Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = peptide receptor radiotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4589 KiB  
Review
The Novel Achievements in Oncological Metabolic Radio-Therapy: Isotope Technologies, Targeted Theranostics, Translational Oncology Research
by Elena V. Uspenskaya, Ainaz Safdari, Denis V. Antonov, Iuliia A. Valko, Ilaha V. Kazimova, Aleksey A. Timofeev and Roman A. Zubarev
Med. Sci. 2025, 13(3), 107; https://doi.org/10.3390/medsci13030107 - 1 Aug 2025
Viewed by 217
Abstract
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the [...] Read more.
Background/Objectives. This manuscript presents an overview of advances in oncological radiotherapy as an effective treatment method for cancerous tumors, focusing on mechanisms of action within metabolite–antimetabolite systems. The urgency of this topic is underscored by the fact that cancer remains one of the leading causes of death worldwide: as of 2022, approximately 20 million new cases were diagnosed globally, accounting for about 0.25% of the total population. Given prognostic models predicting a steady increase in cancer incidence to 35 million cases by 2050, there is an urgent need for the latest developments in physics, chemistry, molecular biology, pharmacy, and strict adherence to oncological vigilance. The purpose of this work is to demonstrate the relationship between the nature and mechanisms of past diagnostic and therapeutic oncology approaches, their current improvements, and future prospects. Particular emphasis is placed on isotope technologies in the production of therapeutic nuclides, focusing on the mechanisms of formation of simple and complex theranostic compounds and their classification according to target specificity. Methods. The methodology involved searching, selecting, and analyzing information from PubMed, Scopus, and Web of Science databases, as well as from available official online sources over the past 20 years. The search was structured around the structure–mechanism–effect relationship of active pharmaceutical ingredients (APIs). The manuscript, including graphic materials, was prepared using a narrative synthesis method. Results. The results present a sequential analysis of materials related to isotope technology, particularly nucleus stability and instability. An explanation of theranostic principles enabled a detailed description of the action mechanisms of radiopharmaceuticals on various receptors within the metabolite–antimetabolite system using specific drug models. Attention is also given to radioactive nanotheranostics, exemplified by the mechanisms of action of radioactive nanoparticles such as Tc-99m, AuNPs, wwAgNPs, FeNPs, and others. Conclusions. Radiotheranostics, which combines the diagnostic properties of unstable nuclei with therapeutic effects, serves as an effective adjunctive and/or independent method for treating cancer patients. Despite the emergence of resistance to both chemotherapy and radiotherapy, existing nuclide resources provide protection against subsequent tumor metastasis. However, given the unfavorable cancer incidence prognosis over the next 25 years, the development of “preventive” drugs is recommended. Progress in this area will be facilitated by modern medical knowledge and a deeper understanding of ligand–receptor interactions to trigger apoptosis in rapidly proliferating cells. Full article
(This article belongs to the Special Issue Feature Papers in Section Cancer and Cancer-Related Diseases)
Show Figures

Figure 1

13 pages, 282 KiB  
Review
Management of Recurrent and Aggressive Non-Functioning Pituitary Adenomas
by Nicole A. Hefner and Odelia Cooper
J. Clin. Med. 2025, 14(15), 5203; https://doi.org/10.3390/jcm14155203 - 23 Jul 2025
Viewed by 351
Abstract
When non-functioning pituitary adenomas (NFPAs) behave aggressively or recur after first-line surgical treatment, it can be challenging to decide whether and how to escalate therapy. Up to 47% of patients with residual tumor after transsphenoidal surgery will show disease recurrence or progression and [...] Read more.
When non-functioning pituitary adenomas (NFPAs) behave aggressively or recur after first-line surgical treatment, it can be challenging to decide whether and how to escalate therapy. Up to 47% of patients with residual tumor after transsphenoidal surgery will show disease recurrence or progression and may require an intervention. Repeat surgical resection can be attempted in select cases if the tumor is accessible; for the remainder of patients, non-surgical treatment options may need to be considered. Radiotherapy can control tumor growth in 75% of NFPAs, but confers increased risk of hypopituitarism and other disorders. Currently, there are no medical therapies approved for patients with recurrent or aggressive NFPA. However, several have been investigated, including temozolomide, somatostatin receptor ligands, dopamine agonists, immune checkpoint inhibitors, vascular endothelial growth factor inhibitors, and peptide receptor radionuclide therapy. We present a review of the available evidence to provide guidance for pituitary endocrinologists and neuro-oncologists when treating patients with recurrent or aggressive NFPA. Full article
23 pages, 1894 KiB  
Review
From Seeing to Healing: The Clinical Potential of Radiotracers in Pediatric Neuro-Oncology
by Bojana Bogdanović and Christopher Montemagno
Cancers 2025, 17(12), 1905; https://doi.org/10.3390/cancers17121905 - 7 Jun 2025
Viewed by 791
Abstract
Pediatric central nervous system (CNS) tumors, including gliomas, medulloblastomas, and diffuse midline gliomas (previously diffuse intrinsic pontine gliomas), remain a major clinical challenge due to their complex biology, limited treatment effectiveness, and generally poor prognosis. Standard treatments are often aggressive and associated with [...] Read more.
Pediatric central nervous system (CNS) tumors, including gliomas, medulloblastomas, and diffuse midline gliomas (previously diffuse intrinsic pontine gliomas), remain a major clinical challenge due to their complex biology, limited treatment effectiveness, and generally poor prognosis. Standard treatments are often aggressive and associated with substantial toxicity, particularly in advanced stages. This review highlights recent developments in radiopharmaceuticals for molecular imaging and targeted radiotherapy. A comprehensive literature analysis was conducted, focusing on radiotracers with clinical relevance in pediatric neuro-oncology, including metabolic, peptide receptor-based, and antibody-based agents. Radiopharmaceuticals such as 18F-FLT, 64CuCl2, and 1-L-18F-FETrp have improved the ability to monitor tumor biology, proliferation, and treatment response, aiding in diagnosis at an early stage, assessment of tumor behavior, and detection of recurrence or progression. Additionally, peptide receptor-based radiotracers, such as 68Ga-DOTATATE and 177Lu-DOTATATE, are already used for both diagnostic purposes and targeted radiotherapy, particularly in neuroblastomas and gliomas. Antibody-based radiotracers like 131I-omburtamab, targeting B7-H3, are emerging as promising tools for addressing difficult-to-treat tumors such as diffuse midline glioma. Collectively, these advances provide new hope for children afflicted by these devastating malignancies, offering promising solutions for more specific and precise diagnosis and, additionally, for more effective, personalized, and less toxic tumor therapies. Full article
(This article belongs to the Special Issue Pediatric Brain Tumors: Symptoms, Diagnosis and Treatments)
Show Figures

Figure 1

27 pages, 2090 KiB  
Review
Peptidergic Systems and Neuroblastoma
by Manuel Lisardo Sánchez and Rafael Coveñas
Int. J. Mol. Sci. 2025, 26(8), 3464; https://doi.org/10.3390/ijms26083464 - 8 Apr 2025
Viewed by 687
Abstract
The peptidergic systems are involved in neuroblastoma. Peptides (angiotensin II, neuropeptide Y, neurotensin, substance P) act as oncogenic agents in neuroblastoma, whereas others (adrenomedullin, corticotropin-releasing factor, urocortin, orexin) exert anticancer effects against neuroblastoma. This plethora of peptidergic systems show the functional complexity of [...] Read more.
The peptidergic systems are involved in neuroblastoma. Peptides (angiotensin II, neuropeptide Y, neurotensin, substance P) act as oncogenic agents in neuroblastoma, whereas others (adrenomedullin, corticotropin-releasing factor, urocortin, orexin) exert anticancer effects against neuroblastoma. This plethora of peptidergic systems show the functional complexity of the mechanisms regulated by peptides in neuroblastoma. Peptide receptor antagonists act as antineuroblastoma agents since these compounds counteracted neuroblastoma cell growth and migration and the angiogenesis promoted by oncogenic peptides. Other therapeutic approaches (signaling pathway inhibitors, focal adhesion kinase inhibitors, peptide receptor knockdown, acetic acid analogs) that also counteract the beneficial effects mediated by the oncogenic peptides in neuroblastoma are discussed, and future research lines to be developed in neuroblastoma (interactions between oncogenic and anticancer peptides, combination therapy using peptide receptor antagonists and chemotherapy/radiotherapy) are also suggested. Although the data regarding the involvement of the peptidergic systems in neuroblastoma are, in many cases, fragmentary or very scarce for a particular peptidergic system, taken together, they are quite promising with respect to potentiating and developing this research line with the aim of developing new therapeutic strategies to treat neuroblastoma in the future. Peptidergic systems are potential and promising targets for the diagnosis and treatment of neuroblastoma. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: Third Edition)
Show Figures

Figure 1

25 pages, 2438 KiB  
Review
Radiotherapy Plus the Neurokinin-1 Receptor Antagonist Aprepitant: A Potent Therapeutic Strategy for the Treatment of Diffuse Intrinsic Pontine Glioma
by Miguel Muñoz and Marisa Rosso
Cancers 2025, 17(3), 520; https://doi.org/10.3390/cancers17030520 - 4 Feb 2025
Cited by 1 | Viewed by 1645
Abstract
Background: Diffuse intrinsic pontine glioma (DIPG) is a devastating childhood brainstem tumor. The median survival of DIPG is 16–24 months independent of the treatment received. Therefore, new therapeutic strategies against DIPG are urgently needed. Substance P (SP) peptide, through the neurokinin neurokinin-1 [...] Read more.
Background: Diffuse intrinsic pontine glioma (DIPG) is a devastating childhood brainstem tumor. The median survival of DIPG is 16–24 months independent of the treatment received. Therefore, new therapeutic strategies against DIPG are urgently needed. Substance P (SP) peptide, through the neurokinin neurokinin-1 receptor (NK-1R), is involved in glioma progression. It induces glioma cell proliferation by activating MAPKs (p38 MAPK, ERK1/2, and JNK), c-Myc, AP-1, and NF-κB and induces antiapoptotic effects via PI3K/Akt/mTOR in glioma cells. SP favors glycogen breakdown that is essential for glycolysis. The SP/NK-1R system also regulates the migration and invasion of glioma cells, stimulates angiogenesis, and triggers inflammation which contributes to glioma progression. Moreover, all glioma cells express NK-1R, and NK-1R is essential for the viability of glioma cells and not of normal cells. In contrast, in glioma, NK-1R antagonists, such as the drug aprepitant, penetrate the brain and reach therapeutic concentrations, thereby inhibiting mitogenesis, inducing apoptosis, and inhibiting the breakdown of glycogen in glioma cells. In addition, they inhibit angiogenesis and exert antimetastatic and anti-inflammatory effects. The combination of radiotherapy with NK-1R antagonists produces radiosensitization and radioneuroprotection, reduces both peritumoral- and radiation-induced inflammation, and also provides antinausea and antivomiting effects. Objective: This review updates the involvement of the SP/NK-1R system in glioma promotion and progression and the potential clinical application of NK-1R antagonist drugs in DIPG therapy. Conclusions: NK-1R plays a crucial role in glioma progression and NK-1R antagonists such as aprepitant could be used in combination with radiotherapy as a potent therapeutic strategy for the treatment of patients with DIPG. Full article
(This article belongs to the Special Issue Outcomes in Glioblastoma Patients: From Diagnosis to Palliation)
Show Figures

Figure 1

30 pages, 3287 KiB  
Article
GABA(A) Receptor Activation Drives GABARAP–Nix Mediated Autophagy to Radiation-Sensitize Primary and Brain-Metastatic Lung Adenocarcinoma Tumors
by Debanjan Bhattacharya, Riccardo Barrile, Donatien Kamdem Toukam, Vaibhavkumar S. Gawali, Laura Kallay, Taukir Ahmed, Hawley Brown, Sepideh Rezvanian, Aniruddha Karve, Pankaj B. Desai, Mario Medvedovic, Kyle Wang, Dan Ionascu, Nusrat Harun, Subrahmanya Vallabhapurapu, Chenran Wang, Xiaoyang Qi, Andrew M. Baschnagel, Joshua A. Kritzer, James M. Cook, Daniel A. Pomeranz Krummel and Soma Senguptaadd Show full author list remove Hide full author list
Cancers 2024, 16(18), 3167; https://doi.org/10.3390/cancers16183167 - 15 Sep 2024
Cited by 3 | Viewed by 3678
Abstract
In non-small cell lung cancer (NSCLC) treatment, radiotherapy responses are not durable and toxicity limits therapy. We find that AM-101, a synthetic benzodiazepine activator of GABA(A) receptor, impairs the viability and clonogenicity of both primary and brain-metastatic NSCLC cells. Employing a human-relevant ex [...] Read more.
In non-small cell lung cancer (NSCLC) treatment, radiotherapy responses are not durable and toxicity limits therapy. We find that AM-101, a synthetic benzodiazepine activator of GABA(A) receptor, impairs the viability and clonogenicity of both primary and brain-metastatic NSCLC cells. Employing a human-relevant ex vivo ‘chip’, AM-101 is as efficacious as docetaxel, a chemotherapeutic used with radiotherapy for advanced-stage NSCLC. In vivo, AM-101 potentiates radiation, including conferring a significant survival benefit to mice bearing NSCLC intracranial tumors generated using a patient-derived metastatic line. GABA(A) receptor activation stimulates a selective-autophagic response via the multimerization of GABA(A) receptor-associated protein, GABARAP, the stabilization of mitochondrial receptor Nix, and the utilization of ubiquitin-binding protein p62. A high-affinity peptide disrupting Nix binding to GABARAP inhibits AM-101 cytotoxicity. This supports a model of GABA(A) receptor activation driving a GABARAP–Nix multimerization axis that triggers autophagy. In patients receiving radiotherapy, GABA(A) receptor activation may improve tumor control while allowing radiation dose de-intensification to reduce toxicity. Full article
(This article belongs to the Special Issue The Emerging Role of Ion Channels in Cancer Treatment)
Show Figures

Figure 1

16 pages, 4878 KiB  
Article
Investigating the Radiobiological Response to Peptide Receptor Radionuclide Therapy Using Patient-Derived Meningioma Spheroids
by Thom G. A. Reuvers, Vivian Grandia, Renata M. C. Brandt, Majd Arab, Sybren L. N. Maas, Eelke M. Bos and Julie Nonnekens
Cancers 2024, 16(14), 2515; https://doi.org/10.3390/cancers16142515 - 11 Jul 2024
Cited by 2 | Viewed by 1773
Abstract
Peptide receptor radionuclide therapy (PRRT) using 177Lu-DOTA-TATE has recently been evaluated for the treatment of meningioma patients. However, current knowledge of the underlying radiation biology is limited, in part due to the lack of appropriate in vitro models. Here, we demonstrate proof-of-concept [...] Read more.
Peptide receptor radionuclide therapy (PRRT) using 177Lu-DOTA-TATE has recently been evaluated for the treatment of meningioma patients. However, current knowledge of the underlying radiation biology is limited, in part due to the lack of appropriate in vitro models. Here, we demonstrate proof-of-concept of a meningioma patient-derived 3D culture model to assess the short-term response to radiation therapies such as PRRT and external beam radiotherapy (EBRT). We established short-term cultures (1 week) for 16 meningiomas with high efficiency and yield. In general, meningioma spheroids retained characteristics of the parental tumor during the initial days of culturing. For a subset of tumors, clear changes towards a more aggressive phenotype were visible over time, indicating that the culture method induced dedifferentiation of meningioma cells. To assess PRRT efficacy, we demonstrated specific uptake of 177Lu-DOTA-TATE via somatostatin receptor subtype 2 (SSTR2), which was highly overexpressed in the majority of tumor samples. PRRT induced DNA damage which was detectable for an extended timeframe as compared to EBRT. Interestingly, levels of DNA damage in spheroids after PRRT correlated with SSTR2-expression levels of parental tumors. Our patient-derived meningioma culture model can be used to assess the short-term response to PRRT and EBRT in radiobiological studies. Further improvement of this model should pave the way towards the development of a relevant culture model for assessment of the long-term response to radiation and, potentially, individual patient responses to PRRT and EBRT. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

11 pages, 2769 KiB  
Article
Effects of Peptide Receptor Radiotherapy in Patients with Advanced Paraganglioma and Pheochromocytoma: A Nation-Wide Cohort Study
by Linda Skibsted Kornerup, Mikkel Andreassen, Ulrich Knigge, Anne Kirstine Arveschoug, Per Løgstup Poulsen, Andreas Kjær, Peter Sandor Oturai, Henning Grønbæk and Gitte Dam
Cancers 2024, 16(7), 1349; https://doi.org/10.3390/cancers16071349 - 29 Mar 2024
Cited by 3 | Viewed by 1898
Abstract
Introduction: Pheochromocytomas and paragangliomas are rare neuroendocrine tumours that originate from chromaffin cells within the adrenal medulla or extra-adrenal sympathetic ganglia. Management of disseminated or metastatic pheochromocytomas and paragangliomas continues to pose challenges and relies on limited evidence. Method: In this study, we [...] Read more.
Introduction: Pheochromocytomas and paragangliomas are rare neuroendocrine tumours that originate from chromaffin cells within the adrenal medulla or extra-adrenal sympathetic ganglia. Management of disseminated or metastatic pheochromocytomas and paragangliomas continues to pose challenges and relies on limited evidence. Method: In this study, we report retrospective data on median overall survival (OS) and median progression-free survival (PFS) for all Danish patients treated with peptide receptor radionuclide therapy (PRRT) with 177Lu-Dotatate or 90Y-Dotatate over the past 15 years. One standard treatment of PRRT consisted of 4 consecutive cycles with 8–14-week intervals. Results: We included 28 patients; 10 were diagnosed with pheochromocytoma and 18 with paraganglioma. Median age at first PRRT was 47 (IQR 15–76) years. The median follow-up time was 31 (IQR 17–37) months. Eight patients died during follow-up. Median OS was 72 months, and 5-year survival was 65% with no difference between pheochromocytoma and paraganglioma. Patients with germline mutations had better survival than patients without mutations (p = 0.041). Median PFS after the first cycle of PRRT was 30 months. For patients who previously received systemic treatment, the median PFS was 19 months, compared with 32 months for patients with no previous systemic treatment (p = 0.083). Conclusions: The median OS of around 6 years and median PFS of around 2.5 years found in this study are comparable to those reported in previous studies employing PRRT. Based on historical data, the efficacy of PRRT may be superior to 131I-MIBG therapy, and targeted therapy with sunitinib and PRRT might therefore be considered as first-line treatment in this patient group. Full article
(This article belongs to the Special Issue Neuroendocrine Tumors: From Diagnosis to Therapy)
Show Figures

Figure 1

10 pages, 934 KiB  
Entry
Antitumor Strategies Targeting Peptidergic Systems
by Francisco D. Rodríguez and Rafael Coveñas
Encyclopedia 2024, 4(1), 478-487; https://doi.org/10.3390/encyclopedia4010031 - 6 Mar 2024
Cited by 1 | Viewed by 1811
Definition
Peptidergic systems show promise as targets for fighting tumors. While some peptides encourage the growth and spread of tumor cells and angiogenic mechanisms, others display antitumor properties. As such, peptide ligands and receptor antagonists could be used as antitumor agents alone or in [...] Read more.
Peptidergic systems show promise as targets for fighting tumors. While some peptides encourage the growth and spread of tumor cells and angiogenic mechanisms, others display antitumor properties. As such, peptide ligands and receptor antagonists could be used as antitumor agents alone or in conjunction with chemotherapy or radiotherapy. Peptide receptor antagonists can counteract the oncogenic effects of specific peptides by inducing apoptosis in various types of tumor cells, hindering cancer cell migration and inhibiting angiogenesis. Peptides and peptide receptor antagonists are not currently used in clinical practice as antitumor agents. Still, aprepitant, a neurokinin 1 receptor antagonist, is a promising candidate due to its ability to promote apoptosis in many cancer cells. However, to utilize aprepitant as an anticancer agent, the dosage must be increased and administered for a more extended period. Moving beyond current protocols for aprepitant’s use as an antiemetic is essential. Additionally, a common anticancer strategy with aprepitant is possible regardless of cancer cell type. Finally, combining aprepitant with chemotherapy or radiotherapy is encouraged. Full article
(This article belongs to the Section Medicine & Pharmacology)
Show Figures

Figure 1

26 pages, 2598 KiB  
Review
Towards Effective Targeted Alpha Therapy for Neuroendocrine Tumours: A Review
by Paul M. D. Gape, Michael K. Schultz, Graeme J. Stasiuk and Samantha Y. A. Terry
Pharmaceuticals 2024, 17(3), 334; https://doi.org/10.3390/ph17030334 - 4 Mar 2024
Cited by 7 | Viewed by 4925
Abstract
This review article explores the evolving landscape of Molecular Radiotherapy (MRT), emphasizing Peptide Receptor Radionuclide Therapy (PRRT) for neuroendocrine tumours (NETs). The primary focus is on the transition from β-emitting radiopharmaceuticals to α-emitting agents in PRRT, offering a critical analysis of the radiobiological [...] Read more.
This review article explores the evolving landscape of Molecular Radiotherapy (MRT), emphasizing Peptide Receptor Radionuclide Therapy (PRRT) for neuroendocrine tumours (NETs). The primary focus is on the transition from β-emitting radiopharmaceuticals to α-emitting agents in PRRT, offering a critical analysis of the radiobiological basis, clinical applications, and ongoing developments in Targeted Alpha Therapy (TAT). Through an extensive literature review, the article delves into the mechanisms and effectiveness of PRRT in targeting somatostatin subtype 2 receptors, highlighting both its successes and limitations. The discussion extends to the emerging paradigm of TAT, underlining its higher potency and specificity with α-particle emissions, which promise enhanced therapeutic efficacy and reduced toxicity. The review critically evaluates preclinical and clinical data, emphasizing the need for standardised dosimetry and a deeper understanding of the dose-response relationship in TAT. The review concludes by underscoring the significant potential of TAT in treating SSTR2-overexpressing cancers, especially in patients refractory to β-PRRT, while also acknowledging the current challenges and the necessity for further research to optimize treatment protocols. Full article
(This article belongs to the Special Issue Therapeutic Radionuclides in Nuclear Medicine)
Show Figures

Figure 1

25 pages, 2374 KiB  
Review
Molecularly Targeted Lanthanide Nanoparticles for Cancer Theranostic Applications
by Guillermina Ferro-Flores, Alejandra Ancira-Cortez, Blanca Ocampo-García and Laura Meléndez-Alafort
Nanomaterials 2024, 14(3), 296; https://doi.org/10.3390/nano14030296 - 31 Jan 2024
Cited by 12 | Viewed by 3882
Abstract
Injectable colloidal solutions of lanthanide oxides (nanoparticles between 10 and 100 nm in size) have demonstrated high biocompatibility and no toxicity when the nanoparticulate units are functionalized with specific biomolecules that molecularly target various proteins in the tumor microenvironment. Among the proteins successfully [...] Read more.
Injectable colloidal solutions of lanthanide oxides (nanoparticles between 10 and 100 nm in size) have demonstrated high biocompatibility and no toxicity when the nanoparticulate units are functionalized with specific biomolecules that molecularly target various proteins in the tumor microenvironment. Among the proteins successfully targeted by functionalized lanthanide nanoparticles are folic receptors, fibroblast activation protein (FAP), gastrin-releasing peptide receptor (GRP-R), prostate-specific membrane antigen (PSMA), and integrins associated with tumor neovasculature. Lutetium, samarium, europium, holmium, and terbium, either as lanthanide oxide nanoparticles or as nanoparticles doped with lanthanide ions, have demonstrated their theranostic potential through their ability to generate molecular images by magnetic resonance, nuclear, optical, or computed tomography imaging. Likewise, photodynamic therapy, targeted radiotherapy (neutron-activated nanoparticles), drug delivery guidance, and image-guided tumor therapy are some examples of their potential therapeutic applications. This review provides an overview of cancer theranostics based on lanthanide nanoparticles coated with specific peptides, ligands, and proteins targeting the tumor microenvironment. Full article
Show Figures

Figure 1

30 pages, 1622 KiB  
Review
Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results
by György Trencsényi, Csaba Csikos and Zita Képes
Int. J. Mol. Sci. 2024, 25(1), 664; https://doi.org/10.3390/ijms25010664 - 4 Jan 2024
Cited by 9 | Viewed by 4563
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific [...] Read more.
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes—Radium-223 and Radium-224 (223/224Ra)—in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy. Full article
(This article belongs to the Collection Feature Papers in Molecular Nanoscience)
Show Figures

Figure 1

25 pages, 2757 KiB  
Article
Towards Cancer Nanoradiopharmaceuticals—Radioisotope Nanocarrier System for Prostate Cancer Theranostics Based on Radiation-Synthesized Polymer Nanogels
by Beata Paulina Rurarz, Kinga Anna Urbanek, Urszula Karczmarczyk, Joanna Raczkowska, Dominika Ewa Habrowska-Górczyńska, Marta Justyna Kozieł, Karolina Kowalska, Sławomir Kadłubowski, Agnieszka Sawicka, Michał Maurin, Agnieszka Wanda Piastowska-Ciesielska and Piotr Ulański
Cancers 2023, 15(23), 5646; https://doi.org/10.3390/cancers15235646 - 29 Nov 2023
Cited by 6 | Viewed by 2074
Abstract
Despite the tremendous development of oncology, prostate cancer remains a debilitating malignancy. One of the most promising approaches to addressing this issue is to exploit the advancements of nanomedicine in combination with well-established nuclear medicine and radiotherapy. Following this idea, we have developed [...] Read more.
Despite the tremendous development of oncology, prostate cancer remains a debilitating malignancy. One of the most promising approaches to addressing this issue is to exploit the advancements of nanomedicine in combination with well-established nuclear medicine and radiotherapy. Following this idea, we have developed a radioisotope nanocarrier platform of electron-beam-synthesized nanogels based on poly(acrylic acid). We have developed a functionalization protocol, showing the very high (>97%) efficiency of the conjugation in targeting a ligand–bombesin derivative. This engineered peptide can bind gastrin-releasing peptide receptors overexpressed in prostate cancer cells; moreover, it bears a radioisotope-chelating moiety. Our nanoplatform exhibits very promising performance in vitro; the radiolabeled nanocarriers maintained high radiochemical purity of >90% in both the labeling buffer and human serum for up to 14 days. The application of the targeted nanocarrier allowed also effective and specific uptake in PC-3 prostate cancer cells, up to almost 30% after 4 h, which is a statistically significant improvement in comparison to carrier-free radiolabeled peptides. Although our system requires further studies for more promising results in vivo, our study represents a vital advancement in radionanomedicine—one of many steps that will lead to effective therapy for castration-resistant prostate cancer. Full article
(This article belongs to the Special Issue Advanced Cancer Nanotheranostics)
Show Figures

Graphical abstract

30 pages, 5604 KiB  
Review
Liposomes for Cancer Theranostics
by Donald A. Fernandes
Pharmaceutics 2023, 15(10), 2448; https://doi.org/10.3390/pharmaceutics15102448 - 11 Oct 2023
Cited by 14 | Viewed by 4368
Abstract
Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for [...] Read more.
Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for many patients, cancer still remains one of the most common causes of death in the world. The main reasons for the poor response rates for different cancers include the lack of drug specificity, drug resistance and toxic side effects (i.e., in healthy tissues). For addressing the limitations of conventional cancer treatments, nanotechnology has shown to be an important field for constructing different nanoparticles for destroying cancer cells. Due to their size (i.e., less than 1 μm), nanoparticles can deliver significant amounts of cancer drugs to tumors and are able to carry moieties (e.g., folate, peptides) for targeting specific types of cancer cells (i.e., through receptor-mediated endocytosis). Liposomes, composed of phospholipids and an interior aqueous core, can be used as specialized delivery vehicles as they can load different types of cancer therapy agents (e.g., drugs, photosensitizers, genetic material). In addition, the ability to load imaging agents (e.g., fluorophores, radioisotopes, MRI contrast media) enable these nanoparticles to be used for monitoring the progress of treatment. This review examines a wide variety of different liposomes for cancer theranostics, with the different available treatments (e.g., photothermal, photodynamic) and imaging modalities discussed for different cancers. Full article
(This article belongs to the Special Issue Multifunctional Nanoparticles for Cancer Therapy and Imaging)
Show Figures

Figure 1

16 pages, 1032 KiB  
Review
Epidermal Growth Factor Receptor-Targeted Neoantigen Peptide Vaccination for the Treatment of Non-Small Cell Lung Cancer and Glioblastoma
by Fenge Li, Huancheng Wu, Xueming Du, Yimo Sun, Barbara Nassif Rausseo, Amjad Talukder, Arjun Katailiha, Lama Elzohary, Yupeng Wang, Zhiyu Wang and Gregory Lizée
Vaccines 2023, 11(9), 1460; https://doi.org/10.3390/vaccines11091460 - 5 Sep 2023
Cited by 14 | Viewed by 4788
Abstract
The epidermal growth factor receptor (EGFR) plays crucial roles in several important biological functions such as embryogenesis, epithelial tissue development, and cellular regeneration. However, in multiple solid tumor types overexpression and/or activating mutations of the EGFR gene frequently occur, thus hijacking the EGFR [...] Read more.
The epidermal growth factor receptor (EGFR) plays crucial roles in several important biological functions such as embryogenesis, epithelial tissue development, and cellular regeneration. However, in multiple solid tumor types overexpression and/or activating mutations of the EGFR gene frequently occur, thus hijacking the EGFR signaling pathway to promote tumorigenesis. Non-small cell lung cancer (NSCLC) tumors in particular often contain prevalent and shared EGFR mutations that provide an ideal source for public neoantigens (NeoAg). Studies in both humans and animal models have confirmed the immunogenicity of some of these NeoAg peptides, suggesting that they may constitute viable targets for cancer immunotherapies. Peptide vaccines targeting mutated EGFR have been tested in multiple clinical trials, demonstrating an excellent safety profile and encouraging clinical efficacy. For example, the CDX-110 (rindopepimut) NeoAg peptide vaccine derived from the EGFRvIII deletion mutant in combination with temozolomide and radiotherapy has shown efficacy in treating EGFRvIII-harboring glioblastoma multiforme (GBM) patients undergone surgery in multiple Phase I and II clinical trials. Furthermore, pilot clinical trials that have administered personalized NeoAg peptides for treating advanced-stage NSCLC patients have shown this approach to be a feasible and safe method to increase antitumor immune responses. Amongst the vaccine peptides administered, EGFR mutation-targeting NeoAgs induced the strongest T cell-mediated immune responses in patients and were also associated with objective clinical responses, implying a promising future for NeoAg peptide vaccines for treating NSCLC patients with selected EGFR mutations. The efficacy of NeoAg-targeting peptide vaccines may be further improved by combining with other modalities such as tyrosine kinase or immune checkpoint inhibitor (ICI) therapy, which are currently being tested in animal models and clinical trials. Herein, we review the most current basic and clinical research progress on EGFR-targeted peptide vaccination for the treatment of NSCLC and other solid tumor types. Full article
(This article belongs to the Special Issue Cancer Vaccines and Combination Immunotherapies)
Show Figures

Figure 1

Back to TopTop