 expression in the CHO-K1 cells had no enhancing effect on C. muridarum entry. The G2 peptide significantly (>80%) affected the cell infectivity of the elementary bodies (EBs) at all the tested concentrations, as evident from the reduced fluorescent staining in the number of inclusion bodies. The observed neutralization effect of G2 peptide on C. muridarum entry suggests the possibility of sulfated-like domains being present on the EBs. In addition, data generated from our in silico computational structural modeling indicated that the G2 peptide ligand had significant affinity towards the C. muridarum lipid bilayer. Conclusions: Taken together, our findings show that the pretreatment of C. muridarum with 3-O sulfated heparan sulfate recognizing G2 peptide significantly prevents the entry of EBs into host cells. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

17 pages, 1758 KiB  
Article
Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair
by Wanshuai Wang, Anqi Zou, Qingtao Yu, Zhe Wang, Daotong Tan, Kaiye Yang, Chao Cai and Guangli Yu
Molecules 2025, 30(13), 2875; https://doi.org/10.3390/molecules30132875 - 6 Jul 2025
Viewed by 715
Abstract
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a [...] Read more.
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a multi-stage purification strategy including gradient ethanol precipitation, gel column chromatography, and ion exchange chromatography with Lactobacillus reuteri CCFM863. Structural characterization revealed that both Dendrobium officinale polysaccharide fractions consisted of (1→4)-β-D-Manp, (1→4)-β-D-Glcp, and (1→4)-α-D-Glcp residues. The anti-inflammatory efficacy and keratinocyte-protective potential of FDOPs (FDOP-1A and FDOP-2A) were investigated by using lipopolysaccharide (LPS)-induced RAW264.7 and HaCaT cells models, which showed significant inhibitions on the inflammatory factors of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and interleukin-1 beta (IL-1β); recovered levels of filaggrin (FLG), aquaporin 3 (AQP3), transient receptor potential vanilloid 4 (TRPV4), cathelicidin antimicrobial peptide (CAMP)/LL-37, and adiponectin (ADIPOQ); and the reduced protein expression of the TLR4/IκB-α/NF-κB/NLRP3 pathway. Notably, the FDOPs exhibited a remarkable reactive oxygen species (ROS) scavenging capacity, demonstrating superior antioxidant activity. Therefore, FDOPs show dual anti-inflammatory and antioxidant properties, making them suitable as active ingredients for modulating epidermal inflammation and promoting skin barrier repair. Full article
(This article belongs to the Special Issue Biotechnology and Biomass Valorization)
Show Figures

Figure 1

30 pages, 11919 KiB  
Article
Unveiling Vibrational Couplings in Model Peptides in Solution by a Theoretical Approach
by Federico Coppola, Fulvio Perrella, Alessio Petrone, Greta Donati, Luciana Marinelli and Nadia Rega
Molecules 2025, 30(13), 2854; https://doi.org/10.3390/molecules30132854 - 4 Jul 2025
Viewed by 479
Abstract
Vibrational analysis of peptides in solution and the theoretical determination of the effects of the microenvironment on infrared and Raman spectra are of key importance in many fields of chemical interest. In this work, we present a computational study combining static quantum mechanical [...] Read more.
Vibrational analysis of peptides in solution and the theoretical determination of the effects of the microenvironment on infrared and Raman spectra are of key importance in many fields of chemical interest. In this work, we present a computational study combining static quantum mechanical calculations with ab initio molecular dynamics simulations to investigate the vibrational behavior of three peptide models in both the gas phase and in explicit water, under non-periodic boundary conditions. The vibrational spectra of the main amide bands, namely amide I-III and A, were analyzed using a time–frequency approach based on the wavelet transform, which allows the resolution of transient frequency shifts and mode couplings along the trajectories. This combined approach enabled us to perform a time-resolved vibrational analysis revealing how vibrational frequencies, especially of the C=O and N–H stretching modes, evolve over time due to dynamical microsolvation. These fluctuations modulate vibrational couplings and lead to spectral broadening and frequency shifts that correlate with the local structuring of the solvent. In conclusion, our results highlight how the proposed protocol allows for the direct connection between vibrational modes and local structural changes, providing a link from the spectroscopic observable to the structure, the peptide backbone, and its microenvironment. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

25 pages, 4259 KiB  
Article
Towards Dual-Tracer SPECT for Prostate Cancer Imaging Using [99mTc]Tc-PSMA-I&S and [111In]In-RM2
by Carolina Giammei, Theresa Balber, Veronika Felber, Thomas Dillinger, Jens Cardinale, Marie R. Brandt, Anna Stingeder, Markus Mitterhauser, Gerda Egger and Thomas L. Mindt
Pharmaceuticals 2025, 18(7), 1002; https://doi.org/10.3390/ph18071002 - 3 Jul 2025
Viewed by 616
Abstract
Background/Objectives: Radiolabeled biomolecules specifically targeting overexpressed structures on tumor cells hold great potential for prostate cancer (PCa) imaging and therapy. Due to heterogeneous target expression, single radiopharmaceuticals may not detect or treat all lesions, while simultaneously applying two or more radiotracers potentially [...] Read more.
Background/Objectives: Radiolabeled biomolecules specifically targeting overexpressed structures on tumor cells hold great potential for prostate cancer (PCa) imaging and therapy. Due to heterogeneous target expression, single radiopharmaceuticals may not detect or treat all lesions, while simultaneously applying two or more radiotracers potentially improves staging, stratification, and therapy of cancer patients. This study explores a dual-tracer SPECT approach using [111In]In-RM2 (targeting the gastrin-releasing peptide receptor, GRPR) and [99mTc]Tc-PSMA-I&S (targeting the prostate-specific membrane antigen, PSMA) as a proof of concept. To mimic heterogeneous tumor lesions in the same individual, we aimed to establish a dual xenograft mouse model for preclinical evaluation. Methods: CHO-K1 cells underwent lentiviral transduction for human GRPR or human PSMA overexpression. Six-to-eight-week-old female immunodeficient mice (NOD SCID) were subsequently inoculated with transduced CHO-K1 cells in both flanks, enabling a dual xenograft with similar target density and growth of both xenografts. Respective dual-isotope imaging and γ-counting protocols were established. Target expression was analyzed ex vivo by Western blotting. Results: In vitro studies showed similar target-specific binding and internalization of [111In]In-RM2 and [99mTc]Tc-PSMA-I&S in transduced CHO-K1 cells compared to reference lines PC-3 and LNCaP. However, in vivo imaging showed negligible tumor uptake in xenografts of the transduced cell lines. Ex vivo analysis indicated a loss of the respective biomarkers in the xenografts. Conclusions: Although the technical feasibility of a dual-tracer SPECT imaging approach using 111In and 99mTc has been demonstrated, the potential of [99mTc]Tc-PSMA-I&S and [111In]In-RM2 in a dual-tracer cocktail to improve PCa diagnosis could not be verified. The animal model, and in particular the transduced cell lines developed exclusively for this project, proved to be unsuitable for this purpose. The in/ex vivo experiments indicated that results from an in vitro model may not necessarily be successfully transferred to an in vivo setting. To assess the potential of this dual-tracer concept to improve PCa diagnosis, optimized in vivo models are needed. Nevertheless, our strategies address key challenges in dual-tracer applications, aiming to optimize future SPECT imaging approaches. Full article
Show Figures

Graphical abstract

Back to TopTop