Nociceptin and the NOP Receptor in Pain Management: From Molecular Insights to Clinical Applications
Abstract
1. Introduction
2. Molecular and Pharmacological Profile
2.1. Structure and Function of Nociceptin and NOP Receptors
2.2. Comparison with Classical Opioid Receptors
3. Nociceptin in Pain Modulation
3.1. Central vs. Peripheral Effects
3.2. Animal Models of Nociceptin and Pain
3.3. Interactions with the Endogenous Opioid System
4. Clinical Implications in Anesthesia
4.1. Anesthetic-Sparing Effects
4.2. Role in Multimodal Analgesia
4.3. Effects on Respiratory Drive and Consciousness
5. Therapeutic Agents Targeting the NOP Receptor
5.1. NOP Agonists
5.2. NOP Antagonists
5.3. Bifunctional NOP/MOR Ligands
6. Nociceptin in Specific Clinical Scenarios
6.1. Perioperative Pain Management
6.2. Intensive Care Unit (ICU) and Sedation Applications
6.3. Chronic Pain and Opioid Use Disorder
7. Challenges and Controversies
7.1. Dose-Dependent and Context-Specific Signaling
7.2. Pharmacokinetic and Formulation Challenges
7.3. Translational Gap Between Preclinical and Clinical Studies
7.4. Sex and Genetic Differences Impacting Treatment Outcomes
7.5. Regulatory and Approval Challenges
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OUD | opioid use disorder |
cAMP | cyclic AMP |
ERAS | enhanced recovery after surgery |
GPCR | G protein-coupled receptor |
ORL1 | opioid receptor-like 1 (ORL1) |
DOR | delta opioid receptor |
KOR | kappa opioid receptor |
MOR | μ-opioid receptor |
N/OFQ | nociceptin/orphanin FQ |
NOP | nociceptin opioid peptide |
ICU | intensive care unit |
BBB | blood–brain barrier |
References
- Meunier, J.C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand, C.; Alvinerie, P.; Butour, J.L.; Guillemot, J.C.; Ferrara, P.; Monsarrat, B. Isolation and Structure of the Endogenous Agonist of Opioid Receptor-like ORL1 Receptor. Nature 1995, 377, 532–535. [Google Scholar] [CrossRef]
- Reinscheid, R.K.; Nothacker, H.P.; Bourson, A.; Ardati, A.; Henningsen, R.A.; Bunzow, J.R.; Grandy, D.K.; Langen, H.; Monsma, F.J., Jr.; Civelli, O. Orphanin FQ: A Neuropeptide That Activates an Opioidlike G Protein-Coupled Receptor. Science 1995, 270, 792–794. [Google Scholar] [CrossRef]
- Kiguchi, N.; Ding, H.; Ko, M.-C. Therapeutic Potentials of NOP and MOP Receptor Coactivation for the Treatment of Pain and Opioid Abuse. J. Neurosci. Res. 2022, 100, 191–202. [Google Scholar] [CrossRef]
- Toll, L.; Cippitelli, A.; Ozawa, A. The NOP Receptor System in Neurological and Psychiatric Disorders: Discrepancies, Peculiarities and Clinical Progress in Developing Targeted Therapies. CNS Drugs 2021, 35, 591–607. [Google Scholar] [CrossRef] [PubMed]
- Lambert, D.G. The Nociceptin/Orphanin FQ Receptor: A Target with Broad Therapeutic Potential. Nat. Rev. Drug Discov. 2008, 7, 694–710. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Kiguchi, N.; Dobbins, M.; Romero-Sandoval, E.A.; Kishioka, S.; Ko, M.-C. Nociceptin Receptor-Related Agonists as Safe and Non-Addictive Analgesics. Drugs 2023, 83, 771–793. [Google Scholar] [CrossRef]
- Coluzzi, F.; Rullo, L.; Scerpa, M.S.; Losapio, L.M.; Rocco, M.; Billeci, D.; Candeletti, S.; Romualdi, P. Current and Future Therapeutic Options in Pain Management: Multi-Mechanistic Opioids Involving Both MOR and NOP Receptor Activation. CNS Drugs 2022, 36, 617–632. [Google Scholar] [CrossRef] [PubMed]
- Odagaki, Y.; Kinoshita, M.; Honda, M.; Meana, J.J.; Callado, L.F.; García-Sevilla, J.A.; Palkovits, M.; Borroto-Escuela, D.O.; Fuxe, K. Receptor-Mediated Gi-3 Activation in Mammalian and Human Brain Membranes: Reestablishment Method and Its Application to Nociceptin/Orphanin FQ Opioid Peptide (NOP) Receptor/Gi-3 Interaction. J. Pharmacol. Sci. 2025, 158, 131–138. [Google Scholar] [CrossRef]
- Ukoro, B.; Ojeka, S.O.; Adienbo, O.M.; Chuemere, A.N. Modulatory Effects of Morphine and Xylopia Aethioica Extract on Kappa Opiod Receptors (KOR), Delta Opioid Receptor (DOR), Pain Hypersensitivity and Motor Functions in Wistar Rats. J. Complement. Altern. Med. Res. 2024, 25, 1–17. [Google Scholar] [CrossRef]
- Gottlieb, H.; Sarabia, S.; Elizondo, J.; Sobi, R.A.; Huerta, C.; Green, N.; Garza, A.; Washington, C.; Franklin, C.; Bradley, J.; et al. Nociceptin Mediated Changes in FosB Immunostaining and IL-6 in the Forebrain of Myocardial Infarcted Female Rats (Abstract ID: 162701). J. Pharmacol. Exp. Ther. 2025, 392, 101051. [Google Scholar] [CrossRef]
- Caminski, E.S.; Antunes, F.T.T.; Souza, I.A.; Dallegrave, E.; Zamponi, G.W. Regulation of N-Type Calcium Channels by Nociceptin Receptors and Its Possible Role in Neurological Disorders. Mol. Brain 2022, 15, 95. [Google Scholar] [CrossRef]
- Weiss, N.; Zamponi, G.W. Opioid Receptor Regulation of Neuronal Voltage-Gated Calcium Channels. Cell Mol. Neurobiol. 2021, 41, 839–847. [Google Scholar] [CrossRef]
- Faouzi, A.; Varga, B.R.; Majumdar, S. Biased Opioid Ligands. Molecules 2020, 25, 4257. [Google Scholar] [CrossRef] [PubMed]
- Wüster, M.; Schulz, R.; Herz, A. The Direction of Opiodid Agonists towards Mu-, Delta- and Epsilon-Receptors in the Vas Deferens of the Mouse and the Rat. Life Sci. 1980, 27, 163–170. [Google Scholar] [CrossRef]
- Pacifico, S.; Ferrari, F.; Albanese, V.; Marzola, E.; Neto, J.A.; Ruzza, C.; Calò, G.; Preti, D.; Guerrini, R. Biased Agonism at Nociceptin/Orphanin FQ Receptors: A Structure Activity Study on N/OFQ(1-13)-NH2. J. Med. Chem. 2020, 63, 10782–10795. [Google Scholar] [CrossRef]
- Puls, K.; Schmidhammer, H.; Wolber, G.; Spetea, M. Mechanistic Characterization of the Pharmacological Profile of HS-731, a Peripherally Acting Opioid Analgesic, at the µ-, δ-, κ-Opioid and Nociceptin Receptors. Molecules 2022, 27, 919. [Google Scholar] [CrossRef]
- Anand, P.; Yiangou, Y.; Anand, U.; Mukerji, G.; Sinisi, M.; Fox, M.; McQuillan, A.; Quick, T.; Korchev, Y.E.; Hein, P. Nociceptin/Orphanin FQ Receptor Expression in Clinical Pain Disorders and Functional Effects in Cultured Neurons. Pain 2016, 157, 1960–1969. [Google Scholar] [CrossRef]
- El Daibani, A.; Che, T. Spotlight on Nociceptin/Orphanin FQ Receptor in the Treatment of Pain. Molecules 2022, 27, 595. [Google Scholar] [CrossRef] [PubMed]
- Toll, L.; Ozawa, A.; Cippitelli, A. NOP-Related Mechanisms in Pain and Analgesia. Handb. Exp. Pharmacol. 2019, 254, 165–186. [Google Scholar] [PubMed]
- Ubaldi, M.; Cannella, N.; Borruto, A.M.; Petrella, M.; Micioni Di Bonaventura, M.V.; Soverchia, L.; Stopponi, S.; Weiss, F.; Cifani, C.; Ciccocioppo, R. Role of Nociceptin/Orphanin FQ-NOP Receptor System in the Regulation of Stress-Related Disorders. Int. J. Mol. Sci. 2021, 22, 12956. [Google Scholar] [CrossRef]
- Driscoll, J.R.; Wallace, T.L.; Mansourian, K.A.; Martin, W.J.; Margolis, E.B. Differential Modulation of Ventral Tegmental Area Circuits by the Nociceptin/Orphanin FQ System. eNeuro 2020, 7, ENEURO.0376-19.2020. [Google Scholar] [CrossRef]
- Palmisano, M.; Mercatelli, D.; Caputi, F.F.; Carretta, D.; Romualdi, P.; Candeletti, S. N/OFQ System in Brain Areas of Nerve-Injured Mice: Its Role in Different Aspects of Neuropathic Pain. Genes Brain Behav. 2017, 16, 537–545. [Google Scholar] [CrossRef]
- Bannon, A.W.; Malmberg, A.B. Models of Nociception: Hot-Plate, Tail-Flick, and Formalin Tests in Rodents. Curr. Protoc. Neurosci. 2007, Chapter 8, Unit 8.9. [Google Scholar] [CrossRef]
- Ozawa, A.; Brunori, G.; Cippitelli, A.; Toll, N.; Schoch, J.; Kieffer, B.L.; Toll, L. Analysis of the Distribution of Spinal NOP Receptors in a Chronic Pain Model Using NOP-EGFP Knock-in Mice. Br. J. Pharmacol. 2018, 175, 2662–2675. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Tao, Y.-X.; Zhao, C.; Doré, S.; Liaw, W.-J.; Raja, S.N.; Johns, R.A. Differential Roles of Neuronal and Endothelial Nitric Oxide Synthases during Carrageenan-Induced Inflammatory Hyperalgesia. Neuroscience 2004, 128, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.A.; Giancotti, L.A.; Lauro, F.; Mufti, F.; Salvemini, D. Treatment of Chronic Neuropathic Pain: Purine Receptor Modulation. Pain 2020, 161, 1425–1441. [Google Scholar] [CrossRef] [PubMed]
- Gaborit, M.; Massotte, D. Therapeutic Potential of Opioid Receptor Heteromers in Chronic Pain and Associated Comorbidities. Br. J. Pharmacol. 2023, 180, 994–1013. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.-T.; Hang, L.; Liu, T. Mu Opioid Receptor Heterodimers Emerge as Novel Therapeutic Targets: Recent Progress and Future Perspective. Front. Pharmacol. 2020, 11, 1078. [Google Scholar] [CrossRef]
- Higginbotham, J.A.; Markovic, T.; Massaly, N.; Morón, J.A. Endogenous Opioid Systems Alterations in Pain and Opioid Use Disorder. Front. Syst. Neurosci. 2022, 16, 1014768. [Google Scholar] [CrossRef]
- Khan, F.; Mehan, A. Addressing Opioid Tolerance and Opioid-Induced Hypersensitivity: Recent Developments and Future Therapeutic Strategies. Pharmacol. Res. Perspect. 2021, 9, e00789. [Google Scholar] [CrossRef]
- Tzschentke, T.M.; Linz, K.; Koch, T.; Christoph, T. Cebranopadol: A Novel First-in-Class Potent Analgesic Acting via NOP and Opioid Receptors. Handb. Exp. Pharmacol. 2019, 254, 367–398. [Google Scholar]
- Bakare, T.T.; Uzoeto, H.O.; Gonlepa, L.N.; Cosmas, S.; Ajima, J.N.; Arazu, A.V.; Ezechukwu, S.P.; Didiugwu, C.M.; Ibiang, G.O.; Osotuyi, A.G.; et al. Evolution and Challenges of Opioids in Pain Management: Understanding Mechanisms and Exploring Strategies for Safer Analgesics. Med. Chem. Res. 2024, 33, 563–579. [Google Scholar] [CrossRef]
- Zaveri, N.T. Nociceptin Opioid Receptor (NOP) as a Therapeutic Target: Progress in Translation from Preclinical Research to Clinical Utility. J. Med. Chem. 2016, 59, 7011–7028. [Google Scholar] [CrossRef]
- Petrella, M.; Borruto, A.M.; Curti, L.; Domi, A.; Domi, E.; Xu, L.; Barbier, E.; Ilari, A.; Heilig, M.; Weiss, F.; et al. Pharmacological Blockage of NOP Receptors Decreases Ventral Tegmental Area Dopamine Neuronal Activity through GABAB Receptor-Mediated Mechanism. Neuropharmacology 2024, 248, 109866. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.; Lambert, D.G.; Ko, M.C.; Koch, T. Functional Plasticity of the N/OFQ-NOP Receptor System Determines Analgesic Properties of NOP Receptor Agonists. Br. J. Pharmacol. 2014, 171, 3777–3800. [Google Scholar] [CrossRef]
- Chen, R.; Coppes, O.J.M.; Urman, R.D. Receptor and Molecular Targets for the Development of Novel Opioid and Non-Opioid Analgesic Therapies. Pain Physician 2021, 24, 153–163. [Google Scholar]
- Fichna, J.; Sobczak, M.; Mokrowiecka, A.; Cygankiewicz, A.I.; Zakrzewski, P.K.; Cenac, N.; Sałaga, M.; Timmermans, J.-P.; Vergnolle, N.; Małecka-Panas, E.; et al. Activation of the Endogenous Nociceptin System by Selective Nociceptin Receptor Agonist SCH 221510 Produces Antitransit and Antinociceptive Effect: A Novel Strategy for Treatment of Diarrhea-Predominant IBS. Neurogastroenterol. Motil. 2014, 26, 1539–1550. [Google Scholar] [CrossRef]
- Goeldner, C.; Spooren, W.; Wichmann, J.; Prinssen, E.P. Further Characterization of the Prototypical Nociceptin/Orphanin FQ Peptide Receptor Agonist Ro 64-6198 in Rodent Models of Conflict Anxiety and Despair. Psychopharmacology 2012, 222, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Shoblock, J.R. The Pharmacology of Ro 64-6198, a Systemically Active, Nonpeptide NOP Receptor (Opiate Receptor-like 1, ORL-1) Agonist with Diverse Preclinical Therapeutic Activity. CNS Drug Rev. 2007, 13, 107–136. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.N.; Flanagan, C.J.; Roberts, L.T.; Dies, R.M.; Kataria, S.; Jackson, E.D.; DeWitt, A.J.; Wenger, D.M.; Cornett, E.M.; Kaye, A.M.; et al. Cebranopadol for the Treatment of Chronic Pain. Curr. Pain Headache Rep. 2023, 27, 615–622. [Google Scholar] [CrossRef]
- Cappellini, I.; Bavestrello Piccini, G.; Campagnola, L.; Bochicchio, C.; Carente, R.; Lai, F.; Magazzini, S.; Consales, G. Procedural Sedation in Emergency Department: A Narrative Review. Emerg. Care Med. 2024, 1, 103–136. [Google Scholar] [CrossRef]
- Gavioli, E.C.; Holanda, V.A.D.; Ruzza, C. NOP Ligands for the Treatment of Anxiety and Mood Disorders. Handb. Exp. Pharmacol. 2019, 254, 233–257. [Google Scholar] [PubMed]
- Deguil, J.; Bordet, R. Contributions of Animal Models of Cognitive Disorders to Neuropsychopharmacology. Therapie 2021, 76, 87–99. [Google Scholar] [CrossRef]
- Schunk, S.; Linz, K.; Hinze, C.; Frormann, S.; Oberbörsch, S.; Sundermann, B.; Zemolka, S.; Englberger, W.; Germann, T.; Christoph, T.; et al. Discovery of a Potent Analgesic NOP and Opioid Receptor Agonist: Cebranopadol. ACS Med. Chem. Lett. 2014, 5, 857–862. [Google Scholar] [CrossRef]
- Ziemichod, W.; Kotlinska, J.; Gibula-Tarlowska, E.; Karkoszka, N.; Kedzierska, E. Cebranopadol as a Novel Promising Agent for the Treatment of Pain. Molecules 2022, 27, 3987. [Google Scholar] [CrossRef]
- Qiu, Q.; Chew, J.C.; Irwin, M.G. Opioid MOP Receptor Agonists in Late-Stage Development for the Treatment of Postoperative Pain. Expert Opin. Pharmacother. 2022, 23, 1831–1843. [Google Scholar] [CrossRef]
- Toledo, M.A.; Pedregal, C.; Lafuente, C.; Diaz, N.; Martinez-Grau, M.A.; Jiménez, A.; Benito, A.; Torrado, A.; Mateos, C.; Joshi, E.M.; et al. Discovery of a novel series of orally active nociceptin/orphanin FQ (NOP) receptor antagonists based on a dihydrospiro(piperidine-4,7′-thieno[2,3-c]pyran) scaffold. J. Med. Chem. 2014, 57, 3418–3429. [Google Scholar] [CrossRef]
- Raddad, E.; Chappell, A.; Meyer, J.; Wilson, A.; Ruegg, C.E.; Tauscher, J.; Statnick, M.A.; Barth, V.; Zhang, X.; Verfaille, S.J. Occupancy of nociceptin/orphanin FQ peptide receptors by the antagonist LY2940094 in healthy human subjects: A PET study. J. Pharmacol. Exp. Ther. 2016, 357, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Rehrauer, K.J.; Cunningham, C.W. IUPHAR Review: Bivalent and bifunctional opioid receptor ligands as novel analgesics. Pharmacol. Res. 2023, 197, 106966. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, P.; Mann, A.; Polgar, W.E.; Reinscheid, R.K.; Zaveri, N.T.; Schulz, S. Attenuated G protein signaling and minimal receptor phosphorylation as a biochemical signature of low side-effect opioid analgesics. Sci. Rep. 2022, 12, 7154. [Google Scholar] [CrossRef]
- Günther, T.; Dasgupta, P.; Mann, A.; Miess, E.; Kliewer, A.; Fritzwanker, S.; Steinborn, R.; Schulz, S. Targeting multiple opioid receptors—Improved analgesics with reduced side effects? Br. J. Pharmacol. 2018, 175, 2857–2868. [Google Scholar] [CrossRef]
- Grünenthal GmbH. Peripheral NOP Agonist Addressing Chronic Peripheral Neuropathic Pain Enters Clinical Development. Press Release, 16 December 2020. Available online: https://www.grunenthal.com/en/press-room/press-releases/2020/peripheral-nop-against-addressing-chronic-peripheral-neuropathic-pain-enters-clinical-development (accessed on 8 May 2025).
- Grünenthal GmbH. First Participants Enrolled in First-in-Human Phase I Clinical Trial with Nociceptin (NOP) Receptor Agonist; Grünenthal Press Room: Aachen, Germany, 2024. [Google Scholar]
- Cipriano, A.; Kapil, R.P.; Zhou, M.; Shet, M.S.; Harris, S.C.; Apseloff, G.; Whiteside, G.T. Evaluation of Sunobinop for Next-Day Residual Effects in Healthy Participants. Front. Pharmacol. 2024, 15, 1432902. [Google Scholar] [CrossRef]
- Clarke, H. Study Progresses of Sunobinop for Interstitial Cystitis/Bladder Pain Syndrome. Urol. Times 2025. [Google Scholar]
- Imbrium Therapeutics, L.P. Imbrium Therapeutics Presents Results of a Phase 2 Study of Sunobinop at 33rd American Academy of Addiction Psychiatry Annual Meeting. Imbrium Ther. News 2022. [Google Scholar]
- Claiborne, C.F.; Nag, S.; Mokha, S.S. Sex differences in the Nociceptin/Orphanin FQ system in rat spinal cord following chronic morphine treatment. Neuropharmacology 2012, 63, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S. Sex differences in pain and pain inhibition: Multiple explanations of a controversial phenomenon. Nat. Rev. Neurosci. 2012, 13, 859–866. [Google Scholar] [CrossRef]
- Zubieta, J.K.; Smith, Y.R.; Bueller, J.A.; Xu, K.; Kilbourn, M.R.; Jewett, D.M.; Meyer, C.R.; Koeppe, R.A.; Stohler, C.S. Effects of the Mu Opioid Receptor Polymorphism (OPRM1 A118G) on Pain Regulation, Placebo Effects, and Associated Personality Trait Measures. Neuropsychopharmacology 2013, 38, 1787–1795. [Google Scholar]
- Zhang, X.; Liang, Y.; Zhang, N.; Yan, Y.; Liu, S.; Fengxi, H.; Zhao, D.; Chu, H. The Relevance of the OPRM1 118A>G Genetic Variant for Opioid Requirement in Pain Treatment: A Meta-Analysis. Pain Physician 2019, 22, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Comer, S.D.; Cahill, C.M. Fentanyl: Receptor pharmacology, abuse potential, and implications for pain management. Neuropharmacology 2019, 158, 107658. [Google Scholar]
Feature | NOP Receptor | Classical Opioid Receptors (MOR, DOR, KOR) |
---|---|---|
Endogenous Ligand | Nociceptin/orphanin FQ [5] | Endorphins, enkephalins, dynorphins [3] |
Drug Binding | Not activated by morphine or traditional opioids [13,16,17,18] | Activated by opioids like morphine, fentanyl, heroin [16] |
Analgesic Effect | Complex: pro- or anti-nociceptive depending on site and context [16,17,18] | Primarily analgesic via inhibition of pain pathways [17,18] |
Respiratory Depression | Minimal or none [7] | Significant, especially with MOR agonists [7] |
Abuse Potential | Low [7] | High (especially with MOR activation) [7] |
Therapeutic Interest | Novel analgesics, anxiety, depression, substance use disorders [17,18] | Pain relief, sedation, anesthesia, opioid use disorder treatment [17,18] |
Desensitization and Internalization | Ligand- and context-dependent, slower β-arrestin recruitment and internalization with prolonged N/OFQ exposure [3] | Rapid desensitization and internalization largely via β-arrestin recruitment, especially with high-efficacy agonists [3] |
G-Protein vs. β-Arrestin Signaling | Primarily Gi/o; minimal β-arrestin recruitment—G protein bias is therapeutically exploitable [13,15] | Strong β-arrestin recruitment, especially with high-efficacy agonists—associated with side effects [13,15] |
Distribution (CNS/Peripheral) | Widespread in CNS: PAG, thalamus, hippocampus, amygdala, VTA, SC; present in DRG, immune cells [19,20] | Widespread in CNS: thalamus, PAG, spinal cord, nucleus accumbens; lower in periphery [19] |
Downstream Signaling Pathways | Activates Gi/o proteins leading to inhibition of adenylyl cyclase, reduction of cAMP, activation of inward-rectifier K+ channels, inhibition of voltage-gated Ca2+ channels; minimal β-arrestin pathway activation; limited ERK1/2 and MAPK phosphorylation [7,8,15] | Activates Gi/o proteins inhibiting adenylyl cyclase, modulating ion channels (K+ and Ca2+), but also strongly recruits β-arrestins that mediate receptor internalization and activate additional signaling cascades including ERK1/2, MAPK, and other kinase pathways linked to tolerance and side effects [7,8,15] |
Pain Type | Site of Action | Advantages | Disadvantages |
---|---|---|---|
Acute Pain | Spinal | Intrathecal NOP agonists (e.g., N/OFQ, UFP-112) produce analgesia in rodent nociceptive assays (tail-flick, formalin) and potentiate morphine analgesia [22]. | Very low doses of spinal N/OFQ can cause hyperalgesia (pronociception) in rodents [22]. Systemic NOP agonists have limited efficacy in acute pain models (rodent studies) [26]. |
Supraspinal | (No robust analgesic effect observed in rodents) | Supraspinal NOP agonists in rodents induce hyperalgesia and counteract opioid analgesia (e.g., intracerebroventricular N/OFQ causes pronociception) [22]. | |
Peripheral | Peripheral NOP agonists can reduce acute nociception in some models (e.g., intraplantar N/OFQ produces tail-flick analgesia) [26]. | Peripheral analgesic effects are modest and may involve non-NOP mechanisms (analgesia often naloxone-sensitive) [26]. | |
Inflammatory Pain | Spinal | Intrathecal NOP agonists attenuate inflammatory hyperalgesia (e.g., CFA- or carrageenan-induced) in rodents [22]. | Very low-dose spinal N/OFQ may paradoxically enhance inflammatory pain [22]. |
Supraspinal | (Rodents) Supraspinal NOP antagonists (e.g., in PAG) relieve inflammatory allodynia, implying NOP tone is pronociceptive [19]. | Supraspinal NOP agonists exacerbate inflammatory pain (hyperalgesia, anti-opioid effects) in rodents [19]. | |
Peripheral | Local NOP agonists (e.g., injected at inflammation site) may reduce inflammatory pain (by analogy to neuropathic models) [32]. | Systemic/peripheral NOP agonist analgesia requires high doses; efficacy is limited without central delivery [31]. | |
Neuropathic Pain | Spinal | Intrathecal NOP agonists relieve neuropathic allodynia/hyperalgesia (e.g., CCI or SNL models) in rodents [22]. | High doses are often needed; long-term efficacy and tolerance are not fully characterized [22]. |
Supraspinal | Some non-peptide NOP agonists (e.g., Ro65-6570) reduce neuropathic allodynia when given intracerebroventricularly in rodents [19]. | Blocking supraspinal NOP also relieves neuropathic pain (mixed findings); net supraspinal effect is unclear [19]. | |
Peripheral | Local NOP agonists (e.g., intraplantar Ro64-6198) produce antiallodynia in nerve-injury models [33]. | Systemic or peripheral administration (e.g., subcutaneous) is generally ineffective without targeted delivery [33]. |
Clinical Condition | Advantages | Disadvantages |
---|---|---|
Acute Pain | Dual NOP/MOP agonists (e.g., cebranopadol) provide strong analgesia comparable to opioids [22]. NOP agonists produce analgesia with minimal respiratory depression and reduced pruritus (observed in primate studies) [22]. | Pure NOP agonists alone have only modest efficacy in acute pain (no approved drugs yet) [26]. High doses can cause side effects (nausea, hypotension) requiring careful titration [26]. |
Chronic Pain | Cebranopadol significantly reduces chronic low-back and neuropathic pain and improves function [22]. NOP agonism is expected to control chronic pain with fewer opioid-like side effects (lower tolerance/dependence risk) [22]. | Higher doses of NOP-based drugs can cause adverse effects (dizziness, nausea), requiring slow titration [26]. Long-term safety and efficacy of pure NOP agonists in chronic pain are not yet established [26]. |
Co-Administration with Opioids | NOP agonists synergize with opioids: spinal co-administration enhances analgesia without worsening pruritus (animal studies) [22]. NOP activation may reduce opioid reward and dependence (preclinical models) [22]. | Human co-administration effects are uncertain; potential for unexpected interactions [26]. Central NOP activation might oppose opioid analgesia (as seen in rodent supraspinal studies) [26]. |
Drug (Code) | Drug Type | Phase | Indication | Sponsor/Company | Trial ID/Source | Status | Pharmacokinetics and Trial Outcomes | References |
---|---|---|---|---|---|---|---|---|
SCH 221510 | Selective NOP agonist | Preclinical | Pain (preclinical) | Schering-Plough | N/A | Abandoned | Short half-life (~1.5 h), low oral bioavailability; effective in rodents, poor developability | [37] |
Ro 64-6198 | Selective NOP agonist | Preclinical | Anxiety, pain (preclinical) | F. Hoffmann-La Roche | N/A | Abandoned | Good CNS penetration, poor oral activity; sedative effects at higher doses | [38,39] |
BTRX-246040 (LY-2940094) | Selective NOP antagonist | Phase II | Major depressive disorder, alcohol use disorder | BlackThorn/Lundbeck | NCT03193398, NCT01798303 | Completed | Oral bioavailability >60%, half-life 6–12 h; well tolerated; modest efficacy | [47,48] |
Cebranopadol (GRT600) | Mixed NOP/MOR agonist | Phase III | Moderate-to-severe acute pain (e.g., post-surgical, back pain) | Grünenthal (licensed to Tris) | NCT06545097, NCT06423703 | Completed | Oral bioavailability ~80%, half-life ~15 h; reduced opioid side effects, strong analgesia | [41,42] |
Un-named Grünenthal NOP agonist (oral) | Peripherally restricted NOP agonist | Phase I | Chronic peripheral neuropathic pain | Grünenthal | Not publicly registered | Completed | Likely minimal CNS exposure; efficacy and PK not disclosed | [52] |
Un-named Grünenthal NOP agonist (systemic) | Systemic NOP agonist | Phase I | Chronic pain (broad POC study) | Grünenthal | Not publicly registered | Ongoing (Recruiting) | Data not disclosed | [53] |
Sunobinop (IMB-115; V117957) | Selective NOP agonist | Phase 1b–2 | AUD, overactive bladder, IC/BPS | Imbrium/Purdue | NCT06024642, NCT06285214 | Completed | Good CNS penetration; early efficacy in neuropsychiatric indications; well tolerated | [54,55] |
Sunobinop (V117957) | Selective NOP agonist | Phase II (Completed) | Insomnia in patients recovering from AUD | Imbrium/Purdue | Internal company report | Completed | Improved sleep parameters; limited published data | [56] |
AT-121 | Mixed NOP/MOR partial agonist | Early clinical | Analgesia with low abuse/tolerance/respiratory depression | Academia/Industry (NIH-supported) | Preclinical + Phase I planned | In Development | Good CNS penetration, t½ ~8–10 h; no reward in NHPs, comparable efficacy to morphine | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Park, B.; Chu, X.-P. Nociceptin and the NOP Receptor in Pain Management: From Molecular Insights to Clinical Applications. Anesth. Res. 2025, 2, 18. https://doi.org/10.3390/anesthres2030018
Wu M, Park B, Chu X-P. Nociceptin and the NOP Receptor in Pain Management: From Molecular Insights to Clinical Applications. Anesthesia Research. 2025; 2(3):18. https://doi.org/10.3390/anesthres2030018
Chicago/Turabian StyleWu, Michelle, Brandon Park, and Xiang-Ping Chu. 2025. "Nociceptin and the NOP Receptor in Pain Management: From Molecular Insights to Clinical Applications" Anesthesia Research 2, no. 3: 18. https://doi.org/10.3390/anesthres2030018
APA StyleWu, M., Park, B., & Chu, X.-P. (2025). Nociceptin and the NOP Receptor in Pain Management: From Molecular Insights to Clinical Applications. Anesthesia Research, 2(3), 18. https://doi.org/10.3390/anesthres2030018