Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = passive impedance characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 493 KiB  
Article
Microstrip Line Modeling Taking into Account Dispersion Using a General-Purpose SPICE Simulator
by Vadim Kuznetsov
J. Low Power Electron. Appl. 2025, 15(3), 42; https://doi.org/10.3390/jlpea15030042 - 22 Jul 2025
Viewed by 295
Abstract
XSPICE models for a generic transmission line, a microstrip line, and coupled microstrips are presented. The developed models extend general-purpose circuit simulation tools using RF circuits design features. The models could be used for circuit simulation in frequency, DC, and time domains for [...] Read more.
XSPICE models for a generic transmission line, a microstrip line, and coupled microstrips are presented. The developed models extend general-purpose circuit simulation tools using RF circuits design features. The models could be used for circuit simulation in frequency, DC, and time domains for any active or passive RF or microwave schematic (including microwave monolithic integrated circuits—MMICs) involving transmission lines. The presented models could be used with any circuit simulation backend supporting XSPICE extensions and could be integrated without patching the core simulator code. The presented XSPICE models for microstrip lines take into account the frequency dependency of characteristic impedance and dispersion. The models were designed using open-source circuit simulation software. This study provides a practical example of the low-noise RF amplifier (LNA) design with Ngspice simulation backend using the proposed models. Full article
Show Figures

Figure 1

14 pages, 6398 KiB  
Article
Corrosion Behavior of Additively Manufactured GRX-810 Alloy in 3.5 wt.% NaCl
by Peter Omoniyi, Samuel Alfred, Kenneth Looby, Olu Bamiduro, Mehdi Amiri and Gbadebo Owolabi
Materials 2025, 18(14), 3252; https://doi.org/10.3390/ma18143252 - 10 Jul 2025
Viewed by 321
Abstract
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. [...] Read more.
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. Electrochemical characterization was performed using potentiodynamic polarization to determine critical corrosion parameters, including corrosion potential and current density, along with electrochemical impedance spectroscopy to assess the stability and protective qualities of the oxide film. Surface analytical techniques provided detailed microstructural and compositional insights, with scanning electron microscopy revealing the morphology of corrosion products, energy-dispersive X-ray spectroscopy identifying elemental distribution in the passive layer, and X-ray diffraction confirming the chemical composition and crystalline structure of surface oxide. The results demonstrated distinct corrosion resistance behavior between the different processing conditions of the alloy. The laser powder bed fused (LPBF) specimens in the as-built condition exhibited superior corrosion resistance compared to their hot isostatically pressed (HIPed) counterparts, as evidenced by higher corrosion potentials and lower current densities. Microscopic examination revealed the formation of a dense, continuous layer of corrosion products on the alloy surface, indicating effective barrier protection against chloride ion penetration. A compositional analysis of all samples identified oxide film enriched with chromium, nickel, cobalt, aluminum, titanium, and silicon. XRD characterization confirmed the presence of chromium oxide (Cr2O3) as the primary protective phase, with additional oxides contributing to the stability of the film. This oxide mixture demonstrated the alloy’s ability to maintain passivity and effective repassivation following film breakdown. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Figure 1

17 pages, 2556 KiB  
Article
Novel Hybrid Islanding Detection Technique Based on Digital Lock-In Amplifier
by Muhammad Noman Ashraf, Abdul Shakoor Akram and Woojin Choi
Energies 2025, 18(13), 3449; https://doi.org/10.3390/en18133449 - 30 Jun 2025
Viewed by 255
Abstract
Islanding detection remains a critical challenge for grid-connected distributed generation systems, as passive techniques suffer from inherent non-detection zones (NDZ), and active methods often degrade power quality. This paper introduces a hybrid detection strategy based on monitoring inherent grid harmonics via a Digital [...] Read more.
Islanding detection remains a critical challenge for grid-connected distributed generation systems, as passive techniques suffer from inherent non-detection zones (NDZ), and active methods often degrade power quality. This paper introduces a hybrid detection strategy based on monitoring inherent grid harmonics via a Digital Lock-In Amplifier. By comparing real-time 5th and 7th harmonic amplitudes against their three-cycle-delayed values, the passive stage adaptively identifies potential islanding without fixed thresholds. Upon detecting significant relative variation, a brief injection of a non-characteristic 10th harmonic (limited to under 3% distortion for three line cycles) serves as active verification, ensuring robust discrimination between islanding and normal disturbances. Case studies demonstrate detection within 140 ms—faster than typical reclosing delays and well below the 2 s limit of IEEE std. 1547—while preserving current zero-crossings and enabling grid impedance estimation. The method’s resilience to grid disturbances and stiffness is validated through PSIM simulations and laboratory experiments, meeting IEEE 1547 and UL 1741 requirements. Comparative analysis shows superior accuracy and minimal power-quality impact relative to existing passive, active, and intelligent approaches. Full article
(This article belongs to the Special Issue Power Electronics and Power Quality 2025)
Show Figures

Figure 1

15 pages, 2620 KiB  
Article
Proposal and Validation of a Pyro Conductor Switch-Based FCL for DC Distribution System Protection
by Il Kwon, Yu-Jin Kwak, Jeong-Cheol Lee and Bang-Wook Lee
Energies 2025, 18(13), 3441; https://doi.org/10.3390/en18133441 - 30 Jun 2025
Viewed by 228
Abstract
With the increasing deployment of DC power systems, particularly in DC distribution systems, there is a growing demand for rapid and effective fault current limiting solutions. Conventional fault current limiters (FCLs) often suffer from limitations in terms of response time, size, and operational [...] Read more.
With the increasing deployment of DC power systems, particularly in DC distribution systems, there is a growing demand for rapid and effective fault current limiting solutions. Conventional fault current limiters (FCLs) often suffer from limitations in terms of response time, size, and operational complexity. As a solution to these challenges, this paper proposes a hybrid FCL based on a pyro conductor switch (PCS), which combines passive limiting elements with an active switching mechanism. The proposed PCS FCL consists of a pyro fuse, an IGBT switch, a limiting inductor, and a damping resistor. Upon fault detection, the IGBT switch is first turned off to initiate current transfer into the limiting branch. Subsequently, the pyro fuse operates by explosively severing the embedded conductor using a pyrotechnic charge, thereby providing galvanic isolation and reinforcing current commutation into a high-impedance path. This operational characteristic enables effective fault current suppression without requiring complex control or real-time sensing. A detailed analysis using PSCAD/EMTDC simulations was conducted to evaluate the current limiting characteristics under fault conditions, and a prototype was subsequently developed to validate its performance. The simulation results were verified through experimental testing, indicating the limiter’s ability to reduce peak fault current. Furthermore, the results demonstrated that the degree of current limitation can be effectively designed through the selection of appropriate current limiting parameters. This demonstrates that the proposed PCS-based FCL provides a practical and scalable solution for improving protection in DC power distribution systems. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

28 pages, 19774 KiB  
Article
Design and Performance Evaluation of a μ-Synthesis-Based Robust Impedance Controller for Robotic Joints
by Nianfeng Shao, Yuancan Huang, Da Hong and Weiheng Zhong
Actuators 2025, 14(6), 266; https://doi.org/10.3390/act14060266 - 28 May 2025
Viewed by 438
Abstract
This paper proposes a robust impedance controller to address the performance limitations of mechanical impedance rendering in robotic joints, enabling stable interaction with passive environments. Considering structured uncertainties, such as dynamic parameter perturbations, sensor noise, disturbances, and unmodeled dynamics in actuator models, the [...] Read more.
This paper proposes a robust impedance controller to address the performance limitations of mechanical impedance rendering in robotic joints, enabling stable interaction with passive environments. Considering structured uncertainties, such as dynamic parameter perturbations, sensor noise, disturbances, and unmodeled dynamics in actuator models, the μ-synthesis method is employed to optimize closed-loop robustness performance. This approach minimizes impedance-matching errors in the frequency domain, thereby enhancing the regulation of the systems’s inherent impedance characteristics. Key performance metrics are analyzed, and the impedance-rendering accuracy is evaluated. Furthermore, the limiting factors affecting impedance-matching bandwidth are investigated to inform the selection of impedance parameters and ensure safe physical interaction. The proposed controller is validated through simulations and hardware experiments on a one-DoF modular robotic joint. Frequency domain impedance matching comparisons show that relative to H control, the μ-synthesis approach reduces impedance matching errors by up to 94.6% and 97.5% under 5% and 30% inertia uncertainties, respectively. Furthermore, experimental results demonstrate that compared to classical impedance control, the proposed method reduces impedance rendering errors by an average of 85.71% across all tested configurations while maintaining superior passivity and interaction stability under diverse impedance conditions. These results validate the effectiveness of μ-synthesis in achieving safe and high-fidelity physical interaction behavior. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

18 pages, 6730 KiB  
Article
Failure Analysis and Corrosion Resistance of Carbon Steel Pipelines in Concentrated Sulfuric Acid
by Guofu Ou, Xiaomin Cao, Yusif Mukhtar Mohammed and Wangping Wu
Metals 2025, 15(5), 506; https://doi.org/10.3390/met15050506 - 30 Apr 2025
Cited by 1 | Viewed by 672
Abstract
This study examines the waste sulfuric acid pipeline within the waste acid system from a certain petrochemical company, specifically, related to its sulfuric acid alkylation process. The current study sought to investigate the corrosion perforation mechanism of pipelines and revealed the synergistic effects [...] Read more.
This study examines the waste sulfuric acid pipeline within the waste acid system from a certain petrochemical company, specifically, related to its sulfuric acid alkylation process. The current study sought to investigate the corrosion perforation mechanism of pipelines and revealed the synergistic effects of sulfuric acid temperature and concentration on the corrosion behavior of 20# carbon steel. The corrosion features of the failed part were analyzed by scanning electron microscopy, X-ray energy-dispersive spectroscopy, and X-ray diffraction. The corrosion rates of 20# carbon steel in sulfuric acid at different concentrations (80%, 90%, 98%) and working temperatures (20 °C, 40 °C) were measured using the immersion corrosion method, potentiodynamic polarization curves, and electrochemical impedance spectroscopy. The results indicate that the failed pipeline exhibited multi-form corrosion characteristics, with both uniform and localized corrosion occurring simultaneously in concentrated sulfuric acid. The lowest corrosion rate was 0.0795 mm/a in 98% H2SO4 at 40 °C. The sulfuric acid concentration and working temperature exhibited synergistic effects on the corrosion behavior of 20# carbon steel. The corrosion rates increased with concentration in the range of 80–90% H2SO4 but reached a minimum of 98% due to passive film formation. In a nutshell, we established that elevated temperatures accelerated corrosion in low-concentration systems, but triggered localized active dissolution in high-concentration systems by disrupting the passive film on the surface of the steel. Full article
Show Figures

Figure 1

27 pages, 17723 KiB  
Article
Effects of Hybrid Corrosion Inhibitor on Mechanical Characteristics, Corrosion Behavior, and Predictive Estimation of Lifespan of Reinforced Concrete Structures
by Duc Thanh Tran, Han-Seung Lee, Jitendra Kumar Singh, Hyun-Min Yang, Min-Gu Jeong, Sirui Yan, Izni Syahrizal Ibrahim, Mohd Azreen Bin Mohd Ariffin, Anh-Tuan Le and Anjani Kumar Singh
Buildings 2025, 15(7), 1114; https://doi.org/10.3390/buildings15071114 - 29 Mar 2025
Viewed by 541
Abstract
A fixed ratio amount, i.e., L-arginine (LA) and trisodium phosphate dodecahydrate (TSP) at 2:0.25, is considered as a hybrid inhibitor. This research aims to extensively investigate the impact of utilizing the hybrid corrosion inhibitor on the corrosion resistance properties in accelerated condition, mechanical [...] Read more.
A fixed ratio amount, i.e., L-arginine (LA) and trisodium phosphate dodecahydrate (TSP) at 2:0.25, is considered as a hybrid inhibitor. This research aims to extensively investigate the impact of utilizing the hybrid corrosion inhibitor on the corrosion resistance properties in accelerated condition, mechanical characteristics, and predictive estimation of the lifespan of reinforced concrete (RC) structures. Various experiments, such as setting time, slump, air content, porosity, compressive strength, and chloride diffusion coefficient, were conducted to elucidate the influence of the hybrid corrosion inhibitor on the mechanical properties of the concrete matrix. Meanwhile, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) in 10 wt. % NaCl under wet–dry cycles are utilized to assess the corrosion resistance property, corrosion initiation time, and kinetics of the passive film formation on the steel rebar. Alternatively, both deterministic and probabilistic-based predictions of service life by Life 365 software are utilized to demonstrate the efficacy of the hybrid corrosion inhibitor in protecting the steel rebar in RC structures. All the results confirm that the HI-4 mix (LA:TSP = 3.56:0.44) exhibits excellence in preventing the corrosion and extending the service life of RC structures, due to the adsorption of inhibitor molecules and formation of P-Zwitterions-(Cl)-Fe, Zwitterions-(Cl)-Fe, and FePO4 complexes onto the steel rebar surface. However, HI-3 shows the optimal mechanical and electrochemical properties for RC structures. Full article
(This article belongs to the Special Issue Advances in Steel-Concrete Composite Structure—2nd Edition)
Show Figures

Figure 1

20 pages, 4846 KiB  
Article
Design and Optimization of a High-Frequency Oscillation Suppression Strategy for the Grid-Connected Inverter of a Permanent Magnet Direct Drive Wind Turbine
by Zhaoyang Liu, Yubo Yuan, Chuang Liu, Cong Sun and Zijun Bin
Energies 2025, 18(7), 1679; https://doi.org/10.3390/en18071679 - 27 Mar 2025
Viewed by 277
Abstract
With the development of the new power system with a high proportion of new energy and a high proportion of power electronic equipment, various problems caused by high-frequency oscillation will seriously affect the daily normal operation of the power system. For the existing [...] Read more.
With the development of the new power system with a high proportion of new energy and a high proportion of power electronic equipment, various problems caused by high-frequency oscillation will seriously affect the daily normal operation of the power system. For the existing active oscillatory suppression strategies, the impedance characteristics of other frequency bands will be affected, which may cause new oscillation problems in other frequency bands, namely the negative effect of oscillatory suppression strategy. In response to such phenomena, we conducted research on the mechanism of negative effects and optimize the control strategies accordingly. First, an analysis model of the grid-connected inverter was established. The concept of the damping factor was proposed based on the relationship between passive damping and active damping. The feasibility of the oscillation suppression mechanism based on the damping factor was demonstrated, and the negative effect mechanism of the oscillation suppression strategy was clarified. Secondly, a control strategy based on the superposition of active damping was proposed, which not only solved the negative effect of the oscillation suppression strategy but also avoided the shift of the inherent resonance point. Finally, the theory was verified based on the MATLAB R2022a/Simulink simulation platform. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

14 pages, 23162 KiB  
Article
Effect of Si Content on Phase Structure, Microstructure, and Corrosion Resistance of FeCrNiAl0.7Cu0.3Six High-Entropy Alloys in 3.5% NaCl Solution
by Xiaolong Shi, Hua Liang and Yanzhou Li
Coatings 2025, 15(3), 342; https://doi.org/10.3390/coatings15030342 - 15 Mar 2025
Cited by 3 | Viewed by 783
Abstract
This study examines the microstructure and corrosion resistance of FeCrNiAl0.7Cu0.3Six (x = 0, 0.1, 0.3, and 0.5) high-entropy alloys (HEAs) in a 3.5% NaCl solution. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and electrochemical testing [...] Read more.
This study examines the microstructure and corrosion resistance of FeCrNiAl0.7Cu0.3Six (x = 0, 0.1, 0.3, and 0.5) high-entropy alloys (HEAs) in a 3.5% NaCl solution. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and electrochemical testing were employed to systematically analyze the alloys’ microstructures and corrosion behavior. The XRD results indicate that the addition of Si affects the phase structure of the alloy. At Si = 0, the alloy exhibits a single BCC phase. By increasing the Si content to 0.1 and 0.3, a BCC2 phase appears. At Si = 0.5, Si-containing intermetallic compounds form. SEM observations reveal that as the Si content increases, the alloy develops a distinct dendritic structure. Polarization tests in the 3.5% NaCl solution show that the corrosion current density first decreases and then increases with increasing Si content. At Si contents of 0.1, 0.3, and 0.5, the corrosion current densities are 4.275 × 10−6 A·cm−2, 4.841 × 10−7 A·cm−2, and 2.137 × 10−6 A·cm−2, respectively. FeCrNiAl0.7Cu0.3S0.3 HEA exhibits the lowest corrosion current density, indicating a lower corrosion rate. Electrochemical impedance spectroscopy (EIS) tests show that at Si = 0.3, the alloy has the largest capacitive arc radius. The charge-transfer resistance (RCT) for the alloys with the Si contents of 0.1, 0.3, and 0.5 are 2.532 × 105 Ω·cm2, 4.088 × 105 Ω·cm2, 4.484 × 105 Ω·cm2, and 2.083 × 105 Ω·cm2, respectively. FeCrNiAl0.7Cu0.3Si0.3 HEA has the highest RCT, which indicates a more stable passivation film and better resistance to chloride ion intrusion. The corrosion morphology observed after polarization testing shows that all alloys exhibit intergranular corrosion characteristics. The Si content alters the distribution of passivation film-forming elements, Cr and Ni. Compared to other alloys, the corrosion morphology of FeCrNiAl0.7Cu0.3Si0.3 HEA is more complete. Combining the polarization, EIS, and corrosion morphology results, it can be concluded that FeCrNiAl0.7Cu0.3Si0.3 HEA exhibits the best corrosion resistance in the 3.5% NaCl solution. Full article
Show Figures

Figure 1

16 pages, 10842 KiB  
Article
Dynamic Variation in the Semiconductive Tendency of the Passive Film on Duplex Stainless Steel in Corrosion Environments
by Seung-Heon Choi, Young-Ran Yoo and Young-Sik Kim
Materials 2024, 17(23), 5963; https://doi.org/10.3390/ma17235963 - 5 Dec 2024
Cited by 1 | Viewed by 862
Abstract
Duplex stainless steels, known for their excellent corrosion resistance, are employed in a variety of chloride solutions—acidic, neutral, and alkaline—due to a stable passive film that forms on their surfaces. This study involved polarization tests, EIS (Electrochemical Impedance Spectroscopy) measurements, Mott–Schottky plots, and [...] Read more.
Duplex stainless steels, known for their excellent corrosion resistance, are employed in a variety of chloride solutions—acidic, neutral, and alkaline—due to a stable passive film that forms on their surfaces. This study involved polarization tests, EIS (Electrochemical Impedance Spectroscopy) measurements, Mott–Schottky plots, and XPS (X-Ray Photoelectron Spectroscopy) analyses in both static and dynamic conditions across acidic (1NaCl + 0.1N HCl, pH 1.0), neutral (1N NaCl, pH 6.7), and alkaline (1N NaCl + 0.1N NaOH, pH 13.2) chloride solutions to confirm that duplex stainless steels exhibit similar passivation behavior (0.79 μA/cm2 > ip > 0.2 μA/cm2 and 590 kΩ·cm2 < Rp < 651 kΩ·cm2). Regardless of the pH of the solution, p-type and n-type semiconductive properties were observed, but the balance of the semiconductive tendencies was different. Comparing passive films formed under dynamic conditions, through real-time HCl injection into a neutral chloride solution, with those formed under static conditions, revealed that both conditions yield similar structural and property characteristics in the films, as well as comparable electrochemical behaviors. These findings suggest that the passive film on the stainless steel surface adjusts to the environment and can be spontaneously repassivated in response to environmental changes. Full article
Show Figures

Figure 1

22 pages, 9626 KiB  
Article
Design of an Active–Passive Composite Impedance Controller for a Soft Robotic Arm Under Contact Constraints
by Bo Yan, Yinglong Chen, Cheng Zhou, Qiang Sun, Fei Gao, Xinyu Yang and Xingtian Xiao
Biomimetics 2024, 9(12), 742; https://doi.org/10.3390/biomimetics9120742 - 5 Dec 2024
Cited by 1 | Viewed by 1275
Abstract
The inherent passive impedance characteristics of soft robotic arms provide excellent environmental adaptability. When a soft robotic arm interacts with its surroundings, its passive impedance responds swiftly, preventing rigid collisions that could damage the arm and ensuring high safety. However, during the movement [...] Read more.
The inherent passive impedance characteristics of soft robotic arms provide excellent environmental adaptability. When a soft robotic arm interacts with its surroundings, its passive impedance responds swiftly, preventing rigid collisions that could damage the arm and ensuring high safety. However, during the movement of the soft robotic arm, these passive impedance properties are uncontrollable, making it impossible to achieve precise impedance control in constrained environments by relying solely on passive mechanisms. Therefore, this paper integrated active impedance control with the passive impedance characteristics of soft robotic arms, proposing an active–passive composite impedance controller. Additionally, a position-based impedance controller was designed for comparative analysis. Finally, this article developed both control systems and conducted simulations and experiments, demonstrating that the composite active–passive impedance controller offers superior control performance and environmental adaptability. Full article
(This article belongs to the Special Issue Design and Control of a Bio-Inspired Robot: 3rd Edition)
Show Figures

Figure 1

18 pages, 12664 KiB  
Article
The Modeling and Simulation of Non-Isolated DC–DC Converters for Optimizing Photovoltaic Systems Applied in Positive Energy Districts
by Tohid Hashemi and Hamed Jafari Kaleybar
Designs 2024, 8(6), 130; https://doi.org/10.3390/designs8060130 - 4 Dec 2024
Viewed by 1561
Abstract
DC–DC converters are critical for energy management in positive energy districts (PEDs) because they allow for efficient conversion between different voltage levels, enabling the integration of various renewable energy sources, energy storage systems, and loads. The demand for high-voltage gain DC–DC converters in [...] Read more.
DC–DC converters are critical for energy management in positive energy districts (PEDs) because they allow for efficient conversion between different voltage levels, enabling the integration of various renewable energy sources, energy storage systems, and loads. The demand for high-voltage gain DC–DC converters in photovoltaic power systems has surged in recent times. Despite the numerous converter topologies reported, there is a focused effort to streamline components, particularly switching devices, passive elements, and overall converter losses. This paper introduces the single switching impedance network (SSIN)-based converter as a unique DC–DC converter topology, designed in both one-stage and double-stage configurations for photovoltaic applications. One of the main characteristics of the SSIN converter is that it needs just one switch and three capacitors for the n-stage. A comparative analysis with conventional boost converter topology demonstrates the SSIN-based converter’s capability to achieve a desirable output voltage that closely approximates an ideal sine waveform. Furthermore, the application of advanced control strategies to the proposed converter highlights its superior performance and robustness in maintaining output voltage stability under varying conditions. These characteristics make the SSIN-based converter particularly well-suited for PED applications, where efficiency, reliability, and the seamless integration of renewable energy sources are crucial. Full article
(This article belongs to the Special Issue Design and Applications of Positive Energy Districts)
Show Figures

Figure 1

31 pages, 6715 KiB  
Article
Modeling of Static Stress Identification Using Electromechanical Impedance of Embedded Piezoelectric Plate
by Xianfeng Wang, Hui Liu, Guoxiong Liu and Dan Xu
Sensors 2024, 24(21), 7096; https://doi.org/10.3390/s24217096 - 4 Nov 2024
Viewed by 1173
Abstract
Working stress is an important indicator reflecting the health status of structures. Passive-monitoring technology using the piezoelectric effect can effectively monitor the dynamic stress of structures. However, under static loads, the charge generated by the piezoelectric devices can only be preserved when the [...] Read more.
Working stress is an important indicator reflecting the health status of structures. Passive-monitoring technology using the piezoelectric effect can effectively monitor the dynamic stress of structures. However, under static loads, the charge generated by the piezoelectric devices can only be preserved when the external circuit impedance is infinitely large, which means passive-monitoring techniques are unable to monitor static and quasi-static stress caused by slow-changing actions. In current studies, experimental observations have shown that the impedance characteristics of piezoelectric devices are affected by external static loads, yet the underlying mechanisms remain inadequately explained. This is because the impedance characteristics of piezoelectric devices are actually dynamic characteristics under alternating voltage. Most existing impedance analysis models are based on linear elastic dynamics. Within this framework, the impact of static stress on dynamic characteristics, including impedance characteristics, cannot be addressed. Accounting for static stress in impedance modeling is a challenging problem. In this study, the static stress applied on an embedded piezoelectric plate is abstracted as the initial stress of the piezoelectric plate. Based on nonlinear elastic dynamic governing equations, using the displacement method, an impedance analysis model of an embedded piezoelectric plate considering initial stress is established and verified through a fundamental experiment and a finite element analysis. Based on this, the explicit analytical relation between initial stress and impedance characterizations is provided, the mechanism of the effect of initial stress on the impedance characterizations is revealed, and procedures to identify static stress using impedance characterizations is proposed. Moreover, the sensitivities of the impedance characterizations in response to the initial stress are thoroughly discussed. This study mainly provides a theoretical basis for monitoring static stress using the electromechanical impedance of an embedded piezoelectric plate. And the results of the present study can help with the performance prediction and design optimization of piezoelectric-based static stress sensors. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 4902 KiB  
Review
A Review of Microstrip Patch Antenna-Based Passive Sensors
by Zain Ul Islam, Amine Bermak and Bo Wang
Sensors 2024, 24(19), 6355; https://doi.org/10.3390/s24196355 - 30 Sep 2024
Cited by 9 | Viewed by 4966
Abstract
This paper briefly overviews and discusses the existing techniques using antennas for passive sensing, starting from the antenna operating principle and antenna structural design to different antenna-based sensing mechanisms. The effects of different electrical properties of the material used to design an antenna, [...] Read more.
This paper briefly overviews and discusses the existing techniques using antennas for passive sensing, starting from the antenna operating principle and antenna structural design to different antenna-based sensing mechanisms. The effects of different electrical properties of the material used to design an antenna, such as conductivity, loss tangent, and resistivity, are discussed to illustrate the fundamental sensing mechanisms. Furthermore, the key parameters, such as operating frequency and antenna impedance, along with the factors affecting the sensing performance, are discussed. Overall, passive sensing using an antenna is mainly achieved by altering the reflected wave characteristics in terms of center frequency, return loss, phase, and received/reflected signal strength. The advantages and drawbacks of each technique are also discussed briefly. Given the increasing relevance, millimeter-wave antenna sensors and resonator sensors are also discussed with their applications and recent advancements. This paper primarily focuses on microstrip-based radiating structures and insights for further sensing performance improvement using passive antennas, which are outlined in this study. In addition, suggestions are made for the current scientific and technical challenges, and future directions are discussed. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

14 pages, 3480 KiB  
Article
Comparative Analysis of Muscle Activity and Circulatory Dynamics: A Crossover Study Using Leg Exercise Apparatus and Ergometer
by Nobuhiro Hirasawa, Yukiyo Shimizu, Ayumu Haginoya, Yuichiro Soma, Gaku Watanabe, Kei Takehara, Kayo Tokeji, Yuki Mataki, Ryota Ishii and Yasushi Hada
Medicina 2024, 60(8), 1260; https://doi.org/10.3390/medicina60081260 - 3 Aug 2024
Cited by 3 | Viewed by 1514 | Correction
Abstract
Background and Objectives: Bedridden patients are at a high risk of venous thromboembolism (VTE). Passive devices such as elastic compression stockings and intermittent pneumatic compression are common. Leg exercise apparatus (LEX) is an active device designed to prevent VTE by effectively contracting [...] Read more.
Background and Objectives: Bedridden patients are at a high risk of venous thromboembolism (VTE). Passive devices such as elastic compression stockings and intermittent pneumatic compression are common. Leg exercise apparatus (LEX) is an active device designed to prevent VTE by effectively contracting the soleus muscle and is therefore expected to be effective in preventing disuse of the lower limbs. However, few studies have been conducted on the kinematic properties of LEX. Therefore, this study aimed to compare the exercise characteristics of LEX with those of an ergometer, which is commonly used as a lower-limb exercise device, and examine its effect on the two domains of muscle activity and circulatory dynamics. Materials and Methods: This study used a crossover design in which each participant performed both exercises to evaluate the exercise characteristics of each device. Fifteen healthy adults performed exercises with LEX and an ergometer (Terasu Erugo, SDG Co., Ltd., Tokyo, Japan) for 5 min each and rested for 10 min after each exercise. Muscle activity was measured using surface electromyography (Clinical DTS, Noraxon, Scottsdale, AZ, USA), and circulatory dynamics were recorded using a non-invasive impedance cardiac output meter (Physioflow Enduro, Manatec Biomedical, Paris, France). The primary outcome was the mean percentage of maximum voluntary contraction (%MVC) of the soleus muscle during exercise. Results: The mean %MVC of the soleus muscle was significantly higher in the LEX group, whereas no significant differences were observed across the periods and sequences. Heart rate, stroke volume, and cardiac output increased during exercise and decreased thereafter; however, the differences between the devices were not significant. Conclusions: LEX may not only have a higher thromboprophylaxis effect, but also a higher effect on preventing muscle atrophy as a lower-extremity exercise device. Additionally, LEX could potentially be used safely in patients who need to be monitored for changes in circulatory dynamics. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Figure 1

Back to TopTop