Peptidergic Systems and Neuroblastoma
Abstract
1. Introduction
2. Neuroblastoma and Peptidergic Systems
2.1. Oncogenic Peptides
2.1.1. Amylin
2.1.2. Angiotensin II
2.1.3. Bradykinin
2.1.4. Gastrin-Releasing Peptide/Bombesin
2.1.5. Neuropeptide Y
2.1.6. Neurotensin/Neuromedin U
2.1.7. Oxytocin
2.1.8. Prolactin-Releasing Peptide
2.1.9. sPEP1
2.1.10. Substance P
2.1.11. Thyrotropin-Releasing Hormone
2.1.12. Vasopressin
2.2. Anticancer Peptides
2.2.1. Adrenomedullin/Pro-Adrenomedullin N-Terminal 20 Peptide
2.2.2. Corticotropin-Releasing Factor
2.2.3. Exendin-4
2.2.4. Gonadotropin-Releasing Hormone
2.2.5. Orexin
2.2.6. SHPRH-146aa
2.3. Other Peptides and Neuroblastoma
2.3.1. Adrenocorticotropin Hormone
2.3.2. Melanin-Concentrating Hormone
2.3.3. Neuropeptide FF
2.3.4. Somatostatin
2.3.5. Vasoactive Intestinal Peptide/Pituitary Adenylate Cyclase-Activating Polypeptide
3. Perspectives and Future Research
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qiao, J.; Liu, J.; Jacobson, J.C.; Clark, R.A.; Lee, S.; Liu, L.; An, Z.; Zhang, N.; Chung, D.H. Anti-GRP-R Monoclonal Antibody Antitumor Therapy against Neuroblastoma. PLoS ONE 2022, 17, e0277956. [Google Scholar] [CrossRef] [PubMed]
- Lukoseviciute, M.; Need, E.; Holzhauser, S.; Dalianis, T.; Kostopoulou, O.N. Combined Targeted Therapy with PI3K and CDK4/6, or FGFR Inhibitors Show Synergistic Effects in a Neuroblastoma Spheroid Culture Model. Biomed. Pharmacother. 2024, 177, 116993. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Poimenidou, M.; Craig, B.T. Current Knowledge and Perspectives of Immunotherapies for Neuroblastoma. Cancers 2024, 16, 2865. [Google Scholar] [CrossRef]
- Persaud, N.V.; Park, J.A.; Cheung, N.K.V. High-Risk Neuroblastoma Challenges and Opportunities for Antibody-Based Cellular Immunotherapy. J. Clin. Med. 2024, 13, 4765. [Google Scholar] [CrossRef] [PubMed]
- Dhamdhere, M.R.; Spiegelman, V.S. Extracellular Vesicles in Neuroblastoma: Role in Progression, Resistance to Therapy and Diagnostics. Front. Immunol. 2024, 15, 1385875. [Google Scholar] [CrossRef]
- Rados, M.; Landegger, A.; Schmutzler, L.; Rabidou, K.; Taschner-Mandl, S.; Fetahu, I.S. Natural Killer Cells in Neuroblastoma: Immunological Insights and Therapeutic Perspectives. Cancer Metastasis Rev. 2024, 43, 1401–1417. [Google Scholar] [CrossRef]
- Song, M.; Huang, Y.; Hong, Y.; Liu, J.; Zhu, J.; Lu, S.; Wang, J.; Sun, F.; Huang, J. PD-L1-Expressing Natural Killer Cells Predict Favorable Prognosis and Response to PD-1/PD-L1 Blockade in Neuroblastoma. OncoImmunology 2024, 13, 2289738. [Google Scholar] [CrossRef]
- Makimoto, A.; Fujisaki, H.; Matsumoto, K.; Takahashi, Y.; Cho, Y.; Morikawa, Y.; Yuza, Y.; Tajiri, T.; Iehara, T. Retinoid Therapy for Neuroblastoma: Historical Overview, Regulatory Challenges, and Prospects. Cancers 2024, 16, 544. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, C.; Li, X.; Gao, M.; Hogg, H.D.J.; Tunthanathip, T.; Hulsen, T.; Tian, X.; Zhao, Q. Development and Validation of a Novel Stemness-Related Prognostic Model for Neuroblastoma Using Integrated Machine Learning and Bioinformatics Analyses. Transl. Pediatr. 2024, 13, 91–109. [Google Scholar] [CrossRef]
- Zhou, J.; Du, H.; Cai, W. Narrative Review: Precision Medicine Applications in Neuroblastoma—Current Status and Future Prospects. Transl. Pediatr. 2024, 13, 164–177. [Google Scholar] [CrossRef]
- Sánchez, M.L.; Mangas, A.; Coveñas, R. Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides. Int. J. Mol. Sci. 2024, 25, 7990. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.L.; Rodríguez, F.D.; Coveñas, R. Peptidergic Systems and Cancer: Focus on Tachykinin and Calcitonin/Calcitonin Gene-Related Peptide Families. Cancers 2023, 15, 1694. [Google Scholar] [CrossRef]
- Coveñas, R.; Muñoz, M. Involvement of the Substance P/Neurokinin-1 Receptor System in Cancer. Cancers 2022, 14, 3539. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.; Coveñas, R.; Muñoz, M. Combination Therapy of Chemotherapy or Radiotherapy and the Neurokinin-1 Receptor Antagonist Aprepitant: A New Antitumor Strategy? Curr. Med. Chem. 2022, 29, 1798–1812. [Google Scholar] [CrossRef]
- Caruso, G.; Fresta, C.G.; Lazzarino, G.; Distefano, D.A.; Parlascino, P.; Lunte, S.M.; Lazzarino, G.; Caraci, F. Sub-Toxic Human Amylin Fragment Concentrations Promote the Survival and Proliferation of SH-SY5Y Cells via the Release of VEGF and HspB5 from Endothelial RBE4 Cells. Int. J. Mol. Sci. 2018, 19, 3659. [Google Scholar] [CrossRef]
- Maggi, M.; Finetti, G.; Cioni, A.; Mancina, R.; Baldi, E.; Serio, M.; Catalioto, R.-M.; Renzetti, A.R. Identification and Characterization of Functional Angiotensin II Receptors in Human Neuroblastoma Cells. Regul. Pept. 1995, 56, 175–184. [Google Scholar] [CrossRef]
- Chen, L.; Prakash, O.; Ré, R.N. The Interaction of Insulin and Angiotensin II on the Regulation of Human Neuroblastoma Cell Growth. Mol. Chem. Neuropathol. 1993, 18, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, T.; Chai, S.Y.; Mendelsohn, F.A.O.; Moeller, I.; Albiston, A.L. Characterization of the AT4 Receptor in a Human Neuroblastoma Cell Line (SK-N-MC). J. Neurochem. 2001, 76, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Collazo, B.J.; Morales-Vázquez, D.; Álvarez-Del Valle, J.; Sierra-Pagan, J.E.; Medina, J.C.; Méndez-Álvarez, J.; Gerena, Y. Angiotensin II Induces Differentiation of Human Neuroblastoma Cells by Increasing MAP2 and ROS Levels. J. Renin Angiotensin Aldosterone Syst. 2021, 2021, 6191417. [Google Scholar] [CrossRef] [PubMed]
- Blanco, H.M.; Perez, C.N.; Banchio, C.; Alvarez, S.E.; Ciuffo, G.M. Neurite Outgrowth Induced by Stimulation of Angiotensin II AT2 Receptors in SH-SY5Y Neuroblastoma Cells Involves c-Src Activation. Heliyon 2023, 9, e15656. [Google Scholar] [CrossRef]
- Ulrich, H.; Ratajczak, M.Z.; Schneider, G.; Adinolfi, E.; Orioli, E.; Ferrazoli, E.G.; Glaser, T.; Corrêa-Velloso, J.; Martins, P.C.M.; Coutinho, F. Kinin and Purine Signaling Contributes to Neuroblastoma Metastasis. Front. Pharmacol. 2018, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, A.; Shiraishi, M.; Negishi, M.; Saito, N.; Tanabe, M.; Sasaki, Y. MARCKS Dephosphorylation Is Involved in Bradykinin-induced Neurite Outgrowth in Neuroblastoma SH-SY5Y Cells. J. Cell. Physiol. 2012, 227, 618–629. [Google Scholar] [CrossRef]
- Querobino, S.M.; Ribeiro, C.A.J.; Alberto-Silva, C. Bradykinin-Potentiating PEPTIDE-10C, an Argininosuccinate Synthetase Activator, Protects against H2O2-Induced Oxidative Stress in SH-SY5Y Neuroblastoma Cells. Peptides 2018, 103, 90–97. [Google Scholar] [CrossRef]
- Paul, P.; Qiao, J.; Kim, K.W.; Romain, C.; Lee, S.; Volny, N.; Mobley, B.; Correa, H.; Chung, D.H. Targeting Gastrin-Releasing Peptide Suppresses Neuroblastoma Progression via Upregulation of PTEN Signaling. PLoS ONE 2013, 8, e72570. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Hu, W.; Kelly, D.R.; Hellmich, M.R.; Evers, B.M.; Chung, D.H. Gastrin-Releasing Peptide Is a Growth Factor for Human Neuroblastomas. Ann. Surg. 2002, 235, 621–630. [Google Scholar] [CrossRef]
- Qiao, L.; Paul, P.; Lee, S.; Qiao, J.; Wang, Y.; Chung, D.H. Differential Regulation of Cyclin-Dependent Kinase Inhibitors in Neuroblastoma Cells. Biochem. Biophys. Res. Commun. 2013, 435, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Ishola, T.; Kang, J.; Qiao, J.; Evers, B.; Chung, D. Phosphatidylinositol 3-Kinase Regulation of Gastrin-Releasing Peptide-Induced Cell Cycle Progression in Neuroblastoma Cells. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2007, 1770, 927–932. [Google Scholar] [CrossRef]
- Lee, S.; Qiao, J.; Pritha, P.; Chung, D.H. Integrin Β1 Is Critical for Gastrin-Releasing Peptidereceptor-Mediated Neuroblastoma Cell Migration And Invasion. Surgery 2013, 154, 369–375. [Google Scholar] [CrossRef]
- Qiao, J.; Lee, S.; Paul, P.; Qiao, L.; Taylor, C.J.; Schlegel, C.; Colon, N.C.; Chung, D.H. Akt2 Regulates Metastatic Potential in Neuroblastoma. PLoS ONE 2013, 8, e56382. [Google Scholar] [CrossRef]
- Lee, S.; Qiao, J.; Paul, P.; O’Connor, K.L.; Evers, B.M.; Chung, D.H. FAK Is a Critical Regulator of Neuroblastoma Liver Metastasis. Oncotarget 2012, 3, 1576–1587. [Google Scholar] [CrossRef]
- Rellinger, E.J.; Romain, C.; Choi, S.; Qiao, J.; Chung, D.H. Silencing Gastrin-Releasing Peptide Receptor Suppresses Key Regulators of Aerobic Glycolysis in Neuroblastoma Cells: GRP-R Signaling Regulates Glycolysis. Pediatr. Blood Cancer 2015, 62, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.W.; Paul, P.; Qiao, J.; Lee, S.; Chung, D.H. Enhanced Autophagy Blocks Angiogenesis via Degradation of Gastrin-Releasing Peptide in Neuroblastoma Cells. Autophagy 2013, 9, 1579–1590. [Google Scholar] [CrossRef]
- Abujamra, A.L.; Almeida, V.R.; Brunetto, A.L.; Schwartsmann, G.; Roesler, R. A Gastrin-releasing Peptide Receptor Antagonist Stimulates Neuro2a Neuroblastoma Cell Growth: Prevention by a Histone Deacetylase Inhibitor. Cell Biol. Int. 2009, 33, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Kang, J.; Ishola, T.A.; Rychahou, P.G.; Evers, B.M.; Chung, D.H. Gastrin-Releasing Peptide Receptor Silencing Suppresses the Tumorigenesis and Metastatic Potential of Neuroblastoma. Proc. Natl. Acad. Sci. USA 2008, 105, 12891–12896. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Cree, J.; Kang, J.; Kim, S.; Evers, B.M.; Chung, D.H. Ets Transcriptional Regulation of Gastrin-Releasing Peptide Receptor in Neuroblastomas. Surgery 2004, 136, 489–494. [Google Scholar] [CrossRef]
- Schlegel, C.; Paul, P.; Lee, S.; Woon Kim, K.; Colon, N.C.; Qiao, J.; Chung, D.H. Protein Kinase C Regulates Bombesin-Induced Rapid VEGF Secretion in Neuroblastoma Cells. Anticancer Res. 2012, 32, 4691–4696. [Google Scholar]
- Kang, J.; Ishola, T.A.; Baregamian, N.; Mourot, J.M.; Rychahou, P.G.; Evers, B.M.; Chung, D.H. Bombesin Induces Angiogenesis and Neuroblastoma Growth. Cancer Lett. 2007, 253, 273–281. [Google Scholar] [CrossRef]
- Sánchez, M.L.; Rodríguez, F.D.; Coveñas, R. Neuropeptide Y Peptide Family and Cancer: Antitumor Therapeutic Strategies. Int. J. Mol. Sci. 2023, 24, 9962. [Google Scholar] [CrossRef]
- Hoshi, N.; Hitomi, J.; Kusakabe, T.; Fukuda, T.; Hirota, M.; Suzuki, T. Distinct Morphological and Immunohistochemical Features and Different Growth Rates among Four Human Neuroblastomas Heterotransplanted into Nude Mice. Med. Mol. Morphol. 2008, 41, 151–159. [Google Scholar] [CrossRef]
- Lu, C.; Everhart, L.; Tilan, J.; Kuo, L.; Sun, C.-C.J.; Munivenkatappa, R.B.; Jönsson-Rylander, A.-C.; Sun, J.; Kuan-Celarier, A.; Li, L. Neuropeptide Y and Its Y2 Receptor: Potential Targets in Neuroblastoma Therapy. Oncogene 2010, 29, 5630–5642. [Google Scholar] [CrossRef]
- Li, A.; Ritter, S. Functional Expression of Neuropeptide Y Receptors in Human Neuroblastoma Cells. Regul. Pept. 2005, 129, 119–124. [Google Scholar] [CrossRef]
- Kitlinska, J.; Abe, K.; Kuo, L.; Pons, J.; Yu, M.; Li, L.; Tilan, J.; Everhart, L.; Lee, E.W.; Zukowska, Z. Differential Effects of Neuropeptide Y on the Growth and Vascularization of Neural Crest–Derived Tumors. Cancer Res. 2005, 65, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Tilan, J.; Kitlinska, J. Neuropeptide Y (NPY) in Tumor Growth and Progression: Lessons Learned from Pediatric Oncology. Neuropeptides 2016, 55, 55–66. [Google Scholar] [CrossRef]
- Czarnecka, M.; Trinh, E.; Lu, C.; Kuan-Celarier, A.; Galli, S.; Hong, S.-H.; Tilan, J.U.; Talisman, N.; Izycka-Swieszewska, E.; Tsuei, J. Neuropeptide Y Receptor Y5 as an Inducible Pro-Survival Factor in Neuroblastoma: Implications for Tumor Chemoresistance. Oncogene 2015, 34, 3131–3143. [Google Scholar] [CrossRef] [PubMed]
- Magni, P.; Maggi, R.; Pimpinelli, F.; Motta, M. Cholinergic Muscarinic Mechanisms Regulate Neuropeptide Y Gene Expression via Protein Kinase C in Human Neuroblastoma Cells. Brain Res. 1998, 798, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Dozio, E.; Ruscica, M.; Feltrin, D.; Motta, M.; Magni, P. Cholinergic Regulation of Neuropeptide Y Synthesis and Release in Human Neuroblastoma Cells. Peptides 2008, 29, 491–495. [Google Scholar] [CrossRef]
- Croce, N.; Dinallo, V.; Ricci, V.; Federici, G.; Caltagirone, C.; Bernardini, S.; Angelucci, F. Neuroprotective Effect of Neuropeptide Y against β-Amyloid 25-35 Toxicity in SH-SY5Y Neuroblastomacells Is Associated with Increased Neurotrophinproduction. Neurodegener. Dis. 2011, 8, 300–309. [Google Scholar] [CrossRef]
- Palanivel, V.; Gupta, V.; Mirshahvaladi, S.S.O.; Sharma, S.; Gupta, V.; Chitranshi, N.; Mirzaei, M.; Graham, S.L.; Basavarajappa, D. Neuroprotective Effects of Neuropeptide Y on Human Neuroblastoma SH-SY5Y Cells in Glutamate Excitotoxicity and ER Stress Conditions. Cells 2022, 11, 3665. [Google Scholar] [CrossRef]
- Abualsaud, N.; Caprio, L.; Galli, S.; Krawczyk, E.; Alamri, L.; Zhu, S.; Gallicano, G.I.; Kitlinska, J. Neuropeptide Y/Y5 Receptor Pathway Stimulates Neuroblastoma Cell Motility Through RhoA Activation. Front. Cell Dev. Biol. 2021, 8, 627090. [Google Scholar] [CrossRef]
- Galli, S.; Naranjo, A.; Van Ryn, C.; Tilan, J.U.; Trinh, E.; Yang, C.; Tsuei, J.; Hong, S.-H.; Wang, H.; Izycka-Swieszewska, E. Neuropeptide Y as a Biomarker and Therapeutic Target for Neuroblastoma. Am. J. Pathol. 2016, 186, 3040–3053. [Google Scholar] [CrossRef]
- Bjellerup, P.; Theodorsson, E.; Jörnvall, H.; Kogner, P. Limited Neuropeptide Y Precursor Processing in Unfavourable Metastatic Neuroblastoma Tumours. Br. J. Cancer 2000, 83, 171–176. [Google Scholar] [CrossRef]
- Magni, P.; Beretta, E.; Scaccianoce, E.; Motta, M. Retinoic Acid Negatively Regulates Neuropeptide Y Expression in Human Neuroblastoma Cells. Neuropharmacology 2000, 39, 1628–1636. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Sheriff, S.; Balasubramaniam, A.; Kennedy, M.A. NMR Based Metabolomics Study of Y2 Receptor Activation by Neuropeptide Y in the SK-N-BE2 Human Neuroblastoma Cell Line. Metabolomics 2015, 11, 1243–1252. [Google Scholar] [CrossRef]
- McDonald, R.L.; Vaughan, P.F.T.; Beck-Sickinger, A.G.; Peers, C. Inhibition of Ca2+ channel Currents in Human Neuroblastoma (SH-SY5Y) Cells by Neuropeptide Y and a Novel Cyclic Neuropeptide Y Analogue. Neuropharmacology 1995, 34, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhang, X.; Li, Z.; Xu, F.; Tang, C.; Chen, H. Neuromedin U and Neurotensin May Promote the Development of the Tumour Microenvironment in Neuroblastoma. PeerJ 2021, 9, e11512. [Google Scholar] [CrossRef]
- Bakos, J.; Strbak, V.; Ratulovska, N.; Bacova, Z. Effect of Oxytocin on Neuroblastoma Cell Viability and Growth. Cell. Mol. Neurobiol. 2012, 32, 891–896. [Google Scholar] [CrossRef]
- Gürbüz Özgür, B.; Vural, K.; Tuğlu, M.İ. Effects of Oxytocin on Glutamate Mediated Neurotoxicity in Neuroblastoma Cell Culture. Arch. Neuropsychiatry 2023, 61, 24. [Google Scholar] [CrossRef]
- Zatkova, M.; Reichova, A.; Bacova, Z.; Strbak, V.; Kiss, A.; Bakos, J. Neurite Outgrowth Stimulated by Oxytocin Is Modulated by Inhibition of the Calcium Voltage-Gated Channels. Cell. Mol. Neurobiol. 2018, 38, 371–378. [Google Scholar] [CrossRef]
- Bakos, J.; Strbak, V.; Paulikova, H.; Krajnakova, L.; Lestanova, Z.; Bacova, Z. Oxytocin Receptor Ligands Induce Changes in Cytoskeleton in Neuroblastoma Cells. J. Mol. Neurosci. 2013, 50, 462–468. [Google Scholar] [CrossRef]
- Koshimizu, T.; Fujiwara, Y.; Sakai, N.; Shibata, K.; Tsuchiya, H. Oxytocin Stimulates Expression of a Noncoding RNA Tumor Marker in a Human Neuroblastoma Cell Line. Life Sci. 2010, 86, 455–460. [Google Scholar] [CrossRef]
- Zmeškalová, A.; Popelová, A.; Exnerová, A.; Železná, B.; Kuneš, J.; Maletínská, L. Cellular Signaling and Anti-Apoptotic Effects of Prolactin-Releasing Peptide and Its Analog on SH-SY5Y Cells. Int. J. Mol. Sci. 2020, 21, 6343. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Wang, J.; Wang, X.; Yuan, B.; Li, D.; Hu, A.; Guo, Y.; Cai, S.; Jin, S. HNF4A-AS1-Encoded Small Peptide Promotes Self-Renewal and Aggressiveness of Neuroblastoma Stem Cells via eEF1A1-Repressed SMAD4 Transactivation. Oncogene 2022, 41, 2505–2519. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Rosso, M.; Pérez, A.; Coveñas, R.; Rosso, R.; Zamarriego, C.; Piruat, J.I. The NK1 Receptor Is Involved in the Antitumoural Action of L-733,060 and in the Mitogenic Action of Substance P on Neuroblastoma and Glioma Cell Lines. Neuropeptides 2005, 39, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Pérez, A.; Coveñas, R.; Rosso, M.; Castro, E. Antitumoural Action of L-733,060 on Neuroblastoma and Glioma Cell Lines. Arch. Ital. Biol. 2004, 142, 105–112. [Google Scholar]
- Henssen, A.G.; Odersky, A.; Szymansky, A.; Seiler, M.; Althoff, K.; Beckers, A.; Speleman, F.; Schäfers, S.; De Preter, K.; Astrahanseff, K. Targeting Tachykinin Receptors in Neuroblastoma. Oncotarget 2017, 8, 430–443. [Google Scholar] [CrossRef]
- Chu, J.M.T.; Chen, L.W.; Chan, Y.S.; Yung, K.K.L. Neuroprotective Effects of Neurokinin Receptor One in Dopaminergic Neurons Are Mediated through Akt/PKB Cell Signaling Pathway. Neuropharmacology 2011, 61, 1389–1398. [Google Scholar] [CrossRef]
- Mukerji, I.; Ramkissoon, S.H.; Reddy, K.K.R.; Rameshwar, P. Autocrine Proliferation of Neuroblastoma Cells Is Partly Mediated through Neurokinin Receptors: Relevance to Bone Marrow Metastasis. J. Neurooncol. 2005, 71, 91–98. [Google Scholar] [CrossRef]
- Pohl, A.; Kappler, R.; Mühling, J.; Schweinitz, D.; Berger, M. Expression of Truncated Neurokinin-1 Receptor in Childhood Neuroblastoma Is Independent of Tumor Biology and Stage. Anticancer Res. 2017, 37, 6079–6085. [Google Scholar] [CrossRef]
- Raffaghello, L.; Chiozzi, P.; Falzoni, S.; Di Virgilio, F.; Pistoia, V. The P2X7 Receptor Sustains the Growth of Human Neuroblastoma Cells through a Substance P–Dependent Mechanism. Cancer Res. 2006, 66, 907–914. [Google Scholar] [CrossRef]
- Jaworska-Feil, L.; Jantas, D.; Leskiewicz, M.; Budziszewska, B.; Kubera, M.; Basta-Kaim, A.; Lipkowski, A.W.; Lason, W. Protective Effects of TRH and Its Analogues against Various Cytotoxic Agents in Retinoic Acid (RA)-Differentiated Human Neuroblastoma SH-SY5Y Cells. Neuropeptides 2010, 44, 495–508. [Google Scholar] [CrossRef]
- Marroncini, G.; Anceschi, C.; Naldi, L.; Fibbi, B.; Baldanzi, F.; Maggi, M.; Peri, A. The V2 Receptor Antagonist Tolvaptan Counteracts Proliferation and Invasivity in Human Cancer Cells. J. Endocrinol. Investig. 2022, 45, 1693–1708. [Google Scholar] [CrossRef] [PubMed]
- Grassi, D.; Ghorbanpoor, S.; Acaz-Fonseca, E.; Ruiz-Palmero, I.; Garcia-Segura, L.M. The Selective Estrogen Receptor Modulator Raloxifene Regulates Arginine-Vasopressin Gene Expression in Human Female Neuroblastoma Cells Through G Protein-Coupled Estrogen Receptor and ERK Signaling. Endocrinology 2015, 156, 3706–3716. [Google Scholar] [CrossRef]
- Grassi, D.; Bellini, M.J.; Acaz-Fonseca, E.; Panzica, G.; Garcia-Segura, L.M. Estradiol and Testosterone Regulate Arginine-Vasopressin Expression in SH-SY5Y Human Female Neuroblastoma Cells through Estrogen Receptors-α and -β. Endocrinology 2013, 154, 2092–2100. [Google Scholar] [CrossRef]
- Castino, R.; Thepparit, C.; Bellio, N.; Murphy, D.; Isidoro, C. Akt Induces Apoptosis in Neuroblastoma Cells Expressing a C98X Vasopressin Mutant Following Autophagy Suppression. J. Neuroendocrinol. 2008, 20, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Omi, N.; Shimosawa, T.; Fujita, T. Proadrenomedullin N-terminal 20 Peptide (PAMP) Inhibits Proliferation of Human Neuroblastoma TGW Cells. FEBS Lett. 1997, 413, 462–466. [Google Scholar] [CrossRef]
- Satoh, F.; Takahashi, K.; Murakami, O.; Totsune, K.; Sone, M.; Ohneda, M.; Abe, K.; Miura, Y.; Hayashi, Y.; Sasano, H. Adrenomedullin in Human Brain, Adrenal Glands and Tumor Tissues of Pheochromocytoma, Ganglioneuroblastoma and Neuroblastoma. J. Clin. Endocrinol. Metab. 1995, 80, 1750–1752. [Google Scholar] [CrossRef]
- Xu, Y.; Krukoff, T.L. Adrenomedullin Stimulates Nitric Oxide Release from SK-N-SH Human Neuroblastoma Cells by Modulating Intracellular Calcium Mobilization. Endocrinology 2005, 146, 2295–2305. [Google Scholar] [CrossRef] [PubMed]
- Kitamuro, T.; Takahashi, K.; Totsune, K.; Nakayama, M.; Murakami, O.; Hida, W.; Shirato, K.; Shibahara, S. Differential Expression of Adrenomedullin and Its Receptor Component, Receptor Activity Modifying Protein (RAMP) 2 during Hypoxia in Cultured Human Neuroblastoma Cells. Peptides 2001, 22, 1795–1801. [Google Scholar] [CrossRef]
- Zimmermann, U.; Fischer, J.A.; Muff, R. Adrenomedullin and Calcitonin Gene-Related Peptide Interact with the Same Receptor in Cultured Human Neuroblastoma SK-N-MC Cells. Peptides 1995, 16, 421–424. [Google Scholar] [CrossRef]
- Pozzoli, G.; De Simone, M.L.; Cantalupo, E.; Cenciarelli, C.; Lisi, L.; Boninsegna, A.; Dello Russo, C.; Sgambato, A.; Navarra, P. The Activation of Type 1 Corticotropin Releasing Factor Receptor (CRF-R1) Inhibits Proliferation and Promotes Differentiation of Neuroblastoma Cells in Vitro via p27Kip1 Protein up-Regulation and c-Myc mRNA down-Regulation. Mol. Cell. Endocrinol. 2015, 412, 205–215. [Google Scholar] [CrossRef]
- Dautzenberg, F.M. Stimulation of Neuropeptide Y-Mediated Calcium Responses in Human SMS-KAN Neuroblastoma Cells Endogenously Expressing Y2 Receptors by Co-Expression of Chimeric G Proteins. Biochem. Pharmacol. 2005, 69, 1493–1499. [Google Scholar] [CrossRef]
- Luciani, P.; Deledda, C.; Benvenuti, S.; Squecco, R.; Cellai, I.; Fibbi, B.; Marone, I.M.; Giuliani, C.; Mordi, G.; Francini, F. Exendin-4 Induces Cell Adhesion and Differentiation and Counteracts the Invasive Potential of Human Neuroblastoma Cells. PLoS ONE 2013, 8, e71716. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.; Stewart, A.J.; Miller, N.; Mullen, P.; Muir, M.; Dodds, M.; Medda, F.; Harrison, D.; Langdon, S.; Millar, R.P. Gonadotropin-Releasing Hormone Receptor Levels and Cell Context Affect Tumor Cell Responses to Agonist In Vitro and In Vivo. Cancer Res. 2008, 68, 6331–6340. [Google Scholar] [CrossRef] [PubMed]
- Arihara, Z.; Takahashi, K.; Murakami, O.; Totsune, K.; Sone, M.; Satoh, F.; Ito, S.; Hayashi, Y.; Sasano, H.; Mouri, T. Orexin-A in the Human Brain and Tumor Tissues of Ganglioneuroblastoma and Neuroblastoma. Peptides 2000, 21, 565–570. [Google Scholar] [CrossRef]
- Rouet-Benzineb, P.; Rouyer-Fessard, C.; Jarry, A.; Avondo, V.; Pouzet, C.; Yanagisawa, M.; Laboisse, C.; Laburthe, M.; Voisin, T. Orexins Acting at Native OX1 Receptor in Colon Cancer and Neuroblastoma Cells or at Recombinant OX1 Receptor Suppress Cell Growth by Inducing Apoptosis. J. Biol. Chem. 2004, 279, 45875–45886. [Google Scholar] [CrossRef] [PubMed]
- Louhivuori, L.M.; Jansson, L.; Nordström, T.; Bart, G.; Näsman, J.; Åkerman, K.E.O. Selective Interference with TRPC3/6 Channels Disrupts OX1 Receptor Signalling via NCX and Reveals a Distinct Calcium Influx Pathway. Cell Calcium 2010, 48, 114–123. [Google Scholar] [CrossRef]
- Esmaeili-Mahani, S.; Vazifekhah, S.; Pasban-Aliabadi, H.; Abbasnejad, M.; Sheibani, V. Protective Effect of Orexin-A on 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Human Dopaminergic Neuroblastoma Cells. Neurochem. Int. 2013, 63, 719–725. [Google Scholar] [CrossRef]
- Pasban-Aliabadi, H.; Esmaeili-Mahani, S.; Abbasnejad, M. Orexin-A Protects Human Neuroblastoma SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways. Rejuvenation Res. 2017, 20, 125–133. [Google Scholar] [CrossRef]
- Wang, C.-M.; Yang, C.-Q.; Cheng, B.-H.; Chen, J.; Bai, B. Orexin-A Protects SH-SY5Y Cells against H2O2-Induced Oxidative Damage via the PI3K/MEK1/2/ERK1/2 Signaling Pathway. Int. J. Immunopathol. Pharmacol. 2018, 32, 2058738418785739. [Google Scholar] [CrossRef]
- Kong, T.; Qiu, K.; Liu, M.; Cheng, B.; Pan, Y.; Yang, C.; Chen, J.; Wang, C. Orexin-A Protects against Oxygen-Glucose Deprivation/Reoxygenation-Induced Cell Damage by Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis via the Gi and PI3K Signaling Pathways. Cell. Signal. 2019, 62, 109348. [Google Scholar] [CrossRef]
- Chang, S.; Ren, D.; Zhang, L.; Liu, S.; Yang, W.; Cheng, H.; Zhang, X.; Hong, E.; Geng, D.; Wang, Y. Therapeutic SHPRH-146aa Encoded by Circ-SHPRH Dynamically Upregulates P21 to Inhibit CDKs in Neuroblastoma. Cancer Lett. 2024, 598, 217120. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Pan, H.; Li, J.; Jiang, J.; Wang, W. A Peptide Encoded by the Circular Form of the SHPRH Gene Induces Apoptosis in Neuroblastoma Cells. PeerJ 2024, 12, e16806. [Google Scholar] [CrossRef] [PubMed]
- Familiar, C.; Azcutia, A. Adrenocorticotropic Hormone-Dependent Cushing Syndrome Caused by an Olfactory Neuroblastoma. Clin. Med. Insights Endocrinol. Diabetes 2019, 12, 1179551419825832. [Google Scholar] [CrossRef] [PubMed]
- Mikoshiba, T.; Sekimizu, M.; Saito, S.; Nakamura, S.; Nagai, R.; Kawaida, M.; Kurihara, I.; Kobayashi, S.; Ozawa, H. Ectopic Adrenocorticotropic Hormone Syndrome in Patients with Olfactory Neuroblastoma. Endocr. Relat. Cancer 2024, 31, e240030. [Google Scholar] [CrossRef]
- Alsarari, A.A.; Abdulkader, A.A.; Farooqi, W.A.; Al-Shibani, S.K.; Al Khuwaitir, T.S. Olfactory Neuroblastoma Causing Cushing’s Syndrome Due to the Ectopic Adrenocorticotropic Hormone (ACTH) Secretion: A Case Report. Cureus 2024, 16, e56434. [Google Scholar] [CrossRef]
- Kanno, K.; Morokuma, Y.; Tateno, T.; Hirono, Y.; Taki, K.; Osamura, R.Y.; Hirata, Y. Olfactory Neuroblastoma Causing Ectopic ACTH Syndrome. Endocr. J. 2005, 52, 675–681. [Google Scholar] [CrossRef]
- Fry, D.; Dayton, B.; Brodjian, S.; Ogiela, C.; Sidorowicz, H.; Frost, L.J.; McNally, T.; Reilly, R.M.; Collins, C.A. Characterization of a Neuronal Cell Line Expressing Native Human Melanin-Concentrating Hormone Receptor 1 (MCHR1). Int. J. Biochem. Cell Biol. 2006, 38, 1290–1299. [Google Scholar] [CrossRef]
- Takahashi, K.; Totsune, K.; Murakami, O.; Sone, M.; Satoh, F.; Kitamuro, T.; Noshiro, T.; Hayashi, Y.; Sasano, H.; Shibahara, S. Expression of Melanin-Concentrating Hormone Receptor Messenger Ribonucleic Acid in Tumor Tissues of Pheochromocytoma, Ganglioneuroblastoma, and Neuroblastoma1. J. Clin. Endocrinol. Metab. 2001, 86, 369–374. [Google Scholar] [CrossRef]
- Schlumberger, S.E.; Jäggin, V.; Tanner, H.; Eberle, A.N. Endogenous Receptor for Melanin-Concentrating Hormone in Human Neuroblastoma Kelly Cells. Biochem. Biophys. Res. Commun. 2002, 298, 54–59. [Google Scholar] [CrossRef]
- Cotta-Grand, N.; Rovère, C.; Guyon, A.; Cervantes, A.; Brau, F.; Nahon, J.-L. Melanin-Concentrating Hormone Induces Neurite Outgrowth in Human Neuroblastoma SH-SY5Y Cells through P53 and MAPKinase Signaling Pathways. Peptides 2009, 30, 2014–2024. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; He, N.; Sun, T.; Zhuang, Y.; Fang, Q.; Wang, K.; Wang, R. Neuropeptide FF Activates ERK and NF Kappa B Signal Pathways in Differentiated SH-SY5Y Cells. Peptides 2012, 38, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Änkö, M.; Panula, P. Regulation of Endogenous Human NPFF2 Receptor by Neuropeptide FF in SK-N-MC Neuroblastoma Cell Line. J. Neurochem. 2006, 96, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Mollereau, C.; Mazarguil, H.; Zajac, J.-M.; Roumy, M. Neuropeptide FF (NPFF) Analogs Functionally Antagonize Opioid Activities in NPFF2 Receptor-Transfected SH-SY5Y Neuroblastoma Cells. Mol. Pharmacol. 2005, 67, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Kersanté, F.; Mollereau, C.; Zajac, J.-M.; Roumy, M. Anti-Opioid Activities of NPFF1 Receptors in a SH-SY5Y Model. Peptides 2006, 27, 980–989. [Google Scholar] [CrossRef]
- Bonnard, E.; Burlet-Schiltz, O.; Monsarrat, B.; Girard, J.; Zajac, J. Identification of proNeuropeptide FFA Peptides Processed in Neuronal and Non-neuronal Cells and in Nervous Tissue. Eur. J. Biochem. 2003, 270, 4187–4199. [Google Scholar] [CrossRef]
- Feng, L.; Li, S.; Wang, C.; Yang, J. Current Status and Future Perspective on Molecular Imaging and Treatment of Neuroblastoma. Semin. Nucl. Med. 2023, 53, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, D.E.; Tadokoro, K.S.; Valappil, B.; Pakala, T.; Muthukrishnan, A.; Seethala, R.R.; Snyderman, C.H. DOTATATE PET Imaging in Olfactory Neuroblastoma and Association with SSTR Expression. J. Neurol. Surg. Part B Skull Base 2024, 85, 439–444. [Google Scholar] [CrossRef]
- Czapiewski, P.; Kunc, M.; Gorczyński, A.; Haybaeck, J.; Okoń, K.; Reszec, J.; Lewczuk, A.; Dzierzanowski, J.; Karczewska, J.; Biernat, W. Frequent Expression of Somatostatin Receptor 2a in Olfactory Neuroblastomas: A New and Distinctive Feature. Hum. Pathol. 2018, 79, 144–150. [Google Scholar] [CrossRef]
- Cracolici, V.; Wang, E.W.; Gardner, P.A.; Snyderman, C.; Gargano, S.M.; Chiosea, S.; Singhi, A.D.; Seethala, R.R. SSTR2 Expression in Olfactory Neuroblastoma: Clinical and Therapeutic Implications. Head Neck Pathol. 2021, 15, 1185–1191. [Google Scholar] [CrossRef]
- Gains, J.E.; Sebire, N.J.; Moroz, V.; Wheatley, K.; Gaze, M.N. Immunohistochemical Evaluation of Molecular Radiotherapy Target Expression in Neuroblastoma Tissue. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 402–411. [Google Scholar] [CrossRef]
- Fathpour, G.; Jafari, E.; Hashemi, A.; Dadgar, H.; Shahriari, M.; Zareifar, S.; Jenabzade, A.R.; Vali, R.; Ahmadzadehfar, H.; Assadi, M. Feasibility and Therapeutic Potential of Combined Peptide Receptor Radionuclide Therapy with Intensive Chemotherapy for Pediatric Patients with Relapsed or Refractory Metastatic Neuroblastoma. Clin. Nucl. Med. 2021, 46, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Alexander, N.; Marrano, P.; Thorner, P.; Naranjo, A.; Van Ryn, C.; Martinez, D.; Batra, V.; Zhang, L.; Irwin, M.S.; Baruchel, S. Prevalence and Clinical Correlations of Somatostatin Receptor-2 (SSTR2) Expression in Neuroblastoma. J. Pediatr. Hematol. Oncol. 2019, 41, 222–227. [Google Scholar] [CrossRef]
- Romiani, A.; Simonsson, K.; Pettersson, D.; Al-Awar, A.; Rassol, N.; Bakr, H.; Lind, D.E.; Umapathy, G.; Spetz, J.; Palmer, R.H. Comparison of 177Lu-Octreotate and 177Lu-Octreotide for Treatment in Human Neuroblastoma-Bearing Mice. Heliyon 2024, 10, e31409. [Google Scholar] [CrossRef] [PubMed]
- Romiani, A.; Spetz, J.; Shubbar, E.; Lind, D.E.; Hallberg, B.; Palmer, R.H.; Forssell-Aronsson, E. Neuroblastoma Xenograft Models Demonstrate the Therapeutic Potential of 177Lu-Octreotate. BMC Cancer 2021, 21, 950. [Google Scholar] [CrossRef]
- Boisvilliers, M.D.; Perrin, F.; Hebache, S.; Balandre, A.-C.; Bensalma, S.; Garnier, A.; Vaudry, D.; Fournier, A. VIP and PACAP Analogs Regulate Therapeutic Targets in High-Risk Neuroblastoma Cells. Peptides 2016, 78, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, G.; D’Amico, A.G.; Rasà, D.M.; Saccone, S.; Federico, C.; Cavallaro, S.; D’Agata, V. PACAP and VIP Regulate Hypoxia-Inducible Factors in Neuroblastoma Cells Exposed to Hypoxia. Neuropeptides 2018, 69, 84–91. [Google Scholar] [CrossRef]
- Lekholm, E.; Ceder, M.M.; Forsberg, E.C.; Schiöth, H.B.; Fredriksson, R. Differentiation of Two Human Neuroblastoma Cell Lines Alters SV2 Expression Patterns. Cell. Mol. Biol. Lett. 2021, 26, 5. [Google Scholar] [CrossRef]
- Georg, B.; Falktoft, B.; Fahrenkrug, J. PKA, Novel PKC Isoforms, and ERK Is Mediating PACAP Auto-Regulation via PAC 1 R in Human Neuroblastoma NB-1 Cells. Neuropeptides 2016, 60, 83–89. [Google Scholar] [CrossRef]
- Falktoft, B.; Georg, B.; Fahrenkrug, J. Calmodulin Interacts with PAC1 and VPAC2 Receptors and Regulates PACAP-Induced FOS Expression in Human Neuroblastoma Cells. Neuropeptides 2009, 43, 53–61. [Google Scholar] [CrossRef]
- Falktoft, B.; Georg, B.; Fahrenkrug, J. Signaling Pathways in PACAP Regulation of VIP Gene Expression in Human Neuroblastoma Cells. Neuropeptides 2009, 43, 387–396. [Google Scholar] [CrossRef]
- Monaghan, T.K.; MacKenzie, C.J.; Plevin, R.; Lutz, E.M. PACAP-38 Induces Neuronal Differentiation of Human SH-SY5Y Neuroblastoma Cells via cAMP-mediated Activation of ERK and P38 MAP Kinases. J. Neurochem. 2008, 104, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, T.K.; Pou, C.; MacKenzie, C.J.; Plevin, R.; Lutz, E.M. Neurotrophic Actions of PACAP-38 and LIF on Human Neuroblastoma SH-SY5Y Cells. J. Mol. Neurosci. 2008, 36, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Deguil, J.; Jailloux, D.; Page, G.; Fauconneau, B.; Houeto, J.; Philippe, M.; Muller, J.; Pain, S. Neuroprotective Effects of Pituitary Adenylate Cyclase–Activating Polypeptide (PACAP) in MPP+-induced Alteration of Translational Control in Neuro-2a Neuroblastoma Cells. J. Neurosci. Res. 2007, 85, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Algarni, A.S.; Hargreaves, A.J.; Dickenson, J.M. Role of Transglutaminase 2 in PAC1 Receptor Mediated Protection against Hypoxia-Induced Cell Death and Neurite Outgrowth in Differentiating N2a Neuroblastoma Cells. Biochem. Pharmacol. 2017, 128, 55–73. [Google Scholar] [CrossRef]
- Al Musaimi, O. Peptide Therapeutics: Unveiling the Potential against Cancer—A Journey through 1989. Cancers 2024, 16, 1032. [Google Scholar] [CrossRef]
- Li, C.M.; Haratipour, P.; Lingeman, R.G.; Perry, J.J.P.; Gu, L.; Hickey, R.J.; Malkas, L.H. Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells 2021, 10, 2908. [Google Scholar] [CrossRef]
Peptides | Effects on Neuroblastoma | References |
---|---|---|
Adrenocorticotropin Hormone (ACTH) | - Olfactory NB releases ACTH. | [93,94,95,96] |
Adrenomedullin/Pro-Adrenomedullin N-terminal 20 Peptide (PAMP) | - Both peptides block DNA synthesis and cell growth in NB cells; - CGRP antagonists block the previous effects mediated by adrenomedullin but not those by PAMP. | [75] |
Amylin | - Favors NB cell proliferation and survival; - Favors vascular endothelial growth factor/HspB5 release from endothelial cells. | [15] |
Angiotensin II | - NB cells express ATR1, ATR2, and ATR 4 receptors; - VIP increases ATR1 density in NB cells; - Acts as a growth factor in NB cells: insulin and insulin-like growth factor-1 increase the proliferative effects mediated by angiotensin II; - Favors NB cell differentiation by increasing MAP2 level via AT2R. | [16,17,18,19] |
Bradykinin | - Promotes NB cell proliferation and increases P2X7B receptor expression: bradykinin and purines are involved in NB dissemination, favoring metastasis; - Increases metalloproteinase activity, favors cell adhesion, and upregulates vascular endothelial growth factor expression in NB cells; - Favors neurite outgrowth mediated by the protein kinase C-dependent ROCK/RhoA pathway and protein phosphatase 2A. | [21,22] |
Corticotropin-Releasing Factor (CRF) | - CRF/urocortin reduce motility/proliferation in NB cells and favor neuronal-like differentiation; - Previous mechanisms occur when the cAMP/protein kinase A/cAMP-responsive element binding protein pathway is activated. | [80] |
Exendin-4 | - Favors a more differentiated phenotype, counteracts anchorage-independent growth, increases cell adhesion, and decreases cell migration in NB cells. | [82] |
Gastrin-Releasing Peptide (GRP)/Bombesin | - GRP acts as an autocrine growth factor in NB cells; - GRP is synthetized by NB cells; - GRP activates the phosphatidylinositol 3-kinase/Akt survival signaling pathway; - Phosphatidylinositol 3-kinase/Akt signaling pathway activation is correlated with poor prognosis; - GRP increases NB cell migration and matrix metalloproteinase-2 expression; - Integrin β1 silencing blocks NB cell migration mediated by GRP; - FAK overexpression favors NB cell growth and FAK blockers (Y15) inhibit NB cell growth and metastasis promoted by GRP; - GRP receptor overexpressed in NB: an augmented receptor expression was observed in more aggressive and undifferentiated tumors when compared with that found in benign tumors; - GRP receptor inhibition increases autophagy-mediated degradation of GRP in NB cells; - GRP receptor silencing blocks key regulators of aerobic glycolysis mechanisms; - GRP/GRP receptor/Akt2 axis is involved in NB progression; - Changes in cell morphology, reduced cell proliferation/size/migration, angiogenesis blockade, DNA syntesis inhibition, Akt downregulation, PTEN expression upregulation, and anchorage-independent growth suppression was observed in GRP receptor knockdown NB cells; - Anti-GRP antibodies inhibit NB cell proliferation and favors interferon γ/cytotoxic granzyme B release from natural killer cells; - PTEN/Akt signaling pathway is a key mediator of the GRP tumorigenic properties in NB cells; - Bombesin mediates NB cell growth and promotes angiogenesis; - Protein kinase C regulates bombesin-mediated secretion of the vascular endothelial growth factor in NB cells and when this secretion is blocked, a reduced NB cell proliferation-induced by GRP occurs. | [1,22,23,24,25,26,27,28,29,30,31,32,34,36,37] |
Gonadotropin-Releasing Hormone (GRH) | - Activation of GRH receptors inhibits NB cell growth and apoptotic markers are expressed in these cells after treatment with GRH; - NB cell xenograft growth slowed after GRH treatment. | [83] |
Melanin-Concentrating Hormone (MCH) | - NB tissues and cell lines express MCH and MCH receptor mRNA; - MCH, via MAPK and p53 signaling pathways, promotes neurite outgrowth in NB cells; | [97,98,99,100] |
Neuropeptide FF | - NB cells express neuropeptide YY and neuropeptide FF receptor 2; - Peptides (SQA-neuropeptide FF, neuropeptide AF, neuropeptide FF), derived from the neuropeptide FF precursor, located in NB cells; - Activates the extracellular signal-regulated protein kinase and NF-κB pathways in NB cells; - Activates the mitogen-activated protein kinase signaling pathway, promotes actin cytoskeleton reorganization, and upregulates the expression of neuropeptide FF receptor 2 mRNA/protein; - Neuropeptide FF analogs antagonize opioid activities in NB cells expressing mu/delta opioid receptors. | [101,102,103,105] |
Neuropeptide Y | - NB cells express neuropeptide Y and neuropeptide Y receptors 1, 2, 4, and 5; - Neuropeptide Y, released from NB cells, exerts an autocrine action favoring NB cell proliferation and angiogenesis; - Exerts anti-apoptotic mechanisms increasing the viability/survival of NB cells; - Favors NB cell motility and invasiveness; - Neuropeptide Y gene expression decreases in NB cells after treatment with retinoic acid; - Poor survival, metastasis, and relapse associated with high neuropeptide Y serum levels; - Neuropeptide Y release and neuropeptide Y/neuropeptide Y receptor 5 expression favored in NB cells after treatment with BDNF; the expression of the BDNF receptor, named tropomyosin-related kinase B receptor, has been associated with a worse prognosis; - Pro-neuropeptide Y processing associated with inferior outcomes/clinically advanced stages. | [39,40,41,43,44,48,49,50,51,52] |
Neurotensin/Neuromedin U | - Both peptides favor NB cell proliferation and invasion; - High neurotensin and neuromedin U levels related to a less favorable outcome. | [55] |
Orexin | - Orexin A/orexin mRNA in NB tissue; - Orexin A and B, via orexin receptor 1, block NB cell growth and favor apoptosis. | [84,85] |
Oxytocin | - Favors proliferation/viability and anti-apoptotic mechanisms in NB cells; - Promotes neurite outgrowth and cytoskeleton changes; favors non-coding RNA tumor marker expression. | [56,57,58,59,60] |
Prolactin-Releasing Peptide (PrRP) | - Binds to GRP10 receptors; - PrRP31 favors NB cell growth and survival. | [61] |
sPEP1 | - Favors self-renewal and aggressiveness of NB stem cells; - sPEP1 knockdown inhibits metastasis and self-renewal of NB stem cells;- sPEP1 high tissue levels related to poor survival. | [62] |
SHPRH-146aa | - Its overexpression blocks NB cell proliferation, migration, and invasion; increases apoptosis; and conunteracts NB cell malignancy traits. | [92] |
Somatostatin | - Somatostatin receptor 2 located in NB tissue; - Olfactory NB cells express somatostatin receptor 2, which is a target for radionuclide imaging; - Radiopharmaceuticals (177Lu-octreotide, 177Lu-octreotate) were used for the treatment of human NB cell (CLB-BAR)-bearing mice; after treatment with these somatostatin analogs, pro-apoptotic and anti-apoptotic genes were regulated. | [107,108,109,110,113] |
Substance P | - Neurokinin-1 receptors expressed in NB cells; - Promotes NB cell proliferation; - NB cell proliferation inhibited with neurokinin-1 receptor antagonsits (L-733,060, aprepitant). | [63,64,65,67] |
Thyrotropin-Releasing Hormone | - Exerts anti-apoptotic effects in NB cells. | [70] |
Vasoactive Intestinal Peptide (VIP)/Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) | - VIP level increased during NB differentiation; - VIP and PACAP promote NB cell differentiation into benign form by controlling vascular endothelial growth factor, vascular endothelial growth factor receptor, and hypoxia-inducible factor expressions; - NB cells express VPAC2 receptors; - PACAP, via PAC-1 receptors, promotes its own expression in NB cells; this is mediated by protein kinase A, extracellular signal-regulated kinase, and novel protein kinase isoforms, and also favors VIP/fos gene expressions; - PACAP-27 protects NB cells from apoptotic mechanisms, but VIP has no effect; - PACAP-38 did not promote NB cell proliferation, but the leukemia inhibitory factor favored such proliferation; - PACAP-38, via PAC-1 receptors, favors neuronal differentiation in NB cells. | [115,116,118,119,120,121,122,123] |
Vasopressin | - Tolvaptan decreases NB cell proliferation and invasion and induces apoptosis; - Raloxifene reduces vasopressin mRNA levels; - Testosterone and estradiol, via estrogen receptors, control vasopressin expression. | [71,72,73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, M.L.; Coveñas, R. Peptidergic Systems and Neuroblastoma. Int. J. Mol. Sci. 2025, 26, 3464. https://doi.org/10.3390/ijms26083464
Sánchez ML, Coveñas R. Peptidergic Systems and Neuroblastoma. International Journal of Molecular Sciences. 2025; 26(8):3464. https://doi.org/10.3390/ijms26083464
Chicago/Turabian StyleSánchez, Manuel Lisardo, and Rafael Coveñas. 2025. "Peptidergic Systems and Neuroblastoma" International Journal of Molecular Sciences 26, no. 8: 3464. https://doi.org/10.3390/ijms26083464
APA StyleSánchez, M. L., & Coveñas, R. (2025). Peptidergic Systems and Neuroblastoma. International Journal of Molecular Sciences, 26(8), 3464. https://doi.org/10.3390/ijms26083464