Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = passive drug transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1363 KiB  
Review
From Structure to Function: The Promise of PAMAM Dendrimers in Biomedical Applications
by Said Alamos-Musre, Daniel Beltrán-Chacana, Juan Moyano, Valeria Márquez-Miranda, Yorley Duarte, Sebastián Miranda-Rojas, Yusser Olguín, Juan A. Fuentes, Danilo González-Nilo and María Carolina Otero
Pharmaceutics 2025, 17(7), 927; https://doi.org/10.3390/pharmaceutics17070927 - 18 Jul 2025
Viewed by 479
Abstract
PAMAM dendrimers are distinguished by their capacity for functionalization, which enhances the properties of the compounds they transport, rendering them highly versatile nanoparticles with extensive applications in the biomedical domain, including drug, vaccine, and gene delivery. These dendrimers can be internalized into cells [...] Read more.
PAMAM dendrimers are distinguished by their capacity for functionalization, which enhances the properties of the compounds they transport, rendering them highly versatile nanoparticles with extensive applications in the biomedical domain, including drug, vaccine, and gene delivery. These dendrimers can be internalized into cells through various endocytic mechanisms, such as passive diffusion, clathrin-mediated endocytosis, and caveolae-mediated endocytosis, allowing them to traverse the cytoplasm and reach intracellular targets, such as the mitochondria or nucleus. Despite the significant challenge posed by the cytotoxicity of these nanoparticles, which is contingent upon the dendrimer size, surface charge, and generation, numerous strategies have been documented to modify the dendrimer surface using polyethylene glycol and other chemical groups to temporarily mitigate their cytotoxic effects. The potential of PAMAM dendrimers in cancer therapy and other biomedical applications is substantial, owing to their ability to enhance bioavailability, pharmacokinetics, and pharmacodynamics of active ingredients within the body. This underscores the necessity for further investigation into the optimization of internalization pathways and cytotoxicity of these nanoparticles. This review offers a comprehensive synthesis of the current literature on the diverse cellular internalization pathways of PAMAM dendrimers and their cargo molecules, emphasizing the mechanisms of entry, intracellular trafficking, and factors influencing these processes. Full article
(This article belongs to the Special Issue Biomedical Applications: Advances in Bioengineering and Drug Delivery)
Show Figures

Figure 1

13 pages, 1678 KiB  
Article
pH-Sensitive Multiliposomal Containers for Encapsulation and Rapid Release of Bioactive Substances
by Anna A. Efimova, Tatyana A. Abramova, Igor V. Yatsenko, Alexey V. Kazantsev, Denis V. Pozdyshev, Nikolay V. Lukashev, Vladimir I. Muronets and Alexander A. Yaroslavov
Molecules 2025, 30(12), 2608; https://doi.org/10.3390/molecules30122608 - 16 Jun 2025
Viewed by 476
Abstract
A new method of the design of stimuli-sensitive multiliposomal containers for encapsulation and controlled drug release is described. Despite quite a wide choice of pH-sensitive containers, there is still a considerable challenge to synthesize those that respond quickly to small variations in pH [...] Read more.
A new method of the design of stimuli-sensitive multiliposomal containers for encapsulation and controlled drug release is described. Despite quite a wide choice of pH-sensitive containers, there is still a considerable challenge to synthesize those that respond quickly to small variations in pH and release most of the encapsulated drug in a short time. The suggested AMS-containing multiliposomal complexes demonstrated an excellent rate of encapsulated substance release under altering the pH of the outer solution. To improve the efficiency of the delivery of bioactive compounds to target cells and to increase the therapeutic effect, pH-sensitive liposomes were concentrated on the surface of the carrier- PEG-coated cationic liposomes. A pH-sensitive ampholytic derivative of cholan-24-oic acid embedded into the membrane of anionic liposomes allowed the rapid release of the cargo in the areas of low pH, such as tumors, inflammation sites, etc. The diameter of the complexes was optimized for passive targeting and typically ranged from 250 to 400 nm. The biodegradability of liposomes ensured enzymatic destruction of the multiliposomal containers and their elimination from the body after performing their transport function. The multiliposomal complexes and products of their biodegradation demonstrated low cytotoxicity. The composition of multiliposomal complexes, in particular, the amount of PEGylated lipid in the bilayer, was estimated to provide a high speed of the cargo release upon changing the pH. The novel developed pH-sensitive containers show potential for biomedical applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

34 pages, 931 KiB  
Review
The Impact of Substance Use Disorder and Drug Transfer into Breast Milk: Implications for Maternal and Infant Health
by Yongzong Yang, Bofang Yi and Tao Zhang
Pharmaceutics 2025, 17(6), 719; https://doi.org/10.3390/pharmaceutics17060719 - 29 May 2025
Viewed by 1670
Abstract
Breast milk provides significant health benefits to both infants and mothers, offering protection against infections and enhancing cognitive development. This paper examines the complex effects of substance use disorder (SUD) during pregnancy and lactation, focusing on the pharmacokinetics of drug transfer into breast [...] Read more.
Breast milk provides significant health benefits to both infants and mothers, offering protection against infections and enhancing cognitive development. This paper examines the complex effects of substance use disorder (SUD) during pregnancy and lactation, focusing on the pharmacokinetics of drug transfer into breast milk. It highlights the mechanisms by which drugs enter milk, emphasizing the roles of passive diffusion and active transport, particularly through breast cancer resistance protein (BCRP). The study explores the impact of various substances on fetal and infant health, with a focus on the relative infant dose (RID) and milk-to-plasma (MP) ratio as key metrics for assessing drug safety in breastfeeding. The findings underscore the need for careful evaluation of maternal drug use during lactation to balance the benefits of breastfeeding with potential risks. Full article
Show Figures

Figure 1

48 pages, 8840 KiB  
Review
Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment
by Fatih Ciftci, Ali Can Özarslan, İmran Cagri Kantarci, Aslihan Yelkenci, Ozlem Tavukcuoglu and Mansour Ghorbanpour
Pharmaceutics 2025, 17(1), 121; https://doi.org/10.3390/pharmaceutics17010121 - 16 Jan 2025
Cited by 12 | Viewed by 4306
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to [...] Read more.
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body’s organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included. Full article
Show Figures

Graphical abstract

23 pages, 2695 KiB  
Review
Lipidic and Inorganic Nanoparticles for Targeted Glioblastoma Multiforme Therapy: Advances and Strategies
by Ewelina Musielak and Violetta Krajka-Kuźniak
Micro 2025, 5(1), 2; https://doi.org/10.3390/micro5010002 - 3 Jan 2025
Cited by 8 | Viewed by 2549
Abstract
Due to their biocompatibility, nontoxicity, and surface conjugation properties, nanomaterials are effective nanocarriers capable of encapsulating chemotherapeutic drugs and facilitating targeted delivery across the blood–brain barrier (BBB). Although research on nanoparticles for brain cancer treatment is still in its early stages, these systems [...] Read more.
Due to their biocompatibility, nontoxicity, and surface conjugation properties, nanomaterials are effective nanocarriers capable of encapsulating chemotherapeutic drugs and facilitating targeted delivery across the blood–brain barrier (BBB). Although research on nanoparticles for brain cancer treatment is still in its early stages, these systems hold great potential to revolutionize drug delivery. Glioblastoma multiforme (GBM) is one of the most common and lethal brain tumors, and its heterogeneous and aggressive nature complicates current treatments, which primarily rely on surgery. One of the significant obstacles to effective treatment is the poor penetration of drugs across the BBB. Moreover, GBM is often referred to as a “cold” tumor, characterized by an immunosuppressive tumor microenvironment (TME) and minimal immune cell infiltration, which limits the effectiveness of immunotherapies. Therefore, developing novel, more effective treatments is critical to improving the survival rate of GBM patients. Current strategies for enhancing treatment outcomes focus on the controlled, targeted delivery of chemotherapeutic agents to GBM cells across the BBB using nanoparticles. These therapies must be designed to engage specialized transport systems, allowing for efficient BBB penetration, improved therapeutic efficacy, and reduced systemic toxicity and drug degradation. Lipid and inorganic nanoparticles can enhance brain delivery while minimizing side effects. These formulations may include epitopes—small antigen fragments that bind directly to free antibodies, B cell receptors, or T cell receptors—that interact with transport systems and enable BBB crossing, thereby boosting therapeutic efficacy. Lipid-based nanoparticles (LNPs), such as liposomes, niosomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), are among the most promising delivery systems due to their unique properties, including their size, surface modification capabilities, and proven biosafety. Additionally, inorganic nanoparticles such as gold nanoparticles, mesoporous silica, superparamagnetic iron oxide nanoparticles, and dendrimers offer promising alternatives. Inorganic nanoparticles (INPs) can be easily engineered, and their surfaces can be modified with various elements or biological ligands to enhance BBB penetration, targeted delivery, and biocompatibility. Strategies such as surface engineering and functionalization have been employed to ensure biocompatibility and reduce cytotoxicity, making these nanoparticles safer for clinical applications. The use of INPs in GBM treatment has shown promise in improving the efficacy of traditional therapies like chemotherapy, radiotherapy, and gene therapy, as well as advancing newer treatment strategies, including immunotherapy, photothermal and photodynamic therapies, and magnetic hyperthermia. This article reviews the latest research on lipid and inorganic nanoparticles in treating GBM, focusing on active and passive targeting approaches. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

21 pages, 1156 KiB  
Review
Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications
by Corneliu Toader, Adrian Vasile Dumitru, Lucian Eva, Matei Serban, Razvan-Adrian Covache-Busuioc and Alexandru Vlad Ciurea
Int. J. Mol. Sci. 2024, 25(24), 13302; https://doi.org/10.3390/ijms252413302 - 11 Dec 2024
Cited by 14 | Viewed by 3794
Abstract
This review aims to address the significant challenges of treating central nervous system (CNS) disorders such as neurodegenerative diseases, strokes, spinal cord injuries, and brain tumors. These disorders are difficult to manage due to the complexity of disease mechanisms and the protective blood–brain [...] Read more.
This review aims to address the significant challenges of treating central nervous system (CNS) disorders such as neurodegenerative diseases, strokes, spinal cord injuries, and brain tumors. These disorders are difficult to manage due to the complexity of disease mechanisms and the protective blood–brain barrier (BBB), which restricts drug delivery. Recent advancements in nanoparticle (NP) technologies offer promising solutions, with potential applications in drug delivery, neuroprotection, and neuroregeneration. By examining current research, we explore how NPs can cross the BBB, deliver medications directly to targeted CNS regions, and enhance both diagnostics and treatment. Key NP strategies, such as passive targeting, receptor-mediated transport, and stimuli-responsive systems, demonstrate encouraging results. Studies show that NPs may improve drug delivery, minimize side effects, and increase therapeutic effectiveness in models of Alzheimer’s, Parkinson’s, stroke, and glioblastoma. NP technologies thus represent a promising approach for CNS disorder management, combining drug delivery and diagnostic capabilities to enable more precise and effective treatments that could significantly benefit patient outcomes. Full article
Show Figures

Figure 1

17 pages, 5993 KiB  
Article
Derivatives of Amodiaquine as Potent Human Cholinesterases Inhibitors: Implication for Treatment of Alzheimer’s Disease
by Ana Matošević, Dejan M. Opsenica, Marija Bartolić, Nikola Maraković, Andriana Stoilković, Katarina Komatović, Antonio Zandona, Suzana Žunec and Anita Bosak
Molecules 2024, 29(22), 5357; https://doi.org/10.3390/molecules29225357 - 14 Nov 2024
Viewed by 1133
Abstract
As some previously reported studies have proven that amodiaquine, in addition to its primary antimalarial activity, also has potential for new applications such as the inhibition of cholinesterases, in our study we focused on the evaluation of the influence of different substituents in [...] Read more.
As some previously reported studies have proven that amodiaquine, in addition to its primary antimalarial activity, also has potential for new applications such as the inhibition of cholinesterases, in our study we focused on the evaluation of the influence of different substituents in the aminoquinoline part of the amodiaquine structure on the inhibition of human acetylcholinesterase and butyrylcholinesterase to investigate the possibility for their use as drugs for the treatment of AD. We synthesized a series of amodiaquine derivatives bearing H-, F-, CF3-, NO2-, CN-, CO2H- or CH3O- groups on the aminoquinoline ring, and determined that all of the tested derivatives were very potent inhibitors of both cholinesterases, with inhibition constants (Ki) in the nM and low μM range and with prominent selectivity (up to 300 times) for the inhibition of acetylcholinesterase. All compounds displayed an ability to chelate biometal ions Fe2+, Zn2+ and Cu2+ and an antioxidant power comparable to that of standard antioxidants. Most of the compounds were estimated to be able to cross the blood–brain barrier by passive transport and were nontoxic toward cells that represent the models of individual organs. Considering all these beneficial features, our study has singled out compound 5, the most potent AChE inhibitor with a CH3O- on C(7) position, followed by 6 and 14, compounds without substituent or hydroxyl groups in the C(17) position, respectively, as the most promising compounds from the series which could be considered as potential multi-target drugs for the treatment of AD. Full article
Show Figures

Figure 1

19 pages, 26105 KiB  
Article
Development and Characterization of a Human Mammary Epithelial Cell Culture Model for the Blood–Milk Barrier—A Contribution from the ConcePTION Project
by Debora La Mantia, Nina Nauwelaerts, Chiara Bernardini, Augusta Zannoni, Roberta Salaroli, Qi Lin, Isabelle Huys, Pieter Annaert and Monica Forni
Int. J. Mol. Sci. 2024, 25(21), 11454; https://doi.org/10.3390/ijms252111454 - 25 Oct 2024
Cited by 1 | Viewed by 2473
Abstract
It is currently impossible to perform an evidence-based risk assessment for medication use during breastfeeding. The ConcePTION project aims to provide information about the use of medicines during lactation. The study aimed to develop and characterize an in vitro model of the blood–milk [...] Read more.
It is currently impossible to perform an evidence-based risk assessment for medication use during breastfeeding. The ConcePTION project aims to provide information about the use of medicines during lactation. The study aimed to develop and characterize an in vitro model of the blood–milk barrier to determine the extent of the milk transfer of xenobiotics, relying on either on human mammary epithelial cells (hMECs) or immortalized cell lines derived from breast tissue. The hMECs were cultured and characterized for epithelial markers; further, the ability to form an epithelial barrier was investigated. Drug transporter functionality in the cultured hMECs was analyzed with specific probe substrates. The hMECs showed an epithelial morphology and the expression of epithelial markers and tight junctions. They formed a reproducible tight barrier with a transepithelial electrical resistance greater than 400 Ωcm2, unlike immortalized cell lines. Different levels of mRNA expression were detected for 81 genes of membrane transporters. Functional assays showed no evidence for the transporter-mediated secretion of medicines across the hMECs. Nevertheless, the hMEC-based in vitro model covered a 50-fold range of permeability values, differentiating between passive transcellular and paracellular-mediated transport. The cultured hMECs proved to be a promising in vitro model for biorelevance; the wide characterization of hMECs makes them useful for studying medicine partitioning in milk. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

26 pages, 2872 KiB  
Review
Fetus Exposure to Drugs and Chemicals: A Holistic Overview on the Assessment of Their Transport and Metabolism across the Human Placental Barrier
by Ioly Kotta-Loizou, Agathi Pritsa, Georgios Antasouras, Spyridon N. Vasilopoulos, Gavriela Voulgaridou, Sousana K. Papadopoulou, Robert H. A. Coutts, Eleftherios Lechouritis and Constantinos Giaginis
Diseases 2024, 12(6), 114; https://doi.org/10.3390/diseases12060114 - 1 Jun 2024
Cited by 7 | Viewed by 6684
Abstract
Background: The placenta exerts a crucial role in fetus growth and development during gestation, protecting the fetus from maternal drugs and chemical exposure. However, diverse drugs and chemicals (xenobiotics) can penetrate the maternal placental barrier, leading to deleterious, adverse effects concerning fetus health. [...] Read more.
Background: The placenta exerts a crucial role in fetus growth and development during gestation, protecting the fetus from maternal drugs and chemical exposure. However, diverse drugs and chemicals (xenobiotics) can penetrate the maternal placental barrier, leading to deleterious, adverse effects concerning fetus health. Moreover, placental enzymes can metabolize drugs and chemicals into more toxic compounds for the fetus. Thus, evaluating the molecular mechanisms through which drugs and chemicals transfer and undergo metabolism across the placental barrier is of vital importance. In this aspect, this comprehensive literature review aims to provide a holistic approach by critically summarizing and scrutinizing the potential molecular processes and mechanisms governing drugs and chemical transfer and metabolism across the placental barrier, which may lead to fetotoxicity effects, as well as analyzing the currently available experimental methodologies used to assess xenobiotics placental transfer and metabolism. Methods: A comprehensive and in-depth literature review was conducted in the most accurate scientific databases such as PubMed, Scopus, and Web of Science by using relevant and effective keywords related to xenobiotic placental transfer and metabolism, retrieving 8830 published articles until 5 February 2024. After applying several strict exclusion and inclusion criteria, a final number of 148 relevant published articles were included. Results: During pregnancy, several drugs and chemicals can be transferred from the mother to the fetus across the placental barrier by either passive diffusion or through placental transporters, resulting in fetus exposure and potential fetotoxicity effects. Some drugs and chemicals also appear to be metabolized across the placental barrier, leading to more toxic products for both the mother and the fetus. At present, there is increasing research development of diverse experimental methodologies to determine the potential molecular processes and mechanisms of drug and chemical placental transfer and metabolism. All the currently available methodologies have specific strengths and limitations, highlighting the strong demand to utilize an efficient combination of them to obtain reliable evidence concerning drug and chemical transfer and metabolism across the placental barrier. To derive the most consistent and safe evidence, in vitro studies, ex vivo perfusion methods, and in vivo animal and human studies can be applied together with the final aim to minimize potential fetotoxicity effects. Conclusions: Research is being increasingly carried out to obtain an accurate and safe evaluation of drug and chemical transport and metabolism across the placental barrier, applying a combination of advanced techniques to avoid potential fetotoxic effects. The improvement of the currently available techniques and the development of novel experimental protocols and methodologies are of major importance to protect both the mother and the fetus from xenobiotic exposure, as well as to minimize potential fetotoxicity effects. Full article
Show Figures

Figure 1

16 pages, 2686 KiB  
Review
Ocular Drug Delivery into the Eyes Using Drug-Releasing Soft Contact Lens
by Toshihiko Tashima
Future Pharmacol. 2024, 4(2), 336-351; https://doi.org/10.3390/futurepharmacol4020019 - 29 Apr 2024
Cited by 6 | Viewed by 3386
Abstract
The impact of visual impairment, such as blindness, on quality of life is immeasurable. However, effective ocular drug delivery into the eyes has not yet been established, primarily due to the impermeability imposed by the blood–retinal barrier (BRB) based on the tight junctions [...] Read more.
The impact of visual impairment, such as blindness, on quality of life is immeasurable. However, effective ocular drug delivery into the eyes has not yet been established, primarily due to the impermeability imposed by the blood–retinal barrier (BRB) based on the tight junctions and efflux transporters at the endothelium or the epithelium in oral or intravenous administration, as well as the dilution with tear fluid and excretion through the nasolacrimal duct in eye drop administration. Furthermore, intravitreous injections induce pain and fear in patients. Unmet medical needs persist in ocular diseases such as age-related macular degeneration and diabetic retinopathy. Therefore, innovative non-invasive administration methods should be developed. Drug-releasing soft contact lenses (DR-SCLs) affixed to the eye’s surface can continuously and locally deliver their loaded drugs to the eyes. The use of DR-SCLs is expected to greatly enhance the bioavailability and patient adherence to the drug regimen. It is known that several solute carrier (SLC) transporters are expressed in various parts of the eyes, including the cornea, the ciliary body, and the bulbar conjunctiva. Carrier-mediated transport through SLC transporters may occur in addition to passive diffusion. Moreover, nanoparticles can be loaded into DR-SCLs, offering various intelligent approaches based on modifications to induce receptor-mediated endocytosis/transcytosis or to control the loaded drug release within this delivery system. In this perspective review, I discuss the implementation and potential of DR-SCL-mediated ocular drug delivery, particularly focusing on low-molecular-weight compounds because of their fine distribution in living body, ease of handling, and ease of manufacturing. Full article
Show Figures

Figure 1

12 pages, 1917 KiB  
Review
Aquaporins in the Cornea
by Samuel Melnyk and Wendy B. Bollag
Int. J. Mol. Sci. 2024, 25(7), 3748; https://doi.org/10.3390/ijms25073748 - 28 Mar 2024
Cited by 3 | Viewed by 1969
Abstract
The cornea is an avascular, transparent tissue that allows light to enter the visual system. Accurate vision requires proper maintenance of the cornea’s integrity and structure. Due to its exposure to the external environment, the cornea is prone to injury and must undergo [...] Read more.
The cornea is an avascular, transparent tissue that allows light to enter the visual system. Accurate vision requires proper maintenance of the cornea’s integrity and structure. Due to its exposure to the external environment, the cornea is prone to injury and must undergo proper wound healing to restore vision. Aquaporins (AQPs) are a family of water channels important for passive water transport and, in some family members, the transport of other small molecules; AQPs are expressed in all layers of the cornea. Although their functions as water channels are well established, the direct function of AQPs in the cornea is still being determined and is the focus of this review. AQPs, primarily AQP1, AQP3, and AQP5, have been found to play an important role in maintaining water homeostasis, the corneal structure in relation to proper hydration, and stress responses, as well as wound healing in all layers of the cornea. Due to their many functions in the cornea, the identification of drug targets that modulate the expression of AQPs in the cornea could be beneficial to promote corneal wound healing and restore proper function of this tissue crucial for vision. Full article
(This article belongs to the Special Issue Recent Advances in Aquaporins)
Show Figures

Figure 1

21 pages, 7591 KiB  
Review
Experimental and Computational Methods to Assess Central Nervous System Penetration of Small Molecules
by Mayuri Gupta, Jun Feng and Govinda Bhisetti
Molecules 2024, 29(6), 1264; https://doi.org/10.3390/molecules29061264 - 13 Mar 2024
Cited by 8 | Viewed by 6010
Abstract
In CNS drug discovery, the estimation of brain exposure to lead compounds is critical for their optimization. Compounds need to cross the blood–brain barrier (BBB) to reach the pharmacological targets in the CNS. The BBB is a complex system involving passive and active [...] Read more.
In CNS drug discovery, the estimation of brain exposure to lead compounds is critical for their optimization. Compounds need to cross the blood–brain barrier (BBB) to reach the pharmacological targets in the CNS. The BBB is a complex system involving passive and active mechanisms of transport and efflux transporters such as P-glycoproteins (P-gp) and breast cancer resistance protein (BCRP), which play an essential role in CNS penetration of small molecules. Several in vivo, in vitro, and in silico methods are available to estimate human brain penetration. Preclinical species are used as in vivo models to understand unbound brain exposure by deriving the Kp,uu parameter and the brain/plasma ratio of exposure corrected with the plasma and brain free fraction. The MDCK-mdr1 (Madin Darby canine kidney cells transfected with the MDR1 gene encoding for the human P-gp) assay is the commonly used in vitro assay to estimate compound permeability and human efflux. The in silico methods to predict brain exposure, such as CNS MPO, CNS BBB scores, and various machine learning models, help save costs and speed up compound discovery and optimization at all stages. These methods enable the screening of virtual compounds, building of a CNS penetrable compounds library, and optimization of lead molecules for CNS penetration. Therefore, it is crucial to understand the reliability and ability of these methods to predict CNS penetration. We review the in silico, in vitro, and in vivo data and their correlation with each other, as well as assess published experimental and computational approaches to predict the BBB penetrability of compounds. Full article
(This article belongs to the Special Issue Computational Drug Discovery: Methods and Applications)
Show Figures

Figure 1

32 pages, 1099 KiB  
Review
Nanomedicines: Emerging Platforms in Smart Chemotherapy Treatment—A Recent Review
by Mosab Arafat, Molham Sakkal, Rami Beiram and Salahdein AbuRuz
Pharmaceuticals 2024, 17(3), 315; https://doi.org/10.3390/ph17030315 - 28 Feb 2024
Cited by 15 | Viewed by 5147
Abstract
Cancer continues to pose one of the most critical challenges in global healthcare. Despite the wide array of existing cancer drugs, the primary obstacle remains in selectively targeting and eliminating cancer cells while minimizing damage to healthy ones, thereby reducing treatment side effects. [...] Read more.
Cancer continues to pose one of the most critical challenges in global healthcare. Despite the wide array of existing cancer drugs, the primary obstacle remains in selectively targeting and eliminating cancer cells while minimizing damage to healthy ones, thereby reducing treatment side effects. The revolutionary approach of utilizing nanomaterials for delivering cancer therapeutic agents has significantly enhanced the efficacy and safety of chemotherapeutic drugs. This crucial shift is attributed to the unique properties of nanomaterials, enabling nanocarriers to transport therapeutic agents to tumor sites in both passive and active modes, while minimizing drug elimination from delivery systems. Furthermore, these nanocarriers can be designed to respond to internal or external stimuli, thus facilitating controlled drug release. However, the production of nanomedications for cancer therapy encounters various challenges that can impede progress in this field. This review aims to provide a comprehensive overview of the current state of nanomedication in cancer treatment. It explores a variety of nanomaterials, focusing on their unique properties that are crucial for overcoming the limitations of conventional chemotherapy. Additionally, the review delves into the properties and functionalities of nanocarriers, highlighting their significant impact on the evolution of nanomedicine. It also critically assesses recent advancements in drug delivery systems, covering a range of innovative delivery methodologies. Finally, the review succinctly addresses the challenges encountered in developing nanomedications, offering insightful perspectives to guide future research in this field. Full article
Show Figures

Graphical abstract

21 pages, 3654 KiB  
Article
Interspecies Brain PBPK Modeling Platform to Predict Passive Transport through the Blood–Brain Barrier and Assess Target Site Disposition
by Parsshava Mehta, Amira Soliman, Leyanis Rodriguez-Vera, Stephan Schmidt, Paula Muniz, Monica Rodriguez, Marta Forcadell, Emili Gonzalez-Perez and Valvanera Vozmediano
Pharmaceutics 2024, 16(2), 226; https://doi.org/10.3390/pharmaceutics16020226 - 4 Feb 2024
Cited by 5 | Viewed by 3721
Abstract
The high failure rate of central nervous system (CNS) drugs is partly associated with an insufficient understanding of target site exposure. Blood–brain barrier (BBB) permeability evaluation tools are needed to explore drugs’ ability to access the CNS. An outstanding aspect of physiologically based [...] Read more.
The high failure rate of central nervous system (CNS) drugs is partly associated with an insufficient understanding of target site exposure. Blood–brain barrier (BBB) permeability evaluation tools are needed to explore drugs’ ability to access the CNS. An outstanding aspect of physiologically based pharmacokinetic (PBPK) models is the integration of knowledge on drug-specific and system-specific characteristics, allowing the identification of the relevant factors involved in target site distribution. We aimed to qualify a PBPK platform model to be used as a tool to predict CNS concentrations when significant transporter activity is absent and human data are sparse or unavailable. Data from the literature on the plasma and CNS of rats and humans regarding acetaminophen, oxycodone, lacosamide, ibuprofen, and levetiracetam were collected. Human BBB permeability values were extrapolated from rats using inter-species differences in BBB surface area. The percentage of predicted AUC and Cmax within the 1.25-fold criterion was 85% and 100% for rats and humans, respectively, with an overall GMFE of <1.25 in all cases. This work demonstrated the successful application of the PBPK platform for predicting human CNS concentrations of drugs passively crossing the BBB. Future applications include the selection of promising CNS drug candidates and the evaluation of new posologies for existing drugs. Full article
(This article belongs to the Special Issue Development of Physiologically Based Pharmacokinetic (PBPK) Modeling)
Show Figures

Figure 1

19 pages, 8009 KiB  
Article
Free Energy Barriers for Passive Drug Transport through the Mycobacterium tuberculosis Outer Membrane: A Molecular Dynamics Study
by Ilya S. Steshin, Alexander V. Vasyankin, Ekaterina A. Shirokova, Alexey V. Rozhkov, Grigory D. Livshits, Sergey V. Panteleev, Eugene V. Radchenko, Stanislav K. Ignatov and Vladimir A. Palyulin
Int. J. Mol. Sci. 2024, 25(2), 1006; https://doi.org/10.3390/ijms25021006 - 13 Jan 2024
Cited by 4 | Viewed by 1942
Abstract
The emergence of multi-drug-resistant tuberculosis strains poses a significant challenge to modern medicine. The development of new antituberculosis drugs is hindered by the low permeability of many active compounds through the extremely strong bacterial cell wall of mycobacteria. In order to estimate the [...] Read more.
The emergence of multi-drug-resistant tuberculosis strains poses a significant challenge to modern medicine. The development of new antituberculosis drugs is hindered by the low permeability of many active compounds through the extremely strong bacterial cell wall of mycobacteria. In order to estimate the ability of potential antimycobacterial agents to diffuse through the outer mycolate membrane, the free energy profiles, the corresponding activation barriers, and possible permeability modes of passive transport for a series of known antibiotics, modern antituberculosis drugs, and prospective active drug-like molecules were determined using molecular dynamics simulations with the all-atom force field and potential of mean-force calculations. The membranes of different chemical and conformational compositions, density, thickness, and ionization states were examined. The typical activation barriers for the low-mass molecules penetrating through the most realistic membrane model were 6–13 kcal/mol for isoniazid, pyrazinamide, and etambutol, and 19 and 25 kcal/mol for bedaquilin and rifampicin. The barriers for the ionized molecules are usually in the range of 37–63 kcal/mol. The linear regression models were derived from the obtained data, allowing one to estimate the permeability barriers from simple physicochemical parameters of the diffusing molecules, notably lipophilicity and molecular polarizability. Full article
Show Figures

Figure 1

Back to TopTop