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Abstract: The high failure rate of central nervous system (CNS) drugs is partly associated with an
insufficient understanding of target site exposure. Blood–brain barrier (BBB) permeability evaluation
tools are needed to explore drugs’ ability to access the CNS. An outstanding aspect of physiologi-
cally based pharmacokinetic (PBPK) models is the integration of knowledge on drug-specific and
system-specific characteristics, allowing the identification of the relevant factors involved in target
site distribution. We aimed to qualify a PBPK platform model to be used as a tool to predict CNS
concentrations when significant transporter activity is absent and human data are sparse or unavail-
able. Data from the literature on the plasma and CNS of rats and humans regarding acetaminophen,
oxycodone, lacosamide, ibuprofen, and levetiracetam were collected. Human BBB permeability
values were extrapolated from rats using inter-species differences in BBB surface area. The percentage
of predicted AUC and Cmax within the 1.25-fold criterion was 85% and 100% for rats and humans,
respectively, with an overall GMFE of <1.25 in all cases. This work demonstrated the successful
application of the PBPK platform for predicting human CNS concentrations of drugs passively
crossing the BBB. Future applications include the selection of promising CNS drug candidates and
the evaluation of new posologies for existing drugs.

Keywords: PBPK qualification; BBB permeability; CNS; brain modeling; target site disposition;
translational modeling

1. Introduction

The high failure rates involved in developing central nervous system (CNS) drug
programs call for an urgent need to review the main reason for treatment failure [1–4].
The challenges encountered in gaining a quantitative understanding of CNS target site
concentrations strongly contribute to this failure [5]. The restrictive nature of the BBB
makes it difficult to deliver drugs into the CNS [6]. Passive diffusion is one of the transport
mechanisms across the BBB that involves the transfer of drugs and endogenous molecules
from the blood to the brain on a concentration gradient. The blood–CSF (BCSF) barrier,
formed by the choroid plexus, also contributes significantly to the entry of molecules into
the CNS [7]. Therefore, accounting for the entry of molecules through both of these routes
is crucial. To forecast this permeability across the BBB, researchers have turned to specific
in vitro techniques utilizing cell lines. The most common cell culture models employed to
assess permeability are Caco-2, derived from colon carcinoma, and MDCK-MDR1, obtained
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from Madin–Darby canine kidney cells transfected with the human MDR1 gene. These cell
lines are utilized to predict brain permeability [8–12], albeit with the limitation of requiring
suitable scaling factors, or careful considerations of downregulation of certain properties
in vitro which alter BBB permeability when performing in vitro–in vivo extrapolations for
accurate predictions. The utilization of these scaling factors is crucial for optimization,
primarily due to the nature of Caco-2 cancer cell lines, which are rapidly proliferating cells.
This can result in biased estimates, as the integrity of their cell layers may differ from that
of the BBB in vivo.

Microdialysis has emerged as a significant technique that allows serial sampling of
interstitial fluid from the same animal and across multiple physiological compartments of
the brain and cerebrospinal fluid (CSF). It is the method best suited to characterizing the
time profile of drug concentrations in the brain [13]. The major advantage of this technique
is its ability to concurrently measure the concentration of unbound drugs in the blood and
brain of a single animal over a period of time, without net fluid loss. This sets it apart from
other approaches, since variables like drug binding to proteins or components of the brain
tissue do not interfere with the movement of the drug across the BBB itself. Overall, this
time–concentration profile obtained from in vivo microdialysis experiments can provide
valuable information.

Physiologically based pharmacokinetic (PBPK) modeling has been successfully used
from the early stages of drug development to predict time-dependent drug profiles in
various body tissues based on in vitro input data and molecular and physicochemical prop-
erties of the drug [14,15]. The increasing number of PBPK modeling submissions over the
last decade culminated in draft guidance by both the European Medical Agency (EMA) [16]
and the US Food and Drug Administration (FDA) [17]. The importance of PBPK modeling
in the realm of predicting the target site concentrations when they are difficult to measure
or involve invasive methods is growing traction. For instance, Aulin et al. [18] highlight the
significance of the pulmonary PBPK model in characterizing target site exposure to better
understand its antimicrobial effects. Similarly, a study by Eigenmann et al. [19], which
shows the importance of antibody binding to tumor cells in eliciting their response, used
PBPK modeling and further evaluated its impact on target affinity on tumor accumulation.
Establishing confidence in PBPK models is crucial, but challenges such as poor in vitro–
in vivo correlations, parameter non-identifiability, and lack of validation of predictive
performance persist [20].

The disparities in drug exposures in the brain across species cannot be adequately ex-
plained by simple allometric scaling, as it only considers differences in body size and
neglects variations in body weight to brain weight ratios. Additionally, as noted by
Sharma et al., “the membrane permeability of a drug is a property unaffected by size
and stays relatively constant across species” [21]. To address this limitation of allometry,
the application of physiologically based pharmacokinetic (PBPK) concepts becomes crucial.
PBPK allows for the substitution of physiological parameter values for preclinical species
with their corresponding human values, leveraging widely available data in the litera-
ture [22]. This increasingly popular approach of using in vitro data within the PBPK model
to make predictions of in vivo systems (animals and humans) has been successful, since it
provides a more mechanistic basis for interspecies translation of preclinical models [22].
For example, Kielbasa et al. demonstrated the interspecies translation of BBB penetration to
provide a prediction of unbound brain concentrations in humans using a model consisting
of separate compartments for blood, brain extracellular fluid (ECF), brain intracellular
space, and cerebrospinal fluid (CSF) [23]. As emphasized by Ball et al. (2013), “It can be
considered that passive diffusion across biological membranes is similar between species
when differences in their respective surface areas are taken into account” [8]. This indicates
that BBB permeability can be considered as a drug-specific parameter and thus scaled from
rats to humans. Hence, permeability measured across in vitro monolayers for passively
transported drugs or in the presence of suitable inhibitors of active transport for transporter
substrates can be used in human PBPK models, as schematized in Figure 1.
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Figure 1. Summary of in vitro–in vivo extrapolation for scaling in vitro-derived permeability to the
in vivo BBB of rats and humans. BBB: blood–brain barrier, SA: surface area, PS: permeability surface
area product.

Recognizing the limitations inherent to in vitro parameters and the need to overcome
challenges tied to the use of empirical scaling factors, we developed and qualified a robust
model platform tailored for compounds that traverse the BBB devoid of active transporters’
involvement in humans. The proposed methodology employs the use of experimental data
from neuropharmacokinetic experiments to optimize the BBB permeability value using the
rat PBPK model. Subsequently, this optimized value is then scaled to humans, accounting
for differences in surface area between the species to make reliable and more accurate
predictions in the CNS. The work presented here aimed to qualify the platform model
to be used as a tool to predict passive CNS transport when ECF/CSF concentrations are
sparse or unavailable in humans. To substantiate the model’s performance, qualification
has been conducted using five drugs—acetaminophen, oxycodone, lacosamide, ibuprofen,
and levetiracetam—for which data for both rats and humans are available in the literature.
The drugs are specifically selected with logP values ranging from −0.67 to 3.97. This range
covers a wide spectrum, encompassing both hydrophilic and hydrophobic compounds
capable of crossing the BBB. Thus, acknowledging the importance of validation of these
predictive tools for untested scenarios and building confidence in prospective predictions
is vital. This approach represents a promising stride towards a better understanding of
target site disposition, supporting more accurate drug development within the challenging
realm of CNS-targeted therapeutics.

2. Materials and Methods

A comprehensive overview of the model platform’s qualification with acetaminophen,
oxycodone, lacosamide, ibuprofen, and levetiracetam is provided in Figure 2. A detailed
description of each component of the workflow is mentioned in the sections below.

2.1. Software

Different aspects of the study were facilitated using the following software:

• PBPK Model Development: Pumas® version 2.2.0 [24] (PumasAI, Dover, DE, USA) an
integral package within the Julia programming language, is used to develop the PBPK
models for both rat and human subjects.

• PK Metrics’ Calculation: The NCA package within the Pumas® environment was used
for computation of pharmacokinetic (PK) metrics.

• Data Management and Visualization: To effectively manage and visualize our data,
we employed R® version 4.2.2 [25], operated through the user-friendly RStudio
v2023.06.1 [26].
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• Data Extraction from the Literature: Since the data were sourced from existing stud-
ies, we employed WebPlotDigitizer [27] (version 4.5) to transform images into plots.
This facilitated the extraction of concentration versus time data from said plots for
further analysis.
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Figure 2. Model framework development and verification workflow of acetaminophen, oxycodone,
lacosamide, ibuprofen, and levetiracetam. PBPK: physiologically based pharmacokinetic model, ECF:
extracellular fluid, CSF: cerebrospinal fluid, BBB: blood–brain barrier, SA: surface area, CNS: central
nervous system [28].

2.2. Literature Search and Data Collection

The initial literature search for the best brain PBPK model was conducted using the
PubMed search engine. The following search terms (and a combination of them) were
used: “PBPK”, “physiologically based pharmacokinetic model”, “brain concentrations”,
“neuropharmacokinetics”, “brain pharmacokinetics”, “CSF concentrations” and “CNS
delivery” (within the abstract or title of the manuscript). After a thorough search, a brain
PBPK model developed by Verscheijden et al., 2019 [28] was chosen as the final model for
the proposed methodology and qualification of the platform.

The data collection for the drugs intended for model qualification was based on the
following set of criteria:

• Drugs for which passive transport is demonstrated;
• Drugs for which the literature contains rat neuropharmacokinetics studies (published

data on plasma and either CSF, ECF, or brain concentrations);
• Drugs for which human plasma, CSF and/or ECF concentrations are available to

qualify the brain PBPK model platform.

Taking all of the above criteria into consideration, the following drugs were selected:
acetaminophen [29,30], oxycodone [31], lacosamide [31–33], ibuprofen [31], and levetirac-
etam [34]. A summary of studies from the literature in both rats and humans, from which
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pharmacokinetic data were extracted, is provided in Table 1. The drugs acetaminophen [35],
oxycodone [36], lacosamide [37], ibuprofen [38] and levetiracetam [39] have been shown
to exhibit linear pharmacokinetics at therapeutic doses, for which simulations were per-
formed. Furthermore, it is noteworthy that the drugs in question encompass a diverse
array of Biopharmaceutics Classification Systems (BCSs) as mentioned in Table S3. This
characteristic serves to augment the model’s applicability in a more comprehensive manner.

Table 1. Summary of neuropharmacokinetics studies in rats and humans.

Drugs Species Study ID Dose Route n Weight
(g) Age (y) CNS

Sample
Extra-

Vascular
Sample

Acetaminophen
Rat Sauernheimer

et al. [40] 25 mg/kg IV Bolus 6 300–400 - CSF Plasma

Human Singla
et al. [29] 1000 mg IV 50 - 19–73 CSF Plasma

Oxycodone
Rat Ball et al.

[8] 0.3 mg/kg
IV

Infusion,1
h

11 250–290 - Brain Plasma

Human Kokki et al.
[41]

0.092
mg/kg IV 11 - 26–60 CSF Plasma

Lacosamide
Rat Koo et al.

[42] 10 mg/kg Oral 4 230–260 - Brain Plasma

Human May et al.
[43]

166 mg/12
h Oral 21 - 18–65 CSF Plasma

Ibuprofen
Rat Talhoni

et al. [44] 50 mg/kg Intraperitoneal 3 200–250 - Brain Plasma

Human Brazier
et al. [45] 10 mg Oral 26 - 55–75 CSF Plasma

Levetiracetam

Rat Tong et al.
[34]

40 and 80
mg/kg Intraperitoneal 6 300–350 - ECF Serum

Rat Doheny
et al. [46]

20, 40 and
80 mg/kg Intraperitoneal 6 250–350 - CSF Serum

Human Rambeck
et al. [47] - Oral 3 - 32–44 ECF

CSF Plasma

Human Rouits
et al. [48] 500 mg Oral 24 - 18–55 - Plasma

n: sample size of study, CNS: central nervous system, IV: intravenous, ECF: extracellular fluid, CSF: cerebrospinal fluid.

2.3. Structure of PBPK Model in Rats and Humans
2.3.1. Whole Body PBPK Model

The whole PBPK model structure, as derived from Vercheijden et al.’s work [28],
comprises 14 compartments, encompassing major organs and tissues. Model parame-
ters, including organ volumes and blood flow rates, were obtained from the previously
published model and SimCYP [49–51]. Subsequently, the model was adapted for rats,
accounting for species-specific differences. The equations governing the rat PBPK model
were sourced from SimCYP Animal Simulator (version 21 Release 1) [52]. Additionally, the
equations for calculating the Kp values using methods such as those of Poulin and Theil
(PT), Berezhkovskiy (BZ), and Rodgers and Rowland (RR) were extracted from the relevant
literature [53–57] and implemented in the platform model. The model’s structure is visually
represented in Figure 3. The various equations for the calculations of the parameters are
provided in the Supplementary File under Table S1 for rats and Table S2 for humans.
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Figure 3. Schematic outline of the brain PBPK platform model, with four brain compartments. Qsin

and Qsout represent CSF shuttle flow between cranial CSF and spinal CSF compartments. Qssink and
Qcsink are the flows from CSF compartments to blood. Qbulk represents bulk flow from brain mass to
cranial CSF. PSB, PSC and PSE represent permeability surface area products between brain blood and
brain mass, brain blood and cranial CSF, and brain mass and cranial CSF, respectively. Subscripts lu,
br, ad, bo, hr ki, mu, sk, li, re, gu, sp, and ha denote lung, brain, adipose tissue, bone, heart, kidney,
muscle, skin, liver, rest tissue, gut, spleen, and hepatic artery, respectively. CL is the total clearance
from the model. BBB: blood–brain barrier, BCSFB: blood cerebrospinal fluid barrier.

Drug elimination was incorporated in the model as plasma clearance (CL), using CL
values obtained from the literature. Since the goal of the model qualification was mainly
to assess the permeability value obtained from in vivo data and predict the human brain
concentrations; systemic CL was included as total body clearance and not related to any
organ-specific clearance. For drugs given orally, the drug was administered in the gut
compartment with a first-order rate of absorption. Alternatively, for drugs administered
via the IV route, the administration was simulated in the venous blood compartment.

2.3.2. Brain Model

The 4-compartment permeability limited model (4Brain) is nested within the whole
body PBPK model. The 4Brain model consists of the brain blood, brain mass, cranial
and spinal CSF compartments. The 4Brain model highlighted in green is shown Figure 3,
which represents the various brain compartments. The blood flows within the various
compartments are represented as Qbulk (bulk flow from brain mass to the cranial CSF),
Qsin and Qsout (representing the CSF shuttle flow between cranial CSF and spinal CSF
compartments), Qssink and Qcsink (flows from the CSF compartment to brain blood). The
BBB permeability was optimized for each of the drugs separately and is modelled as PSB,
as calculated in Equation (1).

PSB = BBB Permeability (PBBB) × BBB Surface Area (1)

where PSB is the BBB permeability surface area product and is expressed as cm3/s (con-
verted to L/min or L/h). The BBB permeability (PBBB) is expressed as cm/s and the BBB
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surface area as cm2. The PBBB is a drug-specific parameter that was optimized in rats
and then incorporated into the human 4Brain PBPK model, accounting for the difference
in BBB surface area between species. The system-specific parameters for the brain sub-
compartment are provided in the Supplementary File under Table S1 for rats and Table S2
for humans.

The following model assumptions were made:

• The BBB separates the brain mass from the blood, whereas the BCSFB separates the
cranial CSF from blood.

• The compartments are well stirred, with uniform distribution throughout.
• Because the surface area of the BCSFB is 1/10 times that of the BBB [58], the perme-

ability surface area products of BCSFB are one-tenth of the comparable BBB values.
• Because all the model drugs (acetaminophen, oxycodone, lacosamide, ibuprofen and

levetiracetam) are not considered substrates for multi-drug transport [28–31,34] in
the BBB or BCSFB, transporter-mediated transfer across these barriers is considered
insignificant and hence not incorporated.

• The distribution of the drug in brain mass is assumed to be homogeneous; thus, the
ECF concentrations are approximated based on the volume of ECF [30].

2.4. Development of the Rat and Human PBPK Model in Plasma

Acetaminophen-, oxycodone-, lacosamide-, ibuprofen-, and levetiracetam-specific
drug parameters for the rat and human PBPK models are all outlined in Table S3. Addition-
ally, the Supplementary File included comprehensive information on system parameters
within the rat and human PBPK model, accompanied by a sample code for reference.
The methodology employed for determining the Kp values was chosen, guided by the
following criteria: (1) leveraging previously established PBPK models for analogous drugs;
(2) considering physico-chemical properties such as compound type, logP, and pKa; and
(3) evaluating the method’s ability to accurately replicate the observed plasma concentra-
tions. The selection of the RR method for acetaminophen and lacosamide was based on the
existing PBPK models [31,59]. Similarly, for levetiracetam, the RR method was used based
on a previous literature PBPK model of brivaracetam and model fitting [60]. In the case
of ibuprofen, the BZ method was opted for, drawing from experiments conducted by the
author [61] and the capacity of the method to reproduce the data. As for oxycodone, the PT
method was chosen, aligning with the physicochemical properties and the method’s capac-
ity to accurately reproduce the observed data. Drug elimination was incorporated in the
model as plasma clearance (CL) with CL values obtained from the literature. CL was 22.8,
49.2, 2.13, 3.88 and 3.96 L/h for acetaminophen, oxycodone, lacosamide, ibuprofen, and
levetiracetam, respectively, as provided in Table S3. The inter-individual variability used on
the CL and/or Ka (absorption rate constant) parameter was based on existing studies. The
inter-individual variability (CV) used on the CL was 35.4, 30, and 42% for acetaminophen,
ibuprofen, and levetiracetam, respectively, as provided in Table S3. Uncorrelated variability
in CL is included, since total body clearance was not related to any organ-specific or patient
characteristics. Thus, it was included in the model as shown below:

Paramindv = Parampop × η

where Paramindv is the individual parameter’s estimate, Parampop is the average typical
value of the population, and η is the variance sampled from a normal distribution.

2.5. Optimization of the Brain Permeability from Rat Neuropharmacokinetics Data

The initial value for the optimization of the BBB permeability was obtained from
experimental data performed on Caco-2 cells. However, it is crucial to note that Caco-2
cells, originating from human colon carcinoma, may not accurately represent the human
blood–brain barrier (BBB). Due to fundamental biological differences, the correlation be-
tween Caco-2 cell permeability and in vivo BBB permeability is found to be very low [62].
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Consequently, the permeability data from Caco-2 cells were solely utilized as the initial
input for the system. Using this input into the PBPK model and brain and CSF or ECF
data from the neuropharmacokinetics studies in rats (Table 1), optimization of the BBB
permeability value for all five drugs (acetaminophen, oxycodone, lacosamide, ibuprofen,
and levetiracetam) was performed using a naïve pooled analysis approach. The naïve
pooled analysis treats all observations as coming from a single individual and ignores
the inter-individual variations. Thus, this optimization method can be applied to single
individuals. No approximations are necessary, since there is no population distribution
and hence no joint likelihoods to integrate.

2.6. Verification of PBPK Model

The verification of the PBPK models used to predict plasma concentrations in rats and
humans and CNS concentrations in rats involved both graphical and numerical assess-
ments. Predicted plasma and CNS concentration profiles were graphed alongside their
respective observed data points to allow for visual comparison. Goodness-of-fit (GoF)
plots were generated to compare the calculated area under the curve (AUC) and maximum
concentration (Cmax) values for both observed and predicted data in rats (plasma and CNS)
and humans (plasma). Additionally, for the quantitative evaluation of each independent
model for acetaminophen, oxycodone, lacosamide, ibuprofen, and levetiracetam in rats and
humans, the geometric mean fold error (GMFE) [63] will be calculated using the following
Equations (2) and (3).

GMFE = 10x with x =
1
n ∑n

i=1

∣∣∣∣log10
(

AÛCi

AUCi

)∣∣∣∣ (2)

GMFE = 10x with x =
1
n ∑n

i=1

∣∣∣∣log10
(

Ĉmaxi

Cmaxi

)∣∣∣∣ (3)

Here, AUCi is the ith observed AUClast value, AÛCi is the predicted AUClast value
and n equals the number of studies. Similarly, Cmaxi is the ith observed Cmax value,
Ĉmaxi is the predicted Cmax value, and n equals the number of studies. A GMFE value
of 1.25 for predicting Cmax and AUC values was considered a criterion for good model
performance in predicting the CNS concentrations.

2.7. Qualification of the PBPK Model Platform along with the Optimized BBB Permeability in Rats
for Use in Human CNS Predictions

The optimized value of the BBB permeability was then integrated as an input pa-
rameter (PSB, as shown in Equation (1)) into the human 4Brain PBPK model, accounting
for the difference in surface area of BBB, facilitating the prediction of CSF concentrations
in humans.

We established a demanding benchmark for success, defining a narrow margin of
1.25-fold, in contrast to the more common 2-fold criteria utilized in PBPK modeling. This
stringent criterion aimed to ensure the PBPK model delivers highly reliable predictions
of CNS concentrations, thereby reinforcing the robustness and accuracy of our platform.
In humans, since CSF is the only accessible fluid for the majority of clinical studies, when
the model successfully predicts human CSF concentrations, the predictions of the concen-
trations in other brain compartments using the model are considered accurate. This is a
reasonable consideration based on the scientific literature in the area of PBPK modeling in
the CNS [28,30,64].

3. Results
3.1. PBPK Model Development and Evaluation in Rats

The whole-body rat PBPK model of acetaminophen, oxycodone, lacosamide, ibupro-
fen, and levetiracetam was built and comprehensively evaluated using plasma profiles.
All model parameters are provided in Tables S1 and S3. The optimized PBBB value is
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provided in Table 3. An overlay of the simulated versus observed profiles of both plasma
and CNS concentrations is shown in Figure S1. The GOF plots illustrate the alignment
between the predicted versus observed pharmacokinetic metrics, specifically AUC and
Cmax, as shown in Figure 4. Additionally, for levetiracetam, as ECF concentrations were
used after 40 mg/kg to predict the PBBB, an external verification was carried out to confirm
the validity of the optimized value using rat ECF (80 mg/kg) and CSF (20–80 mg/kg) data
(Table 1). The results are depicted in Figures S2 and S3.
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The GMFE values for AUClast and Cmax values for all studies in rats are shown in
Table 2. Across the comprehensive dataset of 20 samples, our predictions met the stringent
1.25-fold acceptance criteria for AUC and Cmax values in 17 samples (85%). The overall
GMFE for plasma stood at 1.18 for AUC and 1.14 for Cmax. Similarly, our model showed a
consistent accuracy within the CNS, yielding an overall GMFE of 1.10 for AUC and 1.12
for Cmax. Among the remaining three studies with a slightly higher GMFE, two were
notable for oxycodone in plasma, reporting GMFE values of 1.26 for AUC and 1.32 for
Cmax. Additionally, a single study on ibuprofen exhibited a higher GMFE of 1.41 in plasma.
However, it is important to note that all CNS data adhered to the stringent 1.25-fold criteria,
highlighting the model’s robust performance in predicting CNS concentrations.

Table 2. Predicted and observed PK metrics of AUC and Cmax for various drugs in rats.

Drug Sample AUC_Pred AUC_Obs Cmax_Pred Cmax_Obs GMFE_AUC GMFE_Cmax

Acetaminophen Plasma 538.35 660.62 23.89 26.35 1.23 1.10

Oxycodone Blood 3040.96 2418.04 42.84 32.37 1.26 1.32

Lacosamide Plasma 1860.7 1934.89 7.57 7.9 1.04 1.04

Ibuprofen Plasma 1083.44 1522.96 40.84 34.52 1.41 1.18

Levetiracetam Plasma 44,542.7 43,927.1 205.06 196.02 1.01 1.05

Maximum 1.41 1.32

Minimum 1.01 1.04

GMFE-Plasma 1.18 1.14

Acetaminophen CSF 746.57 617.81 17.52 15.42 1.21 1.14

Oxycodone BM 7279.78 7163.91 98.23 97.7 1.02 1.01

Lacosamide BM 937.89 1054.89 3.81 4.05 1.12 1.06

Ibuprofen BM 173.71 183.09 5.45 4.65 1.05 1.17

Levetiracetam ECF 13,939.6 15,203.7 43.02 53.26 1.09 1.24

Maximum 1.21 1.24

Minimum 1.02 1.01

GMFE-CNS 1.10 1.12

AUC (µg × min/mL): lacosamide, acetaminophen, ibuprofen, AUC (ng × min/mL): oxycodone and AUC
(µmol × min/mL): levetiracetam. Cmax (µg/mL): lacosamide, acetaminophen, ibuprofen, Cmax (ng/mL):
oxycodone and Cmax (µmol/L): levetiracetam.

3.2. BBB Permeability Values

The initial values from Caco-2 cells (Papp) and final optimized values for the BBB
permeability (PBBB) values are shown in Table 3. The final value that is incorporated into
the model is the PSB, which accounts for the difference in surface area for the species and
is also presented in Table 3. It can be seen that for drugs that show an entry delay (i.e.,
acetaminophen, ibuprofen and levetiracetam) into the CNS, the optimized permeability
is lower than that predicted from in vitro experimental data. Conversely, for drugs (oxy-
codone and lacosamide) that attain their Tmax, similar to the concentrations in plasma, the
optimized BBB permeability is higher than the initial experimental value.

Table 3. Optimized BBB permeability values.

Drug Initial Caco-2 Permeability
(Papp) (cm/s)

Optimized
Permeability (PBBB)

(cm/s)
Ratio

(PBBB/Papp)
PSB in Rats

(ml/min)
PSB in Humans

(L/h)

Acetaminophen 31.6 × 10−6 [59] 11.11 × 10−6 0.35 0.179 5.98
Oxycodone 16.9 × 10−6 [31] 26.79 × 10−6 1.59 0.434 14.47
Lacosamide 1.916 × 10−7 [31] 18.8 × 10−6 98.12 0.305 10.15
Ibuprofen 53 × 10−6 [65] 35.13 × 10−6 0.66 0.57 18.97

Levetiracetam 22.8 × 10−6 [66] 1.52 × 10−6 0.07 0.024 0.818

Papp: apparent permeability, PBBB: permeability blood–brain barrier, PSB: permeability surface area products
between brain blood and brain mass.
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3.3. PBPK Model Development and Evaluation in Humans

The final PSB value as derived from Equation (1) is shown in Table 3. The system
parameters and equations are provided in Table S2, and all drug-specific parameters are
provided in Table S3. An overlay of the simulated versus observed plasma profiles of
both plasma and CNS concentrations for the drugs acetaminophen, oxycodone, ibuprofen,
lacosamide, and levetiracetam are shown in Figure 5. The GOF plots illustrate the alignment
between the predicted versus observed pharmacokinetic metrics, specifically AUC and
Cmax, as shown in Figure 6. Due to limited information relating to the dosing regimen of
levetiracetam [47] and the lack of longitudinal concentration–time data, the verification of
CSF concentrations of the model was performed based on the published ratio of plasma–
brain extracellular fluid (P:ECF) and plasma–cerebrospinal fluid (P:CSF). Considering that
levetiracetam crosses the BBB via passive diffusion, no non-linearity issues are expected
due to differences in the drug posology between studies. The mean reported values of
P–CSF and P–ECF were 1.14 and 4.37, respectively [47], which were compared with the
mean AUC ratios of P–CSF and P–ECF.

The GMFE values for AUClast and Cmax values for all studies in humans are shown in
Table 4. Across the comprehensive dataset of 20 samples, our predictions met the stringent
1.25-fold acceptance criterion for AUC and Cmax values in 20 samples (100%). The overall
GMFE for plasma was 1.10 for AUC and 1.17 for Cmax. Similarly, our model showed
a consistent accuracy within the CNS, yielding an overall GMFE of 1.10 for AUC and
1.11 for Cmax. Notably, all CNS data precisely adhered to the rigorous 1.25-fold criterion,
underscoring the robust performance of our model in predicting concentrations within
the CNS.

Table 4. Predicted and observed PK metrics of AUC and Cmax for various drugs in humans.

Drug Sample AUC_Pred AUC_Obs Cmax_Pred Cmax_Obs GMFE_AUC GMFE_Cmax

Acetaminophen Plasma 37.81 45.58 18.44 21.46 1.21 1.16

Oxycodone Plasma 201.14 195.01 96.24 77.92 1.03 1.24

Lacosamide Plasma 96.99 114.49 10.72 10.47 1.18 1.02

Ibuprofen Plasma 2568.01 2729.26 589.08 723.26 1.06 1.23

Levetiracetam Plasma 302.52 308.51 20.44 17.14 1.02 1.19

Maximum 1.21 1.24

Minimum 1.02 1.02

GMFE-Plasma 1.10 1.17

Acetaminophen CNS 40.59 42.11 6.72 6.04 1.04 1.11

Oxycodone CNS 137.77 170.05 22.35 25.6 1.23 1.15

Lacosamide CNS 96.55 113.63 9.37 8.55 1.18 1.10

Ibuprofen CNS 8.37 8.51 3.44 3.11 1.02 1.11

Levetiracetam * CNS P:ECF = 4.14
P:CSF = 1.05

P:ECF = 4.37
P:CSF = 1.14 - - 1.06 (ECF)

1.09 (CSF) -

Maximum 1.23 1.15

Minimum 1.02 1.10

GMFE-CNS 1.10 1.11

AUC (mg × h/L): acetaminophen, lacosamide and AUC (µg × h/L): oxycodone, ibuprofen. Cmax (mg/L):
acetaminophen, lacosamide and Cmax (µg/L): oxycodone, ibuprofen. * Levetiracetam-observed P–CSF (plasma–
cerebrospinal fluid) and P–ECF (plasma–extracellular fluid) ratios vs. predicted AUC P–CSF and P–ECF ratios.
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Figure 5. Simulated versus observed concentration profiles for plasma and CNS in humans. Panels
(A,C,E,G,I) represent the plasma concentrations, whereas panels (B,D,F,H,J) represent the CSF
concentrations for acetaminophen, oxycodone, lacosamide, ibuprofen, and levetiracetam, respectively.
The red solid line represents the simulated mean concentration profile, the gray shaded area represents
the simulated 5th to 95th percentile, and the black dashed lines represent the simulated maximum
and minimum. Blue dots represent the observed data from the respective studies: panel (A,B): Singla
et al. [29]; panel (C,D): Kokki et al. [41]; panel (E,F): May et al. [43]; panel (G,H): Brazier et al. [45];
panel (I): Rouits et al. [48]. * Only simulations are presented in panel (J), as no longitudinal data were
available. P–ECF (4.37) and P–CSF (1.14) ratios were used for qualification.
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4. Discussion

There is a need for qualified brain PBPK models that are able to predict the distribution
of drugs within the CNS. This task is non-trivial due to the lack of human data and clear
qualification standards. In order to overcome this data challenge, we developed and
qualified a brain PBPK model in rats in a stepwise manner; this model was then translated to
humans by focusing on five drugs (acetaminophen, oxycodone, lacosamide, ibuprofen and
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levetiracetam) that passively distribute into the brain [29–31,34]. The 4Brain PBPK model
was able to describe the data well based on the low values of the GMFEs of AUC and Cmax
both in plasma and CSF, which fall below the stringent1.25-fold criterion. In the current
methodology, data from rat neuropharmacokinetic studies along with the PBPK model
were utilized to optimize the BBB permeability value for the drugs in rats using the in vitro
permeability derived from Caco-2 cell lines as the initial input. The predictive capacity
of the optimized value of the BBB permeability obtained from rats was then evaluated to
predict CNS concentrations in humans. Therefore, the initial hurdle of accurately predicting
the brain exposure is overcome because there is no need for an empirical scaling factor to
account for the difference between Caco-2 experimental values, since the BBB permeability
is obtained from optimizing in vivo neuropharmacokinetic data. When comparing the
optimized BBB permeability values to experimental values, it was observed that using
Caco-2 cell experimental values in the PBPK model initially led to either overprediction or
underprediction of cerebrospinal fluid (CSF) concentrations. Since Caco-2 cells originate
from human colon carcinoma and have a high variability [67] associated with them, they
may not accurately represent the human blood–brain barrier (BBB). Due to fundamental
biological differences, the correlation between Caco-2 cell permeability and in vivo BBB
permeability was found to be very low [62]. To help overcome these differences, Fenneteau
et al. [68] used a scaling factor of 150 in a whole-body mouse PBPK, as suggested by
Pardridge [69] and coworkers for correlation of apparent permeability measured in bovine
brain capillary endothelial cells to in vivo data for a dataset of 13 passively permeable
drugs. For instance, in Table 3, the ratios of optimized vs. experimental permeability
values for drugs like acetaminophen (0.35), ibuprofen (0.66), and levetiracetam (0.06) were
lower, indicating a delay in the time taken to reach peak concentrations (Cmax) in the CSF
compared to plasma. Conversely, higher ratios were observed for drugs like oxycodone
(1.58) and lacosamide (98.12). This disparity may be attributed in part to the static nature
of Caco-2 cell experiments. In contrast, BBB cells in in vivo experiments are exposed
to shear stress induced by blood flow, which plays a crucial role in regulating barrier
function [70]. Overall, since in vitro methods are not better at predicting in vivo BBB
permeability [71–74], the current methodology of predicting the BBB from rat observations
is proposed. This dynamic aspect of using in vivo experimental data contributes to a
more accurate representation of drug permeability across the BBB and, subsequently, CNS
drug concentrations. The goal of this translation approach has practical applications in
drug development to study the pharmacokinetics of drugs at the target site of action in
the CNS. In the future, aligning with the FDA’s emphasis on replacing, reducing, and
refining reliance on animal testing, advancements such as employing microfluidic-based
in vitro models that incorporate stem cell-derived endothelial cells, along with primary
astrocytes, pericytes, and neurons, hold promising potential for more accurately predicting
blood–brain barrier (BBB) permeability [75].

Having a model platform that considers all aspects of BBB permeability can be chal-
lenging, and establishing this in one go is unrealistic. So, in this initial step, the current
work focuses exclusively on drugs which cross the BBB via passive transport, i.e., those that
are devoid of active transporters. The relevance of the BBB permeability value optimized
using rat neuropharmacokinetic data is supported by the scientific literature. Permeability-
limited drugs will have their transport rate affected by the drug itself (i.e., their permeability,
P) and by the surface area of the brain capillaries (S), with both characteristics being com-
bined in a single parameter, PS. The capillary surface area values reported in rats are
consistently in the 100–150 cm2/g brain range. A more detailed study showed that the
capillary surface area varies between brain regions, the highest value being obtained in
the cortical grey matter. Human data are broadly similar to rat data, with 100–200 cm2/g
brain, depending on the region considered. According to Karbowski [76], the fraction
of the capillary volume is invariant with respect to brain volume, which would indicate
a capillary surface area (expressed per gram or ml brain) conserved across species. The
non-P-gp substrate diazepam has a brain PS of 2.6 mL/min/g in human patients [77],
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which is indistinguishable from the value of 3.0 mL/min/g reported in rats [78]. This
finding confirms similar S values (once expressed per gram tissue) between rodents and
humans, assuming P is maintained throughout the species. A set of 21 diverse compounds
were tested for their brain capillary permeability PS in mice and rats, using in situ brain
perfusion [79]. The measured PS values were similar between the two species with only
one noticeable exception, vincristine, presumably because of bias due to active transport.
In another study, felbamate was found to have a broadly comparable brain PS in mouse,
rat, and rabbit (~0.20, 0.09, and 0.17 mL/min/g, respectively). The brain pharmacokinetics
of selected opioids has been measured in mouse and compared to clinical data [80]. The
values of the brain equilibration half-lives of the non-P-gp substrates alfentanyl, sulfentanyl,
and fentanyl were found to be remarkably analogous in mouse and humans. Additionally,
a strong interspecies correlation between unbound serum/plasma EC50 suggests that brain
distribution characteristics are similar between humans and mice [80,81]. These finding
would further confirm that PS values (mL/min/g) are conserved between the two species.
Taken collectively, all the data available so far suggest that rodent values of PS should be
appropriate for human PBPK modelling for drugs accessing the CNS via passive transport.

A CNS PBPK model initially developed by Westerhout et al. [30] for acetaminophen
used a rat model to predict clearance into the brain; this clearance is a product of the
permeability value (drug-specific) and surface area (system-specific). Predicting value
for both of these parameters combined into one value makes scaling of these parameters
to humans difficult, and hence makes predictions in the CNS less reliable. This model
was then further refined by Yamamoto et al. [82], and a final revision to this model by
Saleh et al. [83] was developed; still, this model accounted for only a unidirectional flow
in CSF compartments. This assumption was based on an earlier theory called “third
circulation” [84], which states that CSF is only produced by choroid plexus, and thus the
movement of drug in the CSF compartments was unidirectional. This assumption was
further challenged and corrected in the Lei-CNS 3.1 model to account for the bidirectional
CSF flow [85]. Thus, overall, among all the CNS PBPK models discussed in the literature,
the model by Vercheijden et al. [28] was chosen because it has been scaled from adults to
pediatric patients for acetaminophen, ibuprofen, naproxen, and meropenem over a wide age
range, which implies the model structure is robust. Moreover, this model can be employed
to incorporate various pathophysiological changes that occur in disease conditions which
alter the permeability of the BBB. Nevertheless, the authors used CSF concentrations in
humans to optimize the value of BBB permeability. The approach proposed here adds the
translational component to this CNS model platform, allowing us to derive concentrations
in the CNS site of action when no or very limited CNS concentrations are available in
humans for drugs that passively cross the BBB. Therefore, we expanded the application
to inform the selection of promising drug candidates using preclinical data as well as
assessing different dosing regimens and products for established drugs. The translation
of the PBPK model to rats was achieved by accounting for the differences between the
species physiology, the code for which is provided in the Supplementary File. The different
Kp methods used to predict the distribution of the drug have been also incorporated,
allowing the selection of the best model based on the compound type [53–57,86]. However,
it is noteworthy that the current model does not encompass drugs that traverse the BBB
via transporters, primarily due to limitations in transporter expression across different
species. Studies by Hoshi et al. [87] have shown a three-fold higher P-gp expression in the
human BBB as compared to the rodent BBB. In another study by Verscheijden et al. [31],
the researchers found a difference in Kpbrain ratios of ≥2-fold between human and mice
species. In our rat PBPK model for lacosamide, a drug efflux parameter at the BBB had
to be incorporated to effectively capture the CNS concentrations. On the contrary, this
efflux at the BBB was not incorporated for the human CNS PBPK model, wherein only the
permeability by passive diffusion was scaled, leading to predictions in the CNS that were
well within the range of 1.25-fold, indicating the lack of transporter effect in humans as
previously demonstrated and supported by very high oral bioavailability (~100%) [31–33].
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In humans, CSF drug concentrations are mainly available from pharmacokinetic trials,
due to the limitation of accessing other brain compartments. CSF data were thus used
to qualify the performance of this translational approach. CSF cannot be considered a
relevant compartment for antibiotics, antiepileptic, or analgesic drugs in which the concen-
tration in the parenchymal extracellular fluid is probably more important [85]. Likewise,
a concentration gradient exists between CSF and brain tissue, with the magnitude being
determined by the relation of CSF bulk flow [88]. This phenomenon is well-documented
in an example of quinolone antibiotics [89], which reached much lower concentrations in
brain ECF compared to CSF, due to the presence of highly efficient efflux transporters at
the BBB. Similarly, azidothymidine readily reached the CSF but showed negligible brain
uptake, consistent with brain efflux at the BBB [90]. However, such a difference among
the compartments is clearly seen in cases with involvement of transporters, and thus our
current model is limited to only passive permeability of drugs across the BBB. In case of
passive permeability, the assumption is that the drug is equally distributed in the brain,
but the drug concentration in the spinal CSF is driven by the CSF production rate, which is
the rate-limiting step. Thus, we must make the PBPK model more robust to validate the
CSF concentrations, make fluid accessible in humans in majority of cases, and make model
predictions of this concentration in other CNS regions. This is a reasonable consideration
based on the scientific literature in the area of PBPK modeling in the CNS [30,64]. In addi-
tion, for drugs in which homogeneous distribution in the brain can be considered (such as
acetaminophen and levetiracetam), concentrations in the ECF can be approximated using
the ECF volume. This assumption is taken from the Westerhout [30] brain model, where the
volume of the intracellular and extracellular fluid were fixed to the physiological volumes
based on total brain volume. As an example, for levetiracetam in rats, ECF concentrations
were used to optimize the BBB permeability. Before using this value of permeability in
humans, its validity was assessed using rat CSF concentrations from a different scientific
study [46]. Exposure in the rat CSF was predicted within a 1.25-fold range, thus supporting
the validity of this assumption for levetiracetam.

5. Conclusions

The four-compartment brain PBPK model platform demonstrated precise performance
in accurately predicting human CSF concentrations (within 1.25-fold) using the BBB perme-
ability value optimized from neuropharmacokinetic experiments in rats without requiring
any further fine-tuning, and it is thus considered qualified for this intended purpose.
These results underscore the effectiveness of the brain PBPK model for use within various
applications for predicting human CNS concentrations with consistent reliability.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics16020226/s1, Figure S1: Simulated versus observed
concentration profiles for plasma and CNS in rats; Figure S2: Simulated versus observed concentration
profiles in rats; Figure S3: Goodness-of-fit plots of predicted vs observed pharmacokinetic metrics
(AUC & Cmax) in plasma and CSF/ECF in rats; Table S1: Physiological parameters-Rat PBPK
model; Table S2: Physiological parameters-Human PBPK model; Table S3: Physicochemical and
Drug Specific Parameters for Acetaminophen, Oxycodone, Lacosamide, Ibuprofen & Levetiracetam.
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