Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = passive energy conservation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1541 KiB  
Article
Economic Dispatch Strategy for Power Grids Considering Waste Heat Utilization in High-Energy-Consuming Enterprises
by Lei Zhou, Ping He, Siru Wang, Cailian Ma, Yiming Zhou, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2450; https://doi.org/10.3390/pr13082450 - 2 Aug 2025
Viewed by 269
Abstract
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the [...] Read more.
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the economic and environmental benefits of regional power grids. Existing research often focuses on grid revenue, leaving high-energy-consuming enterprises in a passive regulatory position. To address this, this paper constructs an economic dispatch strategy for power grids that considers waste heat utilization in high-energy-consuming enterprises. A typical representative, electrolytic aluminum load and its waste heat utilization model, for the entire production process of high-energy-consuming loads, is established. Using a tiered carbon trading calculation formula, a low-carbon production scheme for high-energy-consuming enterprises is developed. On the grid side, considering local load levels, the uncertainty of wind power output, and the energy demands of aluminum production, a robust day-ahead economic dispatch model is established. Case analysis based on the modified IEEE-30 node system demonstrates that the proposed method balances economic efficiency and low-carbon performance while reducing the conservatism of traditional optimization approaches. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 1105 KiB  
Review
Review and Decision-Making Tree for Methods to Balance Indoor Environmental Comfort and Energy Conservation During Building Operation
by Shan Lin, Yu Zhang, Xuanjiang Chen, Chengzhi Pan, Xianjun Dong, Xiang Xie and Long Chen
Sustainability 2025, 17(15), 7016; https://doi.org/10.3390/su17157016 - 1 Aug 2025
Viewed by 276
Abstract
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it [...] Read more.
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it challenging to identify the most suitable methods that simultaneously achieve both comfort and efficiency goals. Existing studies often lack a systematic framework that supports integrated decision-making under comfort constraints. This research aims to address this gap by proposing a decision-making tree for selecting energy conservation methods during building operation with an explicit consideration of indoor environmental comfort. A comprehensive literature review is conducted to identify four main energy-consuming components during building operation: the building envelope, HVAC systems, lighting systems, and plug loads and appliances. Three key comfort indicators—thermal comfort, lighting comfort, and air quality comfort—are defined, and energy conservation methods are categorized into three strategic groups: passive strategies, control optimization strategies, and behavioural intervention strategies. Each method is assessed using a defined set of evaluation criteria. Subsequently, a questionnaire survey is administered for the calibration of the decision tree, incorporating stakeholder preferences and expert judgement. The findings contribute to the advancement of understanding regarding the co-optimization of energy conservation and occupant comfort in building operations. Full article
(This article belongs to the Special Issue Novel Technologies and Digital Design in Smart Construction)
Show Figures

Figure 1

25 pages, 4237 KiB  
Article
Cost-Effective Thermal Mass Walls for Solar Greenhouses in Gobi Desert Regions
by Xiaodan Zhang, Jianming Xie, Ning Ma, Youlin Chang, Jing Zhang and Jing Li
Agriculture 2025, 15(15), 1618; https://doi.org/10.3390/agriculture15151618 - 25 Jul 2025
Viewed by 263
Abstract
Gobi solar greenhouses (GSGs) enhance energy, food, and financial security in Gobi Desert regions through passive solar utilization. Thermal mass walls are critical for plant thermal comfort in GSGs but can lead to resource waste if poorly designed. This study pioneers the integration [...] Read more.
Gobi solar greenhouses (GSGs) enhance energy, food, and financial security in Gobi Desert regions through passive solar utilization. Thermal mass walls are critical for plant thermal comfort in GSGs but can lead to resource waste if poorly designed. This study pioneers the integration of payback period constrains into thermal mass wall optimization, establishing a new performance–cost trade-off approach for GSG wall design, balancing thermal performance and economic feasibility. We quantified energy-conserving benefits against wall-construction costs to derive the optimal inner-layer thicknesses under <25% GSG lifespan payback criteria. Three GSG thermal mass walls in China’s Hexi Corridor were optimized. For the concrete-layered, stone-layered, and pebble-soil walls, the optimum inner-layer thicknesses were 0.47, 0.65, and 1.24 m, respectively, with extra costs of 620.75, 767.60, and 194.56 RMB yuan; annual energy-conserving benefits of 82.77, 102.35, and 51.88 RMB yuan·yr−1; and payback periods of 7.5, 7.5, and 3.75 years. A dynamic thermal load analysis confirmed that GSGs with optimized walls required no heating during a sunny winter solstice night. Cooling loads of 33.15–35.27 kW further indicated the potential to maintain thermal comfort under colder weather conditions. This approach improves plant thermal comfort cost-effectively, advancing sustainable Gobi agriculture. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 1821 KiB  
Systematic Review
Livestock Buildings in a Changing World: Building Sustainability Challenges and Landscape Integration Management
by Daniela Isola, Stefano Bigiotti and Alvaro Marucci
Sustainability 2025, 17(12), 5644; https://doi.org/10.3390/su17125644 - 19 Jun 2025
Cited by 1 | Viewed by 447
Abstract
The awareness of global warming has boosted research on methods to reduce energy consumption and greenhouse gas (GHG) emissions. Livestock buildings, although essential for food production, represent a sustainability challenge due to their high maintenance energy costs, GHG emissions, and impact on the [...] Read more.
The awareness of global warming has boosted research on methods to reduce energy consumption and greenhouse gas (GHG) emissions. Livestock buildings, although essential for food production, represent a sustainability challenge due to their high maintenance energy costs, GHG emissions, and impact on the environment and rural landscapes. Since the environment, cultural heritage, and community identity deserve protection, research trends and current knowledge on livestock buildings, building sustainability, energy efficiency strategies, and landscape management were investigated using the Web of Science and Scopus search tools (2005–2025). Research on these topics was found to be uneven, with limited focus on livestock buildings compared to food production and animal welfare, and significant interest in eco-sustainable building materials. A total of 96 articles were selected after evaluating over 5400 records. The analysis revealed a lack of universally accepted definitions for building design strategies and their rare application to livestock facilities, where passive solutions and insulation prevailed. The application of renewable energy was rare and limited to rural buildings, as was the application of sustainable building materials to livestock, agriculture, and vernacular buildings. Conversely, increased attention was paid to the definition and classification of vernacular architecture features aimed at enhancing existing buildings and mitigating or facilitating the landscape integration of those that diverge most from them. Although not exhaustive, this review identified some knowledge gaps. More efforts are needed to reduce environmental impacts and meet the milestones set by international agreements. Research on building materials could benefit from collaboration with experts in cultural heritage conservation because of their command of traditional materials, durability-enhancing methods, and biodeterioration. Full article
Show Figures

Graphical abstract

15 pages, 2591 KiB  
Article
Empirical Modeling of Seasonal Cooling Performance Based on Test Devices Using Zinc Oxide/Low-Density Polyethylene Passive Cooling Membranes
by Yinjia Zhang, Jun Natsuki, Chengwu Weng, Vuong Dinh Trung, Yiwen Wang, Lina Cui and Toshiaki Natsuki
Polymers 2025, 17(10), 1420; https://doi.org/10.3390/polym17101420 - 21 May 2025
Viewed by 510
Abstract
Outdoor structures, such as vehicles, buildings, and outdoor equipment, are prone to overheat due to prolonged exposure to solar irradiation, which could affect their service life or user experience. To address this urgent issue, we developed a climate-adaptive thermal management solution using zinc [...] Read more.
Outdoor structures, such as vehicles, buildings, and outdoor equipment, are prone to overheat due to prolonged exposure to solar irradiation, which could affect their service life or user experience. To address this urgent issue, we developed a climate-adaptive thermal management solution using zinc oxide (ZnO)/low-density polyethylene (LDPE) hybrid membranes. The cooling performance of the membrane was examined across different seasons, achieving maximum temperature reductions (T) of 12.55 °C in summer, 8.02 °C in autumn, and 2.90 °C in winter. Our results demonstrated that the material’s cooling efficiency varied with seasonal solar irradiance, showing quicker responsiveness in summer and reduced in winter, effectively preventing overcooling. Moreover, the enclosed specific volume (SV) was identified as another critical parameter affecting cooling performance. We established an empirical correlation between T and SV to quantify passive cooling performance across different seasons. This standardized method for assessing the cooling effect enables comparison between different materials, which is essential for determining climate-adaptive thermal management. Notably, the ZnO/LDPE membranes exhibited stable and balanced performance year-round, highlighting their potential for substantial energy savings in outdoor applications. This research provided valuable insights for designing climate-adaptive passive cooling materials that optimize thermal management across seasonal variations while contributing to sustainable energy conservation. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

25 pages, 8348 KiB  
Article
Post-Occupancy Evaluation of a Passive Multi-Unit Residential Building and a Single-Family Passive House
by Anthony Mach, Maria Parra and Hebatallah Teamah
Sustainability 2025, 17(9), 3799; https://doi.org/10.3390/su17093799 - 23 Apr 2025
Cited by 1 | Viewed by 486
Abstract
Passive buildings are increasing in popularity in Canada. This paper examines two passive buildings initially constructed in the past decade: the Peterborough passive multi-unit residential building (MURB) and the Wolfe Island single-family dwelling. A post-occupancy evaluation was performed on the buildings. The buildings [...] Read more.
Passive buildings are increasing in popularity in Canada. This paper examines two passive buildings initially constructed in the past decade: the Peterborough passive multi-unit residential building (MURB) and the Wolfe Island single-family dwelling. A post-occupancy evaluation was performed on the buildings. The buildings were modelled in HOT2000 and the Passive House Planning Package (PHPP) to ensure the validity of the results. The energy bills were collected from the building owners to acquire the real-time consumption of the buildings. The models have shown a good agreement with the collected data. Furthermore, data loggers were installed in both buildings for indoor temperature monitoring to ensure that they adhere to the passive house explicit criteria. Internal gains, shading, and orientation were analyzed to assess their effect on heating and cooling loads. Peterborough MURB has shown more energy-saving potential compared to the Wolfe Island passive house. Heating load reduction has been compared, more than five times, to the cooling load reduction potential. The reduction in GHG emissions can be up to 39% when passive house parameters are applied to the Wolfe Island house. This paper has shown the potential of the passive house in relation to sustainable buildings in Northern climates. Full article
Show Figures

Figure 1

38 pages, 3292 KiB  
Review
High-Performance Tall Buildings: An Overview of Recent Developments
by Kheir Al-Kodmany and Mir M. Ali
Encyclopedia 2025, 5(2), 53; https://doi.org/10.3390/encyclopedia5020053 - 21 Apr 2025
Cited by 1 | Viewed by 1888
Abstract
The evolution of tall buildings has been shaped by distinct architectural styles, beginning around 1875 and progressing through various stylistic architectural movements. These changes were driven by advancements in structural engineering and digital design technologies, leading to greater experimentation with form and function. [...] Read more.
The evolution of tall buildings has been shaped by distinct architectural styles, beginning around 1875 and progressing through various stylistic architectural movements. These changes were driven by advancements in structural engineering and digital design technologies, leading to greater experimentation with form and function. Energy and resource conservation of the late 20th century instigated a noteworthy focus on sustainability. Beyond that, the early 21st century saw a significant shift toward a new breed of tall buildings, a suitable architectural vocabulary for “high-performance” tall buildings, in which sustainability with a focus on energy efficiency is joined with the performance of other active and passive functional systems. This paper presents an overview of high-performance tall buildings by exploring key technologies, materials, innovations, safety, durability, and indoor environmental quality. Strategies that have emerged to address skyscrapers’ environmental and economic challenges are also crucial in such a building. It highlights the importance of optimizing and integrating building systems, improving energy efficiency, minimizing resource consumption, and ensuring long-term occupant health and productivity. Furthermore, this study identifies five key dimensions—structural materials and systems, energy-efficient design, high-performance façades, performance monitoring, and integrating building services systems—demonstrating how these factors contribute to environment-conscious urban development and resilient architectural and engineering design. It is concluded that these buildings are poised to redefine urban environments by leveraging advanced technologies, AI-driven management, IoT interconnectivity, health-focused elements, and climate resilience. Also, tall, high-performance buildings will be increasingly automated to an unknown limit, and AI will play a prominent role in the future. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

24 pages, 7678 KiB  
Article
Applicability of a Heat Recovery Ventilator Retrofit in a Vancouver Residential House
by Bo Li, Wei Yue and Fitsum Tariku
Energies 2025, 18(7), 1820; https://doi.org/10.3390/en18071820 - 3 Apr 2025
Viewed by 513
Abstract
Heat recovery systems are increasingly recognized as key energy conservation measures in residential buildings. But their effectiveness is highly sensitive to operational conditions. This study used a calibrated OpenStudio simulation, which is validated against monthly utility data, to investigate the feasibility of implementing [...] Read more.
Heat recovery systems are increasingly recognized as key energy conservation measures in residential buildings. But their effectiveness is highly sensitive to operational conditions. This study used a calibrated OpenStudio simulation, which is validated against monthly utility data, to investigate the feasibility of implementing a heat recovery ventilator in an existing single-detached house in Vancouver under two scenarios: existing passive ventilation without a heat recovery ventilator versus the proposed balanced mechanical ventilation with a heat recovery ventilator. The findings indicate that employing an HRV in an existing house lacking balanced ventilation would lead to higher annual space heating energy consumption (75.49 GJ electricity and 56.70 GJ natural gas with HRV compared to 73.64 GJ and 52.70 GJ, respectively, without an HRV). Therefore, for existing houses without balanced ventilation, improving the existing building envelope’s airtightness through retrofits should always be carried out before installing a heat recovery ventilator. Additionally, the heat recovery ventilator should be appropriately sized to compensate for any shortfall in natural infiltration to ensure the sufficient indoor air quality while minimizing the outdoor air-induced space heating energy usage. Furthermore, the recommended break-even point of the infiltration rate for the house studied in this work to avoid increased space heating energy use due to the retrofit with a heat recovery ventilator is 0.281 air change per hour. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

20 pages, 7737 KiB  
Article
Thermal Evaluation of a Water-to-Air Heat Exchanger Combined with Different Roof Configurations for Passive Cooling
by José-Manuel Almodóvar-Melendo and Pablo La Roche
Buildings 2025, 15(7), 1098; https://doi.org/10.3390/buildings15071098 - 27 Mar 2025
Cited by 1 | Viewed by 495
Abstract
Traditional conservation strategies often prioritize minimizing water use; nevertheless, water can also enhance thermal comfort by incorporating a water-to-air heat exchanger (WAHE) alongside non-direct evaporative and radiant cooling techniques. A WAHE can be installed in features such as ponds, water tanks, or rainwater [...] Read more.
Traditional conservation strategies often prioritize minimizing water use; nevertheless, water can also enhance thermal comfort by incorporating a water-to-air heat exchanger (WAHE) alongside non-direct evaporative and radiant cooling techniques. A WAHE can be installed in features such as ponds, water tanks, or rainwater cisterns. This article assesses the cooling potential of two prototypes of roof ponds and a green roof connected to a WAHE, and the results are compared to a baseline unit featuring a roof that meets California’s energy code standards. Several testing units, measuring 1.35 × 1.35 × 1.35 m, with identical heat characteristics, excluding the roof, were constructed and tested. In the first system, the heat that the green roof could not absorb was transferred to a water reservoir and then dissipated to the outside. The first roof pond prototype features a 0.35 m deep water pond topped with a 0.03 m thick insulating panel and a spray system. The second roof pond variant has an aluminum sheet with a 0.10 m air gap above a 0.25 m deep water pond. The results suggest that combining a WAHE with different roof configurations offers promising benefits while keeping water consumption limited. Notably, when the WAHE is operating, the green roof increase its performance by 47%, the insulated roof pond by 22%, and the roof pond with an aluminum sheet by 13%. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

35 pages, 41759 KiB  
Article
Impact of Urban Block Morphology on Solar Availability in Severe Cold High-Density Cities: A Case Study of Residential Blocks in Harbin
by Yaoxuan Fang, Zheming Liu, Yingjie Jia, Muxuan Ke, Ruibing Yang and Yiyang Cai
Land 2025, 14(3), 581; https://doi.org/10.3390/land14030581 - 10 Mar 2025
Viewed by 870
Abstract
Improving solar availability in urban blocks is vital to promoting energy conservation and emissions reduction. However, there are very few studies on the impact of block morphology on solar energy availability in high-density cities based on the particularities of climate and solar energy [...] Read more.
Improving solar availability in urban blocks is vital to promoting energy conservation and emissions reduction. However, there are very few studies on the impact of block morphology on solar energy availability in high-density cities based on the particularities of climate and solar energy resources in severe cold regions at higher latitudes. This study took 434 block models generated through seven orientation conditions of 62 residential blocks in Harbin, China, as its research object. Through numerical simulations and statistical analysis, it revealed the quantitative relationship between block morphology and the availability of active photovoltaic and solar thermal collector technologies and passive thermal heating technologies. The results show that active solar technology has the highest availability in multi-story enclosed residential blocks, and passive thermal heating has the highest availability in the multi-high-level mixed-row type. The south façade of the building has the greatest active and passive solar availability. The overall active solar availability of the residential block is significantly negatively correlated with the mean building height, floor area ratio, and volume area ratio; it is significantly positively correlated with site coverage and the standard deviation of the building height. Controlling the block’s orientation between 15° south by west and 15° south by east can increase the active solar availability of the façade. This study provides a reference and evaluation basis for the sustainable planning and design of high-density cities in severely cold regions. Full article
Show Figures

Graphical abstract

26 pages, 5315 KiB  
Article
Biomimicry-Based Design of Underground Cold Storage Facilities: Energy Efficiency and Sustainability
by Mugdha Kshirsagar, Sanjay Kulkarni, Ankush Kumar Meena, Danby Caetano D’costa, Aroushi Bhagwat, Md Irfanul Haque Siddiqui and Dan Dobrotă
Biomimetics 2025, 10(2), 122; https://doi.org/10.3390/biomimetics10020122 - 18 Feb 2025
Viewed by 1631
Abstract
Underground cold storage gives rise to special challenges that require innovative solutions to ensure maximum energy efficiency. Conventional energy systems tend to be based on high energy use, so sustainable solutions are crucial. This study explores the novel idea of biomimetics and how [...] Read more.
Underground cold storage gives rise to special challenges that require innovative solutions to ensure maximum energy efficiency. Conventional energy systems tend to be based on high energy use, so sustainable solutions are crucial. This study explores the novel idea of biomimetics and how it might be used in the planning and building of underground cold storage facilities as well as other infrastructure projects. Biomimetic strategies, inspired by termite mounds, gentoo penguin feathers, and beehive structures, are applied to minimize reliance on energy-intensive cooling systems. These natural models offer efficient thermal regulation, airflow optimization, and passive cooling mechanisms such as geothermal energy harvesting. The integration of naturally driven convection and ventilation ensures stable internal temperatures under varying conditions. Biomimicry was employed in Revit Architecture, coupled with structural optimization, to eliminate urban space’s limitations and further increase energy efficiency. The analytical work for this paper utilized a set of formulas that represent heat flow, thermal resistance, R-value, thermal transmittance, U-value, solar absorption, and G-value. The results pointed to very good insulation, with exterior walls having an R-value of 10.2 m2K/W and U-value of 0.98 W/m2K. Among the chosen 3-layer ETFE cushion with a U-value of 1.96 W/m2K, with a G-value of 0.50, showed good heat regulation and daylight management. Furthermore, bagasse-cement composites with a very low thermal conductivity of 0.10–0.30 W/m·K provided good insulation. This research proposes a scalable and sustainable approach in the design of underground cold storage by merging modelling based on Revit with thermal simulations. Biomimicry has been demonstrated to have the potential for changing subterranean infrastructure, conserving energy consumption, and creating eco-friendly construction practices. Full article
Show Figures

Figure 1

16 pages, 7953 KiB  
Article
The Bottleneck in the Scalar Dissipation Rate Spectra: Dependence on the Schmidt Number
by Paolo Orlandi
Fluids 2024, 9(12), 285; https://doi.org/10.3390/fluids9120285 - 4 Dec 2024
Viewed by 862
Abstract
The mean dissipation rate of turbulent energy reaches a constant value at high Taylor–Reynolds numbers (Rλ). This value is associated with the well-scaling dissipation spectrum in Kolmogorov units, where the maximum corresponds to the bottleneck peak. Even the scalar dissipation [...] Read more.
The mean dissipation rate of turbulent energy reaches a constant value at high Taylor–Reynolds numbers (Rλ). This value is associated with the well-scaling dissipation spectrum in Kolmogorov units, where the maximum corresponds to the bottleneck peak. Even the scalar dissipation rate at the high Rλ considered in the present direct numerical simulations attains a constant value as Sc increases. In this scenario, the maximum of the scalar dissipation spectra reaches its peak within the bottleneck, starting at Sc>0.5. A qualitative explanation for the formation of the two bottlenecks is related to the blockage of energy transfer from large to small scales in the inertial ranges. Within the bottleneck, the self-similar, ribbon-like structures transition into the rod-like structures characteristic of the exponential decay range. Investigating the viscous dependence of the bottleneck’s amplitude may be aided by examining the evolution of a passive scalar. As Sc decreases, the scalar spectra undergo changes across the wave number k range. The bottleneck is dismantled, and at very low Sc values, the spectrum tends towards Batchelor’s theoretical prediction, diminishing proportionally to k17/3. To comprehend the flow structures responsible for the bottleneck, visualizations of θ2θ and probability density functions at various Sc values are presented and compared with those of ui2ui. The numerical method employed for generating three-dimensional spectra and quantities such as energy and scalar variance dissipation in physical space must be accurate, particularly in resolving small scales. This paper additionally demonstrates that the second-order finite difference scheme conserving kinetic energy and scalar variance in the inviscid limit in viscous simulations accurately predicts the exponential decay range in one-dimensional and three-dimensional turbulent kinetic energy and scalar variance spectra. Full article
Show Figures

Figure 1

27 pages, 624 KiB  
Article
Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surfaces Empowered Cooperative Rate Splitting with User Relaying
by Kangchun Zhao, Yijie Mao and Yuanming Shi
Entropy 2024, 26(12), 1019; https://doi.org/10.3390/e26121019 - 26 Nov 2024
Cited by 2 | Viewed by 1292
Abstract
In this work, we unveil the advantages of synergizing cooperative rate splitting (CRS) with user relaying and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR RIS). Specifically, we propose a novel STAR RIS-assisted CRS transmission framework, featuring six unique transmission modes that leverage [...] Read more.
In this work, we unveil the advantages of synergizing cooperative rate splitting (CRS) with user relaying and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR RIS). Specifically, we propose a novel STAR RIS-assisted CRS transmission framework, featuring six unique transmission modes that leverage various combinations of the relaying protocols (including full duplex-FD and half duplex-HD) and the STAR RIS configuration protocols (including energy splitting-ES, mode switching-MS, and time splitting-TS). With the objective of maximizing the minimum user rate, we then propose a unified successive convex approximation (SCA)-based alternative optimization (AO) algorithm to jointly optimize the transmit active beamforming, common rate allocation, STAR RIS passive beamforming, as well as time allocation (for HD or TS protocols) subject to the transmit power constraint at the base station (BS) and the law of energy conservation at the STAR RIS. To alleviate the computational burden, we further propose a low-complexity algorithm that incorporates a closed-form passive beamforming design. Numerical results show that our proposed framework significantly enhances user fairness compared with conventional CRS schemes without STAR RIS or other STAR RIS-empowered multiple access schemes. Moreover, the proposed low-complexity algorithm dramatically reduces the computational complexity while achieving very close performance to the AO method. Full article
Show Figures

Figure 1

29 pages, 31535 KiB  
Review
Plasma Treatment Technologies for GaN Electronics
by Botong Li, Imteaz Rahaman, Hunter D. Ellis, Houqiang Fu, Yuji Zhao, Yong Cai, Baoshun Zhang and Kai Fu
Electronics 2024, 13(22), 4343; https://doi.org/10.3390/electronics13224343 - 6 Nov 2024
Cited by 1 | Viewed by 2450
Abstract
Nowadays, the third-generation semiconductor led by GaN has brought great changes to the semiconductor industry. Utilizing its characteristics of a wide bandgap, high breakdown Electric field, and high electron mobility, GaN material is widely applied in areas such as 5G communication and electric [...] Read more.
Nowadays, the third-generation semiconductor led by GaN has brought great changes to the semiconductor industry. Utilizing its characteristics of a wide bandgap, high breakdown Electric field, and high electron mobility, GaN material is widely applied in areas such as 5G communication and electric vehicles to improve energy conservation and reduce emissions. However, with the progress in the development of GaN electronics, surface and interface defects have become a main problem that limits the further promotion of their performance and stability, increasing leakage current and causing degradation in breakdown voltage. Thus, to reduce the damage, Plasma treatment technologies are introduced in the fabrication process of GaN electronics. Up to now, designs like the high-resistivity p-GaN cap Layer, passivating termination, and surface recovery process have been established via Plasma treatment, reaching the goals of normally-off transistors, diodes with high breakdown voltage and high-reliability GaN electronics, etc. In this article, hydrogen, fluorine, oxygen, and nitrogen Plasma treatment technologies will be discussed, and their application in GaN electronics will be reviewed and compared. Full article
(This article belongs to the Special Issue Feature Review Papers in Electronics)
Show Figures

Figure 1

21 pages, 12291 KiB  
Article
The Role of Heater Size and Location in Modulating Natural Convection Behavior in Cu-Water Nanofluid-Loaded Square Enclosures
by Abdulaziz Alasiri
Sustainability 2024, 16(22), 9648; https://doi.org/10.3390/su16229648 - 6 Nov 2024
Viewed by 1289
Abstract
Enhancing the energy efficiency of thermal systems reduces their consumption, lowers costs, and reduces undesired environmental impact, thus making these systems more sustainable. The current work introduces a passive method for heat transfer enhancement that is carried out using natural convection by nanofluid. [...] Read more.
Enhancing the energy efficiency of thermal systems reduces their consumption, lowers costs, and reduces undesired environmental impact, thus making these systems more sustainable. The current work introduces a passive method for heat transfer enhancement that is carried out using natural convection by nanofluid. This work introduces a computational study of the process of natural convection within a square cavity containing Cu/H2O nanofluid. The cavity wall on the left side undergoes partial isothermal heating, while the opposing side is fully cooled isothermally, with all other boundaries maintained adiabatic. A mathematical model formulated based on a 2-D model was used to provide the solution for the system of governing equations of mass, momentum, and energy conservation, employing the finite element technique. A commercial CFD package is utilized to perform the computational simulation. The present investigation delves into the impact of the Rayleigh number, nanoparticle concentration, heater length, and heater location on the flow field and heat transfer characteristics. The model outcomes were displayed for a wide range of the pertinent parameters as 103 ≤ Ra ≤ 106, 0.25 ≤ lh ≤ 1.0, 0.125 ≤ hc ≤ 0.875, and 0.02 ≤ ϕ ≤ 0.10. Also, correlation equations relating the average Nusselt number to these crucial parameters are derived. These equations are simple and can be applied in practice easily in many fields, such as electric and electronic equipment cooling and thermal management of heat sources. Also, these equations gather all the parameters that affect the heat transfer process. They are shedding light on the intricate interplay between these parameters in the natural convection heat transfer process. Full article
Show Figures

Figure 1

Back to TopTop