Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = passive film evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2909 KB  
Article
Research on Intermittent Tensile Deformation to Improve the Properties of Austenitic Stainless Steel
by Huimin Tao, Yafang Cai, Yong Huang, Xiaoliang Wu, Zeqi Tong and Mingming Ding
Coatings 2025, 15(10), 1158; https://doi.org/10.3390/coatings15101158 - 4 Oct 2025
Viewed by 458
Abstract
This article conducts intermittent tensile deformation on 304 stainless steel; observes the microstructure, mechanical properties, and corrosion performance evolution of stainless steel under different deformation conditions; and reveals its mechanisms. The results indicate that the performance of 304 stainless steel is significantly affected [...] Read more.
This article conducts intermittent tensile deformation on 304 stainless steel; observes the microstructure, mechanical properties, and corrosion performance evolution of stainless steel under different deformation conditions; and reveals its mechanisms. The results indicate that the performance of 304 stainless steel is significantly affected by the degree of intermittent deformation. Small intermittent deformation can produce a good microstructure with uniform distribution, low martensite content, and weak texture, optimizing comprehensive mechanical properties by improving ductility, yield strength, and tensile strength. On the contrary, excessive intermittent deformation increases martensitic transformation and enhances texture, leading to a transition from ductile fracture to brittle fracture. In addition, small intermittent deformations improve corrosion resistance by promoting the formation of a stable passivation film. The microstructural changes affect the deformation mechanism and surface passivation film of stainless steel, making its mechanical strength and corrosion resistance superior to larger intermittent deformation amounts. Small intermittent deformation can improve the mechanical and corrosion properties of 304 stainless steel. This study provides a reference for the formation and performance control of metal materials and has certain practical value. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

16 pages, 6762 KB  
Article
Microstructure and Performance Evolution of Post-Plastic Deformed Austenitic Stainless Steel Fabricated by Selective Laser Melting
by Huimin Tao, Zi Li, Linlin Ma, Yafang Cai, Haiteng Xiu, Mingming Ding and Zeqi Tong
Micromachines 2025, 16(10), 1104; https://doi.org/10.3390/mi16101104 - 28 Sep 2025
Viewed by 426
Abstract
With the rapid development of additive manufacturing technology, selective laser melting (SLM) of austenitic stainless steel has been widely used. SLM stainless steel will inevitably deform during service, so it is necessary to study the microstructure and macro properties of post-plastic deformed SLM [...] Read more.
With the rapid development of additive manufacturing technology, selective laser melting (SLM) of austenitic stainless steel has been widely used. SLM stainless steel will inevitably deform during service, so it is necessary to study the microstructure and macro properties of post-plastic deformed SLM stainless steel. In this paper, the changes in the microstructure, mechanical properties, and corrosion resistance of SLM304 stainless steel after stretch deformation were studied, and the evolution rules were revealed. The results show that, with an increasing plastic deformation amount, SLM304 stainless steel exhibits grain fragmentation, disordered orientation, and subgrain formation, along with changes in the shape and size of the cellular structure. Additionally, the α’ martensite content inside SLM304 stainless steel rises significantly, while the thickness of the surface passivation film slightly decreases. The analysis shows that the combined effect of the complex microstructure makes the nanohardness of SLM304 stainless steel increase with the increase in the stretch deformation amount while its corrosion resistance deteriorates. Therefore, moderate post-plastic deformation can enable SLM stainless steel to balance excellent mechanical and corrosion properties. This study can not only provide a theoretical reference for the performance optimization of additive manufacturing steel but also provide value for the engineering application of additive manufacturing technology. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing, 2nd Edition)
Show Figures

Figure 1

12 pages, 2949 KB  
Article
Micro-Mechanical Properties and Corrosion Resistance of Zr-Based Metallic Glass Matrix Composite Coatings Fabricated by Laser Cladding Technology
by Wenle Wang and Zhifeng Yan
Appl. Sci. 2025, 15(17), 9698; https://doi.org/10.3390/app15179698 - 3 Sep 2025
Viewed by 656
Abstract
Laser cladding with ultrafast cooling rates enables effective fabrication of metallic glass matrix composite (MGMC) coatings, significantly enhancing the hardness, corrosion resistance, and mechanical properties of metallic substrates. In this study, a multi-layer Zr65Al7.5Ni10Cu17.5 (at. %) [...] Read more.
Laser cladding with ultrafast cooling rates enables effective fabrication of metallic glass matrix composite (MGMC) coatings, significantly enhancing the hardness, corrosion resistance, and mechanical properties of metallic substrates. In this study, a multi-layer Zr65Al7.5Ni10Cu17.5 (at. %) MGMC coating was successfully fabricated by laser cladding technology. The effects of the region-dependent microstructural evolution on micro-mechanical properties and corrosion resistance were systematically investigated. The results indicated that the high impurity content of the powder feedstock promoted the crystallization of the coating during laser cladding. Moreover, coarse columnar crystals in the bottom region of the coating nucleated epitaxially at the coating/substrate interface and propagated along the thermal gradient parallel to the building direction, while dendritic crystals dominated the middle region under moderate thermal gradients. In the top region, fine dendritic and equiaxed crystals deposited in the amorphous matrix, due to the lowest thermal gradient and the highest cooling rate. Correspondingly, nanoindentation results revealed that the top region exhibited peak hardness (H), maximum elastic modulus (E), and optimal H/E ratio, exceeding values in both the bottom region and substrate. Simultaneously, the metallic glass matrix composite coating demonstrated significantly better corrosion resistance than the substrate due to its amorphous phase and protective passive film formation. This work advances amorphous solidification theory while expanding applications of metallic glasses in surface engineering. Full article
Show Figures

Figure 1

18 pages, 2659 KB  
Article
Temperature-Driven Degradation Mechanisms of Steel–Concrete Interfaces in NaCl Solution Environments: Nanoscale Insights from Molecular Dynamics Simulations
by Jianchao Xu, Jiayi Mo, Wenlong Sang and Jieqiong Wu
Buildings 2025, 15(16), 2894; https://doi.org/10.3390/buildings15162894 - 15 Aug 2025
Viewed by 523
Abstract
This study aims to clarify the temperature-dependent degradation mechanisms of the steel–concrete interface in NaCl solution environments at the nanoscale, focusing on the key components of calcium silicate hydrate (C-S-H, the primary hydration product of cement) and iron oxyhydroxide (γ-FeOOH, a critical component [...] Read more.
This study aims to clarify the temperature-dependent degradation mechanisms of the steel–concrete interface in NaCl solution environments at the nanoscale, focusing on the key components of calcium silicate hydrate (C-S-H, the primary hydration product of cement) and iron oxyhydroxide (γ-FeOOH, a critical component of steel passive films in highly alkaline environments). Using Materials Studio software (2023) and molecular dynamics simulations, the evolution of the interface’s performance under temperatures ranging from 300 K to 390 K (corresponding to 27 °C to 117 °C) is systematically investigated. The results reveal that elevated temperatures degrade the performance of C-S-H/γ-FeOOH interfaces through three main mechanisms: (1) The stability of the hydration shell around aggressive ions is weakened, enabling these ions to occupy the coordination positions of calcium ions on the interface and form stable ion pairs with surface calcium ions, thereby weakening interfacial bonding. (2) The mobility of surface calcium ions is enhanced, reducing the strength of the interaction of ion pairs and diminishing the mediating role of calcium ions in connecting the C-S-H and γ-FeOOH phases. (3) Hydrogen bond stability at the interface decreases, as indicated by reduced hydrogen bond angles and numbers, coupled with increased hydrogen bond lengths. The above three reasons lead to a decrease in adsorption energy in the C-S-H/γ-FeOOH interface, which degrades the interface bond’s performance. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
Show Figures

Figure 1

23 pages, 4240 KB  
Article
Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating
by Alessandro A. Quarta
Appl. Sci. 2025, 15(15), 8755; https://doi.org/10.3390/app15158755 - 7 Aug 2025
Cited by 1 | Viewed by 608
Abstract
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation [...] Read more.
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation pressure into thrust using a large reflective surface typically coated with a thin metallic film. In contrast, the diffractive sail proposed by Swartzlander leverages the properties of an advanced metamaterial-based film to generate a net transverse thrust even when the sail is Sun-facing, i.e., in a configuration that can be passively maintained by a suitably designed spacecraft. Specifically, this study considers a sail membrane covered with a set of electro-optically controlled diffractive panels. These panels employ a (controlled) binary metamaterial arrayed grating to steer the direction of photons exiting the diffractive film. This control technique has recently been applied to achieve a circle-to-circle interplanetary transfer using a Sun-facing diffractive sail. In this work, an optimal control law is employed to execute a rapid phasing maneuver along an elliptical heliocentric orbit with specified characteristics, such as those of Earth and Mercury. The analysis also includes a limiting case involving a circular heliocentric orbit. For this latter scenario, a simplified and elegant control law is proposed based on a linearized form of the equations of motion to describe the heliocentric dynamics of the diffractive sail-based spacecraft during the phasing maneuver. Full article
Show Figures

Figure 1

17 pages, 12649 KB  
Article
Microstructure, Mechanical Properties, and Electrochemical Corrosion Behavior of CoCrFeNiNb and CoCrFeNiV High-Entropy Alloys Prepared via Mechanical Alloying and Spark Plasma Sintering
by Yan Zhu, Yiwen Liu, Zhaocang Meng and Jianke Tian
Metals 2025, 15(7), 814; https://doi.org/10.3390/met15070814 - 21 Jul 2025
Cited by 1 | Viewed by 677
Abstract
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. [...] Read more.
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. The CoCrFeNiNb HEA exhibits superior compressive strength and hardness than CoCrFeNiV due to uniform Laves phases distribution. Fracture surface analysis reveals that at lower sintering temperatures, the fracture is primarily caused by incomplete particle bonding, whereas at higher temperatures, brittle fracture modes dominated via transgranular cracking become predominant. The research results of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that both alloys exhibited superior electrochemical stability in a 3.5 wt.% NaCl solution compared to the CoCrFeNi base alloy. X-ray photoelectron spectroscopy (XPS) analysis confirms the formation of stable oxide layers (Nb2O5 and V2O3) on the precipitated phases, acting as protective barriers against chloride ion penetration. The selective oxidation of Nb and V improves the integrity of the passive film, reducing the corrosion rates and enhancing the long-term durability. These findings highlight the critical role of precipitated phases in enhancing the corrosion resistance of HEAs, and emphasize their potential for use in extreme environments. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Processing and Properties)
Show Figures

Figure 1

13 pages, 3980 KB  
Article
Research on the Synergistic Evolution Law of Microstructure and Properties of Deformed Austenitic Stainless Steel
by Huimin Tao, Yafang Cai, Zi Li, Haiteng Xiu, Zeqi Tong and Mingming Ding
Coatings 2025, 15(7), 845; https://doi.org/10.3390/coatings15070845 - 18 Jul 2025
Cited by 2 | Viewed by 454
Abstract
Austenitic stainless steel inevitably undergoes deformation during application, and it is necessary to study the properties of deformed steel. This article investigates the evolution of microstructure, mechanical properties, and corrosion resistance of plastic-deformed 304 steel, the evolution law of structure and properties of [...] Read more.
Austenitic stainless steel inevitably undergoes deformation during application, and it is necessary to study the properties of deformed steel. This article investigates the evolution of microstructure, mechanical properties, and corrosion resistance of plastic-deformed 304 steel, the evolution law of structure and properties of steel is revealed. As a result, it was found that with the increase in deformation, the grains of 304 steel were destroyed, and many small subgrains were generated internally, resulting in a significant decrease in grain size. At the same time, the content of martensitic transformation in stainless steel increased significantly. The characteristics of the surface passivation film of stainless steel also change during the deformation process. Meanwhile, with the increase in deformation, the nanohardness and wear resistance of 304 steel gradually increase, but its corrosion resistance gradually decreases. Analysis suggests that microstructural changes such as grain size and phase transformation in stainless steel lead to an improvement in its mechanical properties, while the generation of defects during deformation and changes in surface passivation film characteristics result in a deterioration of its corrosion resistance. This study can provide a reference for the forming and performance optimization of metals and has high theoretical significance and practical value. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

31 pages, 62180 KB  
Article
Evaluation of the Suitability of High-Temperature Post-Processing Annealing for Property Enhancement in LPBF 316L Steel: A Comprehensive Mechanical and Corrosion Assessment
by Bohdan Efremenko, Yuliia Chabak, Ivan Petryshynets, Tianliang Zhao, Vasily Efremenko, Kaiming Wu, Tao Xia, Miroslav Džupon and Sundas Arshad
Metals 2025, 15(6), 684; https://doi.org/10.3390/met15060684 - 19 Jun 2025
Cited by 1 | Viewed by 1473
Abstract
This study aims to comprehensively assess the suitability of post-processing annealing (at 900–1200 °C) for enhancing the key properties of 316L steel fabricated via laser powder bed fusion (LPBF). It adopts a holistic approach to investigate the annealing-driven evolution of microstructure–property relationships, focusing [...] Read more.
This study aims to comprehensively assess the suitability of post-processing annealing (at 900–1200 °C) for enhancing the key properties of 316L steel fabricated via laser powder bed fusion (LPBF). It adopts a holistic approach to investigate the annealing-driven evolution of microstructure–property relationships, focusing on tensile properties, nanoindentation hardness and modulus, impact toughness at ambient and cryogenic temperatures (−196 °C), and the corrosion resistance of LPBF 316L. Annealing at 900–1050 °C reduced tensile strength and hardness, followed by a moderate increase at 1200 °C. Conversely, ductility and impact toughness peaked at 900 °C but declined with the increasing annealing temperature. Regardless of the annealing temperature and testing conditions, LPBF 316L steel fractured through a mixed transgranular/intergranular mechanism involving dimple formation. The corrosion resistance of annealed steel was significantly lower than that in the as-built state, with the least detrimental effect being observed at 1050 °C. These changes resulted from the complex interplay of annealing-induced structural transformations, including elimination of the cellular structure and Cr/Mo segregations, reduced dislocation density, the formation of recrystallized grains, and the precipitation of nano-sized (MnCrSiAl)O3 inclusions. At 1200 °C, an abundant oxide formation strengthened the steel; however, particle coarsening, combined with the transition of (MnCrSiAl)O3 into Mo-rich oxide, further degraded the passive film, leading to a sharp decrease in corrosion resistance. Overall, post-processing annealing at 900–1200 °C did not comprehensively improve the combination of LPBF 316L steel properties, suggesting that the as-built microstructure offers a favorable balance of properties. High-temperature annealing can enhance a particular property while potentially compromising other performance characteristics. Full article
Show Figures

Figure 1

13 pages, 9140 KB  
Article
Effect of Heat Treatment on Corrosion of an AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in 3.5 wt% NaCl Solution
by Jun Jiang, Haijing Sun and Jie Sun
Metals 2025, 15(6), 681; https://doi.org/10.3390/met15060681 - 19 Jun 2025
Cited by 1 | Viewed by 799
Abstract
This paper studies how heat treatments influence the corrosion of an AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) in a 3.5 wt% NaCl solution, by comparing the corrosion behaviors of as-cast, 600 °C heat-treated, and 1000 °C heat-treated samples using microstructure characterization, electrochemical measurements, [...] Read more.
This paper studies how heat treatments influence the corrosion of an AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) in a 3.5 wt% NaCl solution, by comparing the corrosion behaviors of as-cast, 600 °C heat-treated, and 1000 °C heat-treated samples using microstructure characterization, electrochemical measurements, and surface characterization. The electrochemical results show that the pitting potential rises and the passive current density and passive film resistance are almost changeless with an increasing heat treatment temperature. The enhancement in the pitting corrosion resistance results from the increased amount of the Cr-rich FCC phase and decreased amount of the B2 phase rich in the Al element, which are induced by the heat treatment. On one hand, this microstructure evolution can make the passive film have more Cr2O3 and less Al2O3, thereby enhancing its protective properties, as confirmed by the X-ray photoelectron spectroscopy analysis. On the other hand, the decreased amount of the Al-rich B2 phase can make the pitting corrosion less prone to initiate since the B2 phase can act as the pit initiation site, which is supported by the observation of corrosion morphologies, due to its higher electrochemical activity. In a summary, the heat treatment is beneficial for improving the pitting corrosion resistance of the AlCoCrFeNi2.1 EHEA. Full article
(This article belongs to the Special Issue High-Entropy Alloy and Films: Design, Properties and Application)
Show Figures

Figure 1

14 pages, 2896 KB  
Article
The Influence of the Addition of Ca, Zn, and Zr on the Corrosion Properties of As-Homogenized Mg-3Sn Alloys
by Zheng Jia, Yongzhi Yu, Zhiwen Mao, Sichao Du, Qiuli Chen and Xiaowei Niu
Crystals 2025, 15(6), 537; https://doi.org/10.3390/cryst15060537 - 3 Jun 2025
Cited by 1 | Viewed by 573
Abstract
The influences of the addition of Ca, Zn, and Zr on the corrosion behavior and mechanism of as-homogenized Mg-3Sn (T3) alloys in a 3.5% NaCl solution were systematically investigated via hydrogen evolution, mass loss, and electrochemical tests. The results indicated that the addition [...] Read more.
The influences of the addition of Ca, Zn, and Zr on the corrosion behavior and mechanism of as-homogenized Mg-3Sn (T3) alloys in a 3.5% NaCl solution were systematically investigated via hydrogen evolution, mass loss, and electrochemical tests. The results indicated that the addition of Ca resulted in a decrease in the corrosion resistance of the T3 alloy. However, the subsequent addition of Zn and Zr could enhance the corrosion resistance of the Mg-3Sn-1Ca (TX31) alloy. The primary cause for the decline in the corrosion resistance of the TX31 alloy was that Ca altered the type of the second phase and the corrosion mechanism of the T3 alloy. This was attributed to the fact that the addition of Ca in the T3 alloy induced the precipitation of the CaMgSn phase and inhibited the precipitation of the Mg2Sn phase. Simultaneously, both the average grain size and the area fraction of the second phase increased, which provided more initiation sites for pitting and accelerated the corrosion of the alloy. The addition of Zr in the TX31 alloy could remarkably refine grains, inhibit anodic corrosion, and improve corrosion resistance. Nevertheless, the corrosion resistance of the Mg-3Sn-1Ca-1Zr (TXK311) alloy was still inferior to that of the T3 alloy. In this study, the Mg-3Sn-1Ca-1Zn (TXZ311) alloy exhibited the best corrosion resistance, with a hydrogen-evolution corrosion rate of 2.82 mm·year−1. This was because the addition of Zn refined the grains of the TX31 alloy and facilitated the formation of a relatively stable passivation film, which effectively prevented the intrusion of Cl, thereby enhancing the corrosion resistance of the alloy. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

16 pages, 5023 KB  
Article
Study on the Morphology, Wear Resistance, and Corrosion Resistance of CuSn12 Alloys Subjected to Machine Hammer Peening
by Ning Nie, Lu Yu, Shouwei Xu, Qiyuan Tian, Chenchen Ding, Lihong Su and Hui Wang
Metals 2025, 15(4), 444; https://doi.org/10.3390/met15040444 - 16 Apr 2025
Viewed by 670
Abstract
In this study, machine hammer peening (MHP) was employed to enhance the surface properties of CuSn12 alloys, and the effects of different impact energies on the surface morphology, mechanical properties, and electrochemical properties were systematically investigated. The results revealed that the surface morphology [...] Read more.
In this study, machine hammer peening (MHP) was employed to enhance the surface properties of CuSn12 alloys, and the effects of different impact energies on the surface morphology, mechanical properties, and electrochemical properties were systematically investigated. The results revealed that the surface morphology evolution after MHP treatment exhibited unique non-monotonic characteristics, which significantly differed from the surface effects of conventional shot peening technology. Microhardness tests indicated that the surface hardness increased by 40% to approximately 150 HV after treatment with 3.5 J impact energy. Friction and wear tests demonstrated that specimens treated with 2.7 J impact energy exhibited optimal wear resistance, with an 82.7% reduction in volume wear loss, and the wear mechanism transformed from composite wear to mild fatigue wear. Electrochemical performance tests showed that corrosion resistance continuously improved as the impact energy increased from 2.7 J to 3.5 J, primarily attributed to grain refinement and passive film formation; however, treatment with 1.7 J impact energy resulted in decreased corrosion resistance. The results demonstrate that optimizing MHP process parameters can significantly enhance the overall properties of CuSn12 alloys, providing a novel technical approach for the surface-strengthening of this alloy. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

17 pages, 11964 KB  
Article
Effects of Heat Treatment on Microstructures and Corrosion Properties of AlxCrFeNi Medium-Entropy Alloy
by Pushan Guo, Yuan Pang, Qingke Zhang, Lijing Yang, Zhenlun Song and Yi Zhang
Metals 2025, 15(3), 292; https://doi.org/10.3390/met15030292 - 7 Mar 2025
Viewed by 954
Abstract
This study designed AlxCrFeNi (x = 0.8, 1.0, 1.2) medium-entropy alloys featuring a BCC + B2 dual-phase structure to systematically investigate the effects of Al content variation and heat treatment on microstructure evolution and corrosion behavior. Microstructural characterization revealed that [...] Read more.
This study designed AlxCrFeNi (x = 0.8, 1.0, 1.2) medium-entropy alloys featuring a BCC + B2 dual-phase structure to systematically investigate the effects of Al content variation and heat treatment on microstructure evolution and corrosion behavior. Microstructural characterization revealed that all investigated alloys maintained the BCC + B2 dual-phase labyrinth structure. Electrochemical tests showed that as the Al content increased, the corrosion current density and corrosion rate in a 3.5 wt% NaCl solution increased. Synergistic analysis of post-corrosion morphology (through electrochemical testing and in-situ immersion) combined with XPS analysis of the passive films revealed that the initial stage of corrosion was primarily pitting. Subsequently, due to the loose and porous Al2O3 passive layer formed by the NiAl-rich phase, which was easily attacked by Cl ions, the corrosion progressed into selective corrosion of the NiAl phase. Notably, heat treatment at 1000 °C induced microstructural refinement with enhanced coupling between chunky and labyrinth structures, resulting in improved corrosion resistance despite a 4–6% reduction in Vickers hardness due to elemental homogenization. Among the investigated alloys, the heat-treated Al0.8CrFeNi exhibited the most promising corrosion resistance. Full article
Show Figures

Graphical abstract

20 pages, 27859 KB  
Article
Unveiling the Effect of Ti Micro-Alloying on the Microstructure and Corrosion Resistance of the GH3536 Alloy Processed by Laser Metal Deposition in a Simulated Environment for PEMFCs
by Bing Xu, Bo Li, Jie Zhang, Jianping Tong and Yi Liu
Materials 2024, 17(23), 5900; https://doi.org/10.3390/ma17235900 - 2 Dec 2024
Cited by 2 | Viewed by 1119
Abstract
This article addresses the knowledge gap regarding the effect of Ti addition on the microstructure and corrosion behavior of the LMD-processed GH3536 alloy in a simulated solution of proton exchange membrane fuel cells (PEMFCs). The microstructural evolution, corrosion resistance, and passive film characteristics [...] Read more.
This article addresses the knowledge gap regarding the effect of Ti addition on the microstructure and corrosion behavior of the LMD-processed GH3536 alloy in a simulated solution of proton exchange membrane fuel cells (PEMFCs). The microstructural evolution, corrosion resistance, and passive film characteristics of LMD-processed GH3536 alloy with varying Ti contents were characterized through a variety of techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), X-ray photoelectron spectroscopy (XPS), and a series of electrochemical measurements. The results indicate that the corrosion resistance of the LMD-processed GH3536 alloy significantly improves with increasing Ti content. However, when the Ti content exceeds 0.2 wt.%, the beneficial effect on corrosion resistance is weakened. Two primary mechanisms explain the enhanced corrosion resistance, involving the heterogeneous nucleation of Ti-modified Al2O3 and Ti solute segregation, which promotes grain refinement. In addition, grain refinement can provide more active sites for the formation of compact passive films, thereby improving corrosion resistance of the GH3536 alloy. Full article
(This article belongs to the Special Issue Development and Applications of Laser-Based Additive Manufacturing)
Show Figures

Figure 1

13 pages, 3857 KB  
Article
A Study of the Corrosion Resistance of 316L Stainless Steel Manufactured by Powder Bed Laser Additive Manufacturing
by Juan Ignacio Ahuir-Torres, Andrew Burgess, Martin Charles Sharp, Tahsin Tecelli Öpöz, Sean P. Malkeson, Peter L. Falkingham, Robert I. Darlington and Samuel Tammas-Williams
Appl. Sci. 2024, 14(17), 7471; https://doi.org/10.3390/app14177471 - 23 Aug 2024
Cited by 2 | Viewed by 3316
Abstract
Commercially available 316L (1.4404) stainless steel is commonly used for industrial filtration due to its combination of good material properties, particularly its corrosion resistance, which is a critical factor for filters in corrosive (e.g., saltwater) environments. Recently, laser powder bed fusion (LPBF) has [...] Read more.
Commercially available 316L (1.4404) stainless steel is commonly used for industrial filtration due to its combination of good material properties, particularly its corrosion resistance, which is a critical factor for filters in corrosive (e.g., saltwater) environments. Recently, laser powder bed fusion (LPBF) has enabled new more complex and efficient filtration pieces to be manufactured from this material. However, it is critical to know how the corrosion resistance is affected by this manufacturing strategy. Here, the corrosion resistance of LPBF manufactured 316L stainless steel is compared with wrought 316L sheet. The corrosion of the samples in saltwater was assessed with asymmetric electrochemical noise, potentiodynamic polarisation curve, and electrochemical impedance spectroscopy. The samples before and after corrosion were examined with scanning electron microscopy and energy-dispersive spectroscopy. The LPBF samples had higher corrosion resistance than the sheet samples and were more noble. The corrosion resistance of the LPBF sample increased with time, while the wrought sample corrosion resistance reduced over time. The corrosion mechanism of both samples was stable with time, formed of a passive film process and a bared material process. This paper presents the first study about the temporal evolution of the LPBF 316L stainless steel corrosion mechanism. Full article
Show Figures

Figure 1

12 pages, 9591 KB  
Article
Modeling the Impact of Grain Size on Corrosion Behavior of Ni-Based Alloys in Molten Chloride Salt via Cellular Automata
by Jinghua Feng, Jianxi Gao, Li Mao, Ryan Bedell and Emily Liu
Metals 2024, 14(8), 931; https://doi.org/10.3390/met14080931 - 15 Aug 2024
Cited by 6 | Viewed by 1614
Abstract
Molten chloride salts hold significant promise as both thermal transfer and storage media for next-generation concentrated solar power (CSP) systems. However, molten chlorides pose a considerable corrosion risk to structural materials, particularly Ni-based alloys. One approach to enhancing corrosion resistance is through the [...] Read more.
Molten chloride salts hold significant promise as both thermal transfer and storage media for next-generation concentrated solar power (CSP) systems. However, molten chlorides pose a considerable corrosion risk to structural materials, particularly Ni-based alloys. One approach to enhancing corrosion resistance is through the optimization of grain structure; however, it remains uncertain whether increasing or decreasing grain size enhances corrosion resistance. A cellular automata (CA) program was developed to evaluate the interplay between grain size and corrosion in Ni-based alloy. Our CA program tracks alloy composition, surface roughness, and thickness loss via a graphical user interface, displaying corrosion and diffusion status, and multiple user input cards for tuning the simulation. CA simulations of Inconel 625 indicate enhanced corrosion resistance with increased grain size, with passivating oxides offering limited protection. Additionally, the temporal evolution of alloy surface roughness demonstrates notable fluctuations, with abrupt increases attributed to corrosion along vertical grain boundaries and sudden decreases to grain detachment from the protective film. Full article
Show Figures

Figure 1

Back to TopTop