Fetus Exposure to Drugs and Chemicals: A Holistic Overview on the Assessment of Their Transport and Metabolism across the Human Placental Barrier
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Placenta Anatomy and Function Characteristics Related to Placental Transfer and Metabolism Mechanisms
3.2. Evaluating Placental Transfer as a Method for Estimating Fetal Toxicity
3.2.1. In Vitro Studies
3.2.2. Ex Vivo Perfusion Techniques
3.2.3. Animal Studies
3.2.4. Human Studies
3.2.5. Analytical Techniques for Evaluating Xenobiotic Maternal and Fetal Exposure
3.3. Placental Transport Mechanisms
3.3.1. Active Transport
3.3.2. Passive Diffusion
3.4. Placental Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaufmann, P.; Frankl, H.G. Placental development. In Fetal and Neonatal Physiology; Polin, R.A., Fox, W.W., Abman, S.H., Eds.; Saunders: London, UK, 2006; pp. 85–97. [Google Scholar]
- Moeti, C.; Mulaudzi, F.M.; Rasweswe, M.M. The Disposal of Placenta among Indigenous Groups Globally: An Integrative Literature Review. Int. J. Reprod. Med. 2023, 2023, 6676809. [Google Scholar] [CrossRef]
- Guibourdenche, J.; Fournier, T.; Malassiné, A.; Evain-Brion, D. Development and hormonal functions of the human placenta. Folia Histochem. Cytobiol. 2009, 47, S35–S40. [Google Scholar] [CrossRef]
- Costa, M.A. The endocrine function of human placenta: An overview. Reprod Biomed Online 2016, 32, 14–43. [Google Scholar] [CrossRef]
- Corrales, P.; Vidal-Puig, A.; Medina-Gómez, G. Obesity and pregnancy, the perfect metabolic storm. Eur. J. Clin. Nutr. 2021, 75, 1723–1734. [Google Scholar] [CrossRef]
- Wu, F.; Tian, F.J.; Lin, Y.; Xu, W.M. Oxidative Stress: Placenta Function and Dysfunction. Am. J. Reprod. Immunol. 2016, 76, 258–271. [Google Scholar] [CrossRef]
- Liu, D.; Gao, Q.; Wang, Y.; Xiong, T. Placental dysfunction: The core mechanism for poor neurodevelopmental outcomes in the offspring of preeclampsia pregnancies. Placenta 2022, 126, 224–232. [Google Scholar] [CrossRef]
- Manna, C.; Lacconi, V.; Rizzo, G.; De Lorenzo, A.; Massimiani, M. Placental Dysfunction in Assisted Reproductive Pregnancies: Perinatal, Neonatal and Adult Life Outcomes. Int. J. Mol. Sci. 2022, 23, 659. [Google Scholar] [CrossRef]
- Burton, G.J.; Fowden, A.L.; Thornburg, K.L. Placental Origins of Chronic Disease. Physiol. Rev. 2016, 96, 1509–1565. [Google Scholar] [CrossRef]
- Shuey, D.; Kim, J.H. Overview: Developmental toxicology: New directions. Birth Defects Res. B Dev. Reprod. Toxicol. 2011, 92, 381–383. [Google Scholar] [CrossRef]
- Younglai, E.V.; Wu, Y.J.; Foster, W.G. Reproductive toxicology of environmental toxicants: Emerging issues and concerns. Curr. Pharm. Des. 2007, 13, 3005–3019. [Google Scholar] [CrossRef]
- Mao, Q.; Chen, X. An update on placental drug transport and its relevance to fetal drug exposure. Med. Rev. 2022, 2, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Makris, S.L.; Kim, J.H.; Ellis, A.; Faber, W.; Harrouk, W.; Lewis, J.M.; Paule, M.G.; Seed, J.; Tassinari, M.; Tyl, R. Current and future needs for developmental toxicity testing. Birth Defects Res. B Dev. Reprod. Toxicol. 2011, 92, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.; Croce, L.; Carlier, L.; Cosson, E.; Rotondi, M. Thyroid dysfunction during gestation and gestational diabetes mellitus: A complex relationship. J. Endocrinol. Investig. 2023, 46, 1737–1759. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.; Better, M.; Abbasi, S.; Zulfiqar, F.; Shapiro, R.; Ensign, L.M. Nanomedicine for Maternal and Fetal Health. Small 2023, 10, e2303682. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E. The human placenta: New perspectives on its formation and function during early pregnancy. Proc. Biol. Sci. 2023, 290, 20230191. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A.L.; Forehead, A.J.; Sferruzzi-Perri, A.N.; Burton, G.J.; Vaughan, O.R. Review: Endocrine regulation of placental phenotype. Placenta 2015, 36 (Suppl. S1), S50–S59. [Google Scholar] [CrossRef] [PubMed]
- Ferenczy, A. Anatomy and histology of the uterine corpus. In Blaustein’s Pathology of the Female Genital Tract; Kurman, R.J., Ed.; Springer: Amsterdam, The Netherlands, 1994; pp. 327–366. [Google Scholar]
- Renaud, S.J.; Jeyarajah, M.J. How trophoblasts fuse: An in-depth look into placental syncytiotrophoblast formation. Cell. Mol. Life Sci. 2022, 79, 433. [Google Scholar] [CrossRef] [PubMed]
- Meher, A.; Sundrani, D.; Joshi, S. Maternal nutrition influences angiogenesis in the placenta through peroxisome proliferator activated receptors: A novel hypothesis. Mol. Reprod. Dev. 2015, 82, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Sundrani, D.P.; Karkhanis, A.R.; Joshi, S.R. Peroxisome Proliferator-Activated Receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. Syst. Biol. Reprod. Med. 2021, 67, 24–41. [Google Scholar] [CrossRef]
- Clark, N.C.; Pru, C.A.; Pru, J.K. Novel Regulators of Hemodynamics in the Pregnant Uterus. Prog. Mol. Biol. Transl. Sci. 2017, 145, 181–216. [Google Scholar] [CrossRef]
- Sun, X.; Shen, J.; Wang, L. Insights into the role of placenta thickness as a predictive marker of perinatal outcome. J. Int. Med. Res. 2021, 49, 300060521990969. [Google Scholar] [CrossRef]
- Massri, N.; Loia, R.; Sones, J.L.; Arora, R.; Douglas, N.C. Vascular changes in the cycling and early pregnant uterus. JCI Insight 2023, 8, e163422. [Google Scholar] [CrossRef]
- Ciallella, H.L.; Russo, D.P.; Sharma, S.; Li, Y.; Sloter, E.; Sweet, L.; Huang, H.; Zhu, H. Predicting Prenatal Developmental Toxicity Based On the Combination of Chemical Structures and Biological Data. Environ. Sci. Technol. 2022, 56, 5984–5998. [Google Scholar] [CrossRef]
- Myren, M.; Mose, T.; Mathiesen, L.; Knudsen, L.E. The human placenta-an alternative for studying foetal exposure. Toxicol. Vitr. 2007, 21, 1332–1340. [Google Scholar] [CrossRef]
- Koren, G.; Ornoy, A. The role of the placenta in drug transport and fetal drug exposure. Expert Rev. Clin. Pharmacol. 2018, 11, 373–385. [Google Scholar] [CrossRef]
- Huang, X.; Lüthi, M.; Ontsouka, E.C.; Kallol, S.; Baumann, M.U.; Surbek, D.V.; Albrecht, C. Establishment of a confluent monolayer model with human primary trophoblast cells: Novel insights into placental glucose transport. Mol. Hum. Reprod. 2016, 22, 442–456. [Google Scholar] [CrossRef]
- Russo, D.P.; Strickland, J.; Karmaus, A.L.; Wang, W.; Shende, S.; Hartung, T.; Aleksunes, L.M.; Zhu, H. Nonanimal models for acute toxicity evaluations: Applying data-driven profiling and read-across. Environ. Health Perspect. 2019, 127, 47001. [Google Scholar] [CrossRef]
- James, J.L.; Lissaman, A.; Nursalim, Y.N.S.; Chamley, L.W. Modelling human placental villous development: Designing cultures that reflect anatomy. Cell. Mol. Life Sci. 2022, 79, 384. [Google Scholar] [CrossRef]
- Karvas, R.M.; David, L.; Theunissen, T.W. Accessing the human trophoblast stem cell state from pluripotent and somatic cells. Cell. Mol. Life Sci. 2022, 79, 604. [Google Scholar] [CrossRef]
- Yañez, M.J.; Leiva, A. Human Placental Intracellular Cholesterol Transport: A Focus on Lysosomal and Mitochondrial Dysfunction and Oxidative Stress. Antioxidants 2022, 11, 500. [Google Scholar] [CrossRef]
- Sullivan, M.H. Endocrine cell lines from the placenta. Mol Cell Endocrinol. 2004, 228, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Almada, M.; Alves, P.; Fonseca, B.M.; Carvalho, F.; Queirós, C.R.; Gaspar, H.; Amaral, C.; Teixeira, N.A.; Correia-da-Silva, G. Synthetic cannabinoids JWH-018, JWH-122, UR-144 and the phytocannabinoid THC activate apoptosis in placental cells. Toxicol. Lett. 2020, 319, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; van Ravenzwaay, B.; Rietjens, I.M.; Louisse, J. Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds. Arch. Toxicol. 2013, 87, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Arumugasaamy, N.; Rock, K.D.; Kuo, C.Y.; Bale, T.L.; Fisher, J.P. Microphysiological systems of the placental barrier. Adv. Drug Deliv. Rev. 2020, 161–162, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Yang, H.; Dallmann, A. Antidepressants and Antipsychotics in Human Pregnancy: Transfer Across the Placenta and Opportunities for Modeling Studies. J. Clin. Pharmacol. 2022, 62 (Suppl. S1), S115–S128. [Google Scholar] [CrossRef] [PubMed]
- Tekkatte, C.; Lindsay, S.A.; Duggan, E.; Castro-Martínez, A.; Hakim, A.; Saldana, I.; Zhang, Y.; Zhou, J.; Sebastian, R.; Liu, Y.; et al. Identification of optimal conditions for human placental explant culture and extracellular vesicle release. iScience 2023, 26, 108046. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xie, Y.; Yan, M.; Pan, Q.; Liang, Y.; Sun, X. Colchicine causes prenatal cell toxicity and increases tetraploid risk. BMC Pharmacol. Toxicol. 2019, 20, 66. [Google Scholar] [CrossRef] [PubMed]
- Challier, J.C.; D’Athis, P.; Guerre-Millo, M.; Nandakumaran, M. Flow-dependent transfer of antipyrine in the human placenta in vitro. Reprod. Nutr. Dev. 1983, 23, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, G.V.; Rapp, A. Human placenta as a ‘dual’ biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 1: Physiology, function and sampling of placenta for elemental characterisation. Sci. Total Environ. 2001, 280, 195–206. [Google Scholar] [CrossRef]
- Myllynen, P.; Vähäkangas, K. Placental transfer and metabolism: An overview of the experimental models utilizing human placental tissue. Toxicol. Vitr. 2013, 27, 507–512. [Google Scholar] [CrossRef]
- Tetro, N.; Moushaev, S.; Rubinchik-Stern, M.; Eyal, S. The Placental Barrier: The Gate and the Fate in Drug Distribution. Pharm. Res. 2018, 35, 71. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.M.; Karttunen, V.; Huuskonen, P.; Huovinen, M.; Auriola, S.; Vähäkangas, K. Transplacental transfer and metabolism of diuron in human placenta. Toxicol. Lett. 2018, 295, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Albrecht, C.; Ahmed, M.S.; Broekhuizen, M.; Aengenheister, L.; Buerki-Thurnherr, T.; Danser, A.H.J.; Gil, S.; Hansson, S.R.; Greupink, R.; et al. Ex vivo dual perfusion of an isolated human placenta cotyledon: Towards protocol standardization and improved inter-centre comparability. Placenta 2022, 126, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Conings, S.; Amant, F.; Annaert, P.; Van Calsteren, K. Integration and validation of the ex vivo human placenta perfusion model. J. Pharmacol. Toxicol. Methods 2017, 8, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.M. Animal models of human pregnancy and placentation: Alternatives to the mouse. Reproduction 2020, 160, R129–R143. [Google Scholar] [CrossRef]
- Enders, A.C.; Carter, A.M. What can comparative studies of placental structure tell us? A review. Placenta 2004, 25 (Suppl. A), S3–S9. [Google Scholar] [CrossRef] [PubMed]
- de Barros Leite Albuquerque, L.; Dal Belo, C.A.; dos Santos, M.G.; Lopes, P.S.; Gerenutti, M.; Oshima-Franco, Y. Assessment of cytotoxicity, fetotoxicity, and teratogenicity of Plathymenia reticulata Benth Barks aqueous extract. Biomed. Res. Int. 2013, 2013, 128594. [Google Scholar] [CrossRef] [PubMed]
- Kilanowicz, A.; Sitarek, K.; Stragierowicz, J.; Klimczak, M.; Bruchajzer, E. Prenatal toxicity and maternal-fetal distribution of 1,3,5,8-tetrachloronaphthalene (1,3,5,8-TeCN) in Wistar rats. Chemosphere 2019, 226, 75–84. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, X.; Fei, W.; Xin, Y.; Zhang, M.; Yao, Y.; Zhao, Y.; Zheng, C.; Sun, D. Advance in placenta drug delivery: Concern for placenta-originated disease therapy. Drug Deliv. 2023, 30, 2184315. [Google Scholar] [CrossRef]
- Dallmann, A.; Liu, X.I.; Burckart, G.J.; van den Anker, J. Drug Transporters Expressed in the Human Placenta and Models for Studying Maternal-Fetal Drug Transfer. J. Clin. Pharmacol. 2019, 59 (Suppl. S1), S70–S81. [Google Scholar] [CrossRef]
- Geisler, H.C.; Safford, H.C.; Mitchell, M.J. Rational Design of Nanomedicine for Placental Disorders: Birthing a New Era in Women’s Reproductive Health. Small 2023, 16, e2300852. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, N.; Kaitu’u-Lino, T.; Harris, L.; Tong, S.; Hannan, N. Nanoparticles in pregnancy: The next frontier in reproductive therapeutics. Hum. Reprod. Update 2021, 27, 280–304. [Google Scholar] [CrossRef] [PubMed]
- Di Bona, K.R.; Xu, Y.; Ramirez, P.A.; DeLaine, J.; Parker, C.; Bao, Y.; Rasco, J.F. Surface charge and dosage dependent potential developmental toxicity and biodistribution of iron oxide nanoparticles in pregnant CD-1 mice. Reprod. Toxicol. 2014, 50, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Pang, Z.J.; Yu, Y.H. Regulation of trophoblast invasion: The role of matrix metalloproteinases. Rev. Obstet. Gynecol. 2012, 5, e137–e143. [Google Scholar] [PubMed]
- Masoura, S.; Kalogiannidis, I.A.; Gitas, G.; Goutsioulis, A.; Koiou, E.; Athanasiadis, A.; Vavatsi, N. Biomarkers in pre-eclampsia: A novel approach to early detection of the disease. J. Obstet. Gynaecol. 2012, 32, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Maurer, H.H. Hyphenated high-resolution mass spectrometry-the „all-in-one” device in analytical toxicology? Anal. Bioanal. Chem. 2021, 413, 2303–2309. [Google Scholar] [CrossRef] [PubMed]
- Maurer, H.H. Mass Spectrometry for Research and Application in Therapeutic Drug Monitoring or Clinical and Forensic Toxicology. Ther. Drug Monit. 2018, 40, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.M.; McDaniel, T.J.; Fedick, P.W.; Mulligan, C.C. The current role of mass spectrometry in forensics and future prospects. Anal. Methods 2020, 12, 3974–3997. [Google Scholar] [CrossRef]
- Liu, L.; Wheeler, S.E.; Venkataramanan, R.; Rymer, J.A.; Pizon, A.F.; Lynch, M.J.; Tamama, K. Newly Emerging Drugs of Abuse and Their Detection Methods: An ACLPS Critical Review. Am. J. Clin. Pathol. 2018, 149, 105–116. [Google Scholar] [CrossRef]
- Cai, D.; Li, Q.Q.; Chu, C.; Wang, S.Z.; Tang, Y.T.; Appleton, A.A.; Qiu, R.L.; Yang, B.Y.; Hu, L.W.; Dong, G.H.; et al. High trans-placental transfer of perfluoroalkyl substances alternatives in the matched maternal-cord blood serum: Evidence from a birth cohort study. Sci. Total Environ. 2020, 705, 135885. [Google Scholar] [CrossRef]
- Matovu, H.; Ssebugere, P.; Sillanpää, M. Prenatal exposure levels of polybrominated diphenyl ethers in mother-infant pairs and their transplacental transfer characteristics in Uganda (East Africa). Environ. Pollut. 2020, 258, 113723. [Google Scholar] [CrossRef] [PubMed]
- Faure Bardon, V.; Peytavin, G.; Lê, M.P.; Guilleminot, T.; Elefant, E.; Stirnemann, J.; Leruez-Ville, M.; Ville, Y. Placental transfer of Letermovir & Maribavir in the ex vivo human cotyledon perfusion model. New perspectives for in utero treatment of congenital cytomegalovirus infection. PLoS ONE 2020, 15, e0232140. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cruz, T.; Álvarez-Silvares, E.; Domínguez-Vigo, P.; Simal-Gándara, J.; Martínez-Carballo, E. Prenatal exposure to organic pollutants in northwestern Spain using non-invasive matrices (placenta and meconium). Sci. Total Environ. 2020, 731, 138341. [Google Scholar] [CrossRef] [PubMed]
- Schakenraad, L.; Van Es, M.J.; Meerman, J.J.; Van den Broek, P.H.H.; Van Hove, H.; Van Drongelen, J.; Eliesen, G.A.M.; Russel, F.G.M.; Greupink, R. Transfer of uremic solutes across the human term placenta: An ex vivo study in the dual-side perfused cotyledon. Placenta 2021, 104, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Silvares, E.; Fernández-Cruz, T.; Domínguez-Vigo, P.; Rubio-Cid, P.; Seoane-Pillado, T.; Martínez-Carballo, E. Association between placenta concentrations polybrominated and polychlorinated biphenyls and gestational diabetes mellitus: A case-control study in northwestern Spain. Environ. Sci. Pollut. Res. Int. 2021, 28, 10292–10301. [Google Scholar] [CrossRef] [PubMed]
- Noergaard, M.; Jensen, P.B.; Resendal Gotfredsen, D.; Bergholt, T.; Trærup Andersen, J.; Mathiesen, L. Therapeutic concentration of ciprofloxacin and transfer across the human term placenta. Am. J. Obstet. Gynecol. 2021, 225, 670.e1–670.e9. [Google Scholar] [CrossRef] [PubMed]
- Momper, J.D.; Wang, J.; Stek, A.; Shapiro, D.E.; Scott, G.B.; Paul, M.E.; Febo, I.L.; Burchett, S.; Smith, E.; Chakhtoura, N.; et al. Pharmacokinetics of darunavir and cobicistat in pregnant and postpartum women with HIV. AIDS 2021, 35, 1191–1199. [Google Scholar] [CrossRef]
- Gély, C.A.; Lacroix, M.Z.; Morin, M.; Vayssière, C.; Gayrard, V.; Picard-Hagen, N. Comparison of the materno-fetal transfer of fifteen structurally related bisphenol analogues using an ex vivo human placental perfusion model. Chemosphere 2021, 276, 130213. [Google Scholar] [CrossRef]
- Momper, J.D.; Wang, J.; Stek, A.; Shapiro, D.E.; Powis, K.M.; Paul, M.E.; Badell, M.L.; Browning, R.; Chakhtoura, N.; Denson, K.; et al. Pharmacokinetics of Atazanavir Boosted With Cobicistat in Pregnant and Postpartum Women With HIV. J. Acquir. Immune Defic. Syndr. 2022, 89, 303–309. [Google Scholar] [CrossRef]
- Sangkhae, V.; Nemeth, E. Quantitating Iron Transport across the Mouse Placenta In Vivo using Nonradioactive Iron Isotopes. J. Vis. Exp. 2022, 183, 63378. [Google Scholar] [CrossRef]
- Yang, L.; Lin, I.H.; Lin, L.C.; Dalley, J.W.; Tsai, T.H. Biotransformation and transplacental transfer of the anti-viral remdesivir and predominant metabolite, GS-441524 in pregnant rats. EBioMedicine 2022, 81, 104095. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Shao, L.X.; Liu, Y.; Cui, S.W.; Wang, X.; Lu, G.L.; Wang, X.; Jin, Y.H. Target analysis and suspect screening of per- and polyfluoroalkyl substances in paired samples of maternal serum, umbilical cord serum, and placenta near fluorochemical plants in Fuxin, China. Chemosphere 2022, 307 Pt 1, 135731. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Lin, I.H.; Hsueh, T.Y.; Dalley, J.W.; Tsai, T.H. Pharmacokinetics and transplacental transfer of codeine and codeine metabolites from Papaver somniferum L. J. Ethnopharmacol. 2022, 298, 115623. [Google Scholar] [CrossRef] [PubMed]
- Lintao, R.C.V.; Kammala, A.K.; Vora, N.; Yaklic, J.L.; Menon, R. Fetal membranes exhibit similar nutrient transporter expression profiles to the placenta. Placenta 2023, 135, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.S.; Kumar, S. Placental Fatty Acid Metabolism and Transport in a Rat Model of Gestational Diabetes Mellitus. J. Womens Health Dev. 2023, 6, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Peng, W.Y.; Lee, W.H.; Lin, T.Y.; Yang, M.H.; Dalley, J.W.; Tsai, T.H. Transfer and biotransformation of the COVID-19 prodrug molnupiravir and its metabolite β-D-N4-hydroxycytidine across the blood-placenta barrier. EBioMedicine 2023, 95, 104748. [Google Scholar] [CrossRef] [PubMed]
- Kayembe-Kitenge, T.; Nkulu, C.B.L.; Musanzayi, S.M.; Kasole, T.L.; Ngombe, L.K.; Obadia, P.M.; Van Brusselen, D.; Mukoma, D.K.W.; Musambo, T.M.; Mulangu, A.M.; et al. Transplacental transfer of cobalt: Evidence from a study of mothers and their neonates in the African Copperbelt. J. Trace Elem. Med. Biol. 2023, 80, 127294. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Miao, J.K.; Cai, M.; Gan, L.; Zhao, H.Q.; Lei, X.F.; Yu, J. Anesthetic drug concentrations and placental transfer rate in fetus between term and preterm infants, twins, and singletons. Front. Pharmacol. 2023, 14, 1213734. [Google Scholar] [CrossRef]
- Ding, A.; Wan, H.; Peng, J.; Wang, H.; Zhu, S.; Dong, X. Role of placental barrier on trace element transfer in maternal fetal system and hypertensive disorders complicating pregnancy and gestational diabetes mellitus. BMC Pregnancy Childbirth 2023, 23, 867. [Google Scholar] [CrossRef]
- Yamashita, M.; Markert, U.R. Overview of Drug Transporters in Human Placenta. Int. J. Mol. Sci. 2021, 22, 13149. [Google Scholar] [CrossRef]
- Joshi, A.A.; Vaidya, S.S.; St-Pierre, M.V.; Mikheev, A.M.; Desino, K.E.; Nyandege, A.N.; Audus, K.L.; Unadkat, J.D.; Gerk, P.M. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance. Pharm. Res. 2016, 33, 2847–2878. [Google Scholar] [CrossRef] [PubMed]
- Aengenheister, L.; Favaro, R.R.; Morales-Prieto, D.M.; Furer, L.A.; Gruber, M.; Wadsack, C.; Markert, U.R.; Buerki-Thurnherr, T. Research on nanoparticles in human perfused placenta: State of the art and perspectives. Placenta 2021, 104, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, X. Contributions of Drug Transporters to Blood-Placental Barrier. Adv. Exp. Med. Biol. 2019, 1141, 505–548. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, M.; Ieiri, I.; Nagata, N.; Inoue, K.; Ito, S.; Kanamori, Y.; Takahashi, M.; Kurata, Y.; Kigawa, J.; Higuchi, S.; et al. Expression of P-glycoprotein in human placenta: Relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J. Pharmacol. Exp. Ther. 2001, 297, 1137–1143. [Google Scholar] [PubMed]
- Prouillac, C.; Lecoeur, S. The role of the placenta in fetal exposure to xenobiotics: Importance of membrane transporters and human models for transfer studies. Drug Metab. Dispos. 2010, 38, 1623–1635. [Google Scholar] [CrossRef] [PubMed]
- Ceccaldi, P.F.; Gavard, L.; Mandelbrot, L.; Rey, E.; Farinotti, R.; Treluyer, J.M.; Gil, S. Functional role of p-glycoprotein and binding protein effect on the placental transfer of lopinavir/ritonavir in the ex vivo human perfusion model. Obstet. Gynecol. Int. 2009, 2009, 726593. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Juvale, I.I.; Abdul Hamid, A.A.; Abd Halim, K.B.; Che Has, A.T. P-glycoprotein: New insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022, 8, e09777. [Google Scholar] [CrossRef] [PubMed]
- Mackeen, A.D.; Seibel-Seamon, J.; Muhammad, J.; Baxter, J.K.; Berghella, V. Tocolytics for preterm premature rupture of membranes. Cochrane Database Syst. Rev. 2014, 27, CD007062. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, L.; Ceccaldi, P.F.; Duro, D.; Lê, M.; Pencolé, L.; Peytavin, G. Placental transfer and tissue accumulation of dolutegravir in the ex vivo human cotyledon perfusion model. PLoS ONE 2019, 14, e0220323. [Google Scholar] [CrossRef]
- Taggi, V.; Riera Romo, M.; Piquette-Miller, M.; Meyer Zu Schwabedissen, H.E.; Neuhoff, S. Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics 2022, 14, 1376. [Google Scholar] [CrossRef]
- Cole, S.P. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J. Biol. Chem. 2014, 289, 30880–30888. [Google Scholar] [CrossRef] [PubMed]
- Szafraniec, M.J.; Szczygieł, M.; Urbanska, K.; Fiedor, L. Determinants of the activity and substrate recognition of breast cancer resistance protein (ABCG2). Drug Metab. Rev. 2014, 46, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Nigam, K.B.; Date, R.C.; Bush, K.T.; Springer, S.A.; Saier, M.H., Jr.; Wu, W.; Nigam, S.K. Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs. PLoS ONE 2015, 10, e0140569. [Google Scholar] [CrossRef] [PubMed]
- Engelhart, D.C.; Granados, J.C.; Shi, D.; Saier, M.H., Jr.; Baker, M.E.; Abagyan, R.; Nigam, S.K. Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. Int. J. Mol. Sci. 2020, 21, 1791. [Google Scholar] [CrossRef] [PubMed]
- Gyimesi, G.; Hediger, M.A. Transporter-Mediated Drug Delivery. Molecules 2023, 28, 1151. [Google Scholar] [CrossRef] [PubMed]
- Adu-Gyamfi, E.A.; Rosenfeld, C.S.; Tuteja, G. The impact of bisphenol A on the placenta. Biol. Reprod. 2022, 106, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Akbaraly, J.P.; Leng, J.J.; Bozler, G.; Seydel, J.K. Quantitative relationship between tranplacental transfer physicochemical properties of a series of heterogenous drugs. In Proceeding of the Fifth European Symposium on Quantitative Structure-Activity Relationships, Federal Republic of Germany, Bad Segeberg, Germany, 1984; VCH, Verlagsgeselischaft: Weinheim, Germany, 1985; pp. 313–317. [Google Scholar]
- Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug. Deliv. Rev. 2015, 86, 2–10. [Google Scholar] [CrossRef]
- Freriksen, J.J.M.; van Seyen, M.; Judd, A.; Gibb, D.M.; Collins, I.J.; Greupink, R.; Russel, F.G.M.; Drenth, J.P.H.; Colbers, A.; Burger, D.M. Review article: Direct-acting antivirals for the treatment of HCV during pregnancy and lactation—Implications for maternal dosing, foetal exposure, and safety for mother and child. Aliment Pharmacol. Ther. 2019, 50, 738–750. [Google Scholar] [CrossRef]
- Viel-Theriault, I.; Fell, D.B.; Grynspan, D.; Redpath, S.; Thampi, N. The transplacental passage of commonly used intrapartum antibiotics and its impact on the newborn management: A narrative review. Early Hum. Dev. 2019, 135, 6–10. [Google Scholar] [CrossRef]
- Pollex, E.K.; Feig, D.S.; Koren, G. Oral hypoglycemic therapy: Understanding the mechanisms of transplacental transfer. J. Matern. Fetal Neonatal. Med. 2010, 23, 224–228. [Google Scholar] [CrossRef]
- Giaginis, C.; Tsantili-Kakoulidou, A.; Theocharis, S. Assessing drug transport across the human placental barrier: From in vivo and in vitro measurements to the ex vivo perfusion method and in silico techniques. Curr. Pharm. Biotechnol. 2011, 12, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, M.; Madden, J.C.; Rowe, P.H.; Cronin, M.T. Structure-based modelling in reproductive toxicology: (Q)SARs for the placental barrier. SAR QSAR Environ. Res. 2007, 18, 57–76. [Google Scholar] [CrossRef] [PubMed]
- Giaginis, C.; Zira, A.; Theocharis, S.; Tsantili-Kakoulidou, A. Application of quantitative structure-activity relationships for modeling drug and chemical transport across the human placenta barrier: A multivariate data analysis approach. J. Appl. Toxicol. 2009, 29, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Giaginis, C.; Zira, A.; Theocharis, S.; Tsantili-Kakoulidou, A. Simple physicochemical properties as effective filters for risk estimation of drug transport across the human placental barrier. Rev. Clin. Pharmacol. Pharmacokin. (Int. Ed.) 2008, 22, 146–148. [Google Scholar]
- Pariente, G.; Leibson, T.; Carls, A.; Adams-Webber, T.; Ito, S.; Koren, G. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review. PLoS Med. 2016, 13, e1002160. [Google Scholar] [CrossRef] [PubMed]
- Hodel, E.M.; Marzolini, C.; Waitt, C.; Rakhmanina, N. Pharmacokinetics, Placental and Breast Milk Transfer of Antiretroviral Drugs in Pregnant and Lactating Women Living with HIV. Curr. Pharm. Des. 2019, 25, 556–576. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Bertagnolli, L.N.; Boulton, D.W.; Coppola, P. A Literature Review of Changes in Phase II Drug-Metabolizing Enzyme and Drug Transporter Expression during Pregnancy. Pharmaceutics 2023, 15, 2624. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Cheng, G.; Huang, L.; Chen, D.; Tao, Y.; Pan, Y.; Hao, H.; Wu, Q.; Wan, D.; et al. High risk of embryo-fetal toxicity: Placental transfer of T-2 toxin and its major metabolite HT-2 toxin in BeWo cells. Toxicol. Sci. 2014, 137, 168–178. [Google Scholar] [CrossRef]
- El-Dairi, R.; Rysä, J.; Storvik, M.; Pasanen, M.; Huuskonen, P. Aflatoxin B1 targeted gene expression profiles in human placental primary trophoblast cells. Curr. Res. Toxicol. 2022, 3, 100082. [Google Scholar] [CrossRef]
- Piasek, M.; Škrgatić, L.; Sulimanec, A.; Orct, T.; Sekovanić, A.; Kovačić, J.; Katić, A.; Branović Čakanić, K.; Pizent, A.; Brajenović, N.; et al. Effects of Maternal Cigarette Smoking on Trace Element Levels and Steroidogenesis in the Maternal-Placental-Fetal Unit. Toxics 2023, 11, 714. [Google Scholar] [CrossRef]
- Elshenawy, S.; Pinney, S.E.; Stuart, T.; Doulias, P.T.; Zura, G.; Parry, S.; Elovitz, M.A.; Bennett, M.J.; Bansal, A.; Strauss, J.F.; et al. The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int. J. Mol. Sci. 2020, 21, 1043. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.M.; Huuskonen, P.; Juvonen, R.; Sahlman, H.; Repo, J.; Myöhänen, K.; Myllynen, P.; Woo, C.J.; Karttunen, V.; Vähäkangas, K. Activities of metabolizing enzymes in human placenta. Toxicol. Lett. 2020, 326, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.L.; Bailey, B.; Khraisha, N. The pathophysiology of smoking during pregnancy: A systems biology approach. Front. Biosci. 2014, 6, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Partanen, H.A.; El-Nezami, H.S.; Leppänen, J.M.; Myllynen, P.K.; Woodhouse, H.J.; Vähäkangas, K.H. Aflatoxin B1 transfer and metabolism in human placenta. Toxicol. Sci. 2010, 113, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Paakki, P.; Stockmann, H.; Kantola, M.; Wagner, P.; Lauper, U.; Huch, R.; Elovaara, E.; Kirkinen, P.; Pasanen, M. Maternal drug abuse and human term placental xenobiotic and steroid metabolizing enzymes in vitro. Environ. Health Perspect. 2000, 108, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Collier, A.C.; Tingle, M.D.; Paxton, J.W.; Mitchell, M.D.; Keelan, J.A. Metabolizing enzyme localization and activities in the first trimester human placenta: The effect of maternal and gestational age, smoking and alcohol consumption. Hum. Reprod. 2002, 17, 2564–2572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheng, X.; Lei, B.; Zhang, G.; Bi, Y.; Yu, Y. A review of the transplacental transfer of persistent halogenated organic pollutants: Transfer characteristics, influential factors, and mechanisms. Environ. Int. 2021, 146, 106224. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C.E.; Möller, L.; Paakki, P.; Kantola, M.; Stockmann, H.; Purkunen, R.; Wagner, P.; Lauper, U.; Kaha, M.; Elovaara, E.; et al. DNA adducts in human placenta as biomarkers for environmental pollution, analysed by the (32)P-HPLC method. Biomarkers 2000, 5, 182–191. [Google Scholar] [CrossRef]
- Fucic, A.; Guszak, V.; Mantovani, A. Transplacental exposure to environmental carcinogens: Association with childhood cancer risks and the role of modulating factors. Reprod. Toxicol. 2017, 72, 182–190. [Google Scholar] [CrossRef]
- Botsivali, M.; Kyrtopoulos, S.A. Transplacental exposure to carcinogens and risks to children: Evidence from biomarker studies and the utility of omic profiling. Arch. Toxicol. 2019, 93, 833–857. [Google Scholar] [CrossRef]
- Weyrich, A.; Joel, M.; Lewin, G.; Hofmann, T.; Frericks, M. Review of the state of science and evaluation of currently available in silico prediction models for reproductive and developmental toxicity: A case study on pesticides. Birth Defects Res. 2022, 114, 812–842. [Google Scholar] [CrossRef] [PubMed]
- Tcheremenskaia, O.; Benigni, R. Toward regulatory acceptance and improving the prediction confidence of in silico approaches: A case study of genotoxicity. Expert. Opin. Drug Metab. Toxicol. 2021, 17, 987–1005. [Google Scholar] [CrossRef] [PubMed]
- Achary, P.G.R. Applications of Quantitative Structure-Activity Relationships (QSAR) based Virtual Screening in Drug Design: A Review. Mini Rev. Med. Chem. 2020, 20, 1375–1388. [Google Scholar] [CrossRef] [PubMed]
- Novic, M.; Vracko, M. QSAR models for reproductive toxicity and endocrine disruption activity. Molecules 2010, 15, 1987–1999. [Google Scholar] [CrossRef] [PubMed]
- Polishchuk, P. Interpretation of Quantitative Structure-Activity Relationship Models: Past, Present, and Future. J. Chem. Inf. Model. 2017, 57, 2618–2639. [Google Scholar] [CrossRef] [PubMed]
- Long, A. Drug metabolism in silico—The knowledge-based expert system approach. Historical perspectives and current strategies. Drug Discov. Today Technol. 2013, 10, e147–e153. [Google Scholar] [CrossRef] [PubMed]
- Hudson, R.E.; Metz, T.D.; Ward, R.M.; McKnite, A.M.; Enioutina, E.Y.; Sherwin, C.M.; Watt, K.M.; Job, K.M. Drug exposure during pregnancy: Current understanding and approaches to measure maternal-fetal drug exposure. Front. Pharmacol. 2023, 14, 1111601. [Google Scholar] [CrossRef] [PubMed]
- Chaphekar, N.; Dodeja, P.; Shaik, I.H.; Caritis, S.; Venkataramanan, R. Maternal-Fetal Pharmacology of Drugs: A Review of Current Status of the Application of Physiologically Based Pharmacokinetic Models. Front. Pediatr. 2021, 9, 733823. [Google Scholar] [CrossRef]
- Vaughan, O.R.; Fowden, A.L. Placental metabolism: Substrate requirements and the response to stress. Reprod. Domest. Anim. 2016, 51 (Suppl. S2), 25–35. [Google Scholar] [CrossRef]
- Calis, P.; Vojtech, L.; Hladik, F.; Gravett, M.G. A review of ex vivo placental perfusion models: An underutilized but promising method to study maternal-fetal interactions. J. Matern. Fetal Neonatal. Med. 2022, 35, 8823–8835. [Google Scholar] [CrossRef]
- Dimitrov, S.; Pavlov, T.; Veith, G.; Mekenyan, O. Simulation of chemical metabolism for fate and hazard assessment. I: Approach for simulating metabolism. SAR QSAR Environ. Res. 2011, 22, 699–718. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicol. Res. 2020, 37, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Verscheijden, L.F.M.; Koenderink, J.B.; Johnson, T.N.; de Wildt, S.N.; Russel, F.G.M. Physiologically-based pharmacokinetic models for children: Starting to reach maturation? Pharmacol. Ther. 2020, 211, 107541. [Google Scholar] [CrossRef]
- Sun, H.; Pang, K.S. Physiological Modeling to Understand the Impact of Enzymes and Transporters on Drug and Metabolite Data and Bioavailability Estimates. Pharm. Res. 2010, 27, 1237–1254. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K. Pharmacotherapy during Pregnancy, Childbirth, and Lactation. Int. J. Environ. Res. Public Health 2022, 19, 11336. [Google Scholar] [CrossRef] [PubMed]
- Balhara, A.; Kumar, A.R.; Unadkat, J.D. Predicting Human Fetal Drug Exposure Through Maternal-Fetal PBPK Modeling and In Vitro or Ex Vivo Studies. J. Clin. Pharmacol. 2022, 62 (Suppl. S1), S94–S114. [Google Scholar] [CrossRef] [PubMed]
- Fein, K.C.; Arral, M.L.; Kim, J.S.; Newby, A.N.; Whitehead, K.A. Placental drug transport and fetal exposure during pregnancy is determined by drug molecular size, chemistry, and conformation. J. Control. Release 2023, 361, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Medley, E.A.; Spratlen, M.J.; Yan, B.; Herbstman, J.B.; Deyssenroth, M.A. A Systematic Review of the Placental Translocation of Micro- and Nanoplastics. Curr. Environ. Health Rep. 2023, 10, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Vukomanović, P.; Stefanović, M.; Stevanović, J.M.; Petrić, A.; Trenkić, M.; Andrejević, L.; Lazarević, M.; Sokolović, D.; Veselinović, A.M. Monte Carlo Optimization Method Based QSAR Modeling of Placental Barrier Permeability. Pharm. Res. 2024, 41, 493–500. [Google Scholar] [CrossRef]
- Ma, C.; Chen, Q.; Li, J.; Li, B.; Liang, W.; Su, L.; Shi, H. Distribution and translocation of micro- and nanoplastics in fish. Crit. Rev. Toxicol. 2021, 51, 740–753. [Google Scholar] [CrossRef]
- Shen, F.; Li, D.; Guo, J.; Chen, J. Mechanistic toxicity assessment of differently sized and charged polystyrene nanoparticles based on human placental cells. Water Res. 2022, 223, 118960. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Jiang, C.; Gao, S.; Liu, X.; Zhai, S. Fetotoxicity of Nanoparticles: Causes and Mechanisms. Nanomaterials 2021, 11, 791. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Wang, Z.; Yue, T.; Su, G.; Teng, C.; Yan, B. Crossing biological barriers by engineered nanoparticles. Chem. Res. Toxicol. 2020, 33, 1055–1060. [Google Scholar] [CrossRef]
- Pelegrini, K.; Pereira, T.C.B.; Maraschin, T.G.; Teodoro, L.S.; Basso, N.R.S.; De Galland, G.L.B.; Ligabue, R.A.; Bogo, M.R. Micro- and nanoplastic toxicity: A review on size, type, source, and test-organism implications. Sci. Total Environ. 2023, 878, 162954. [Google Scholar] [CrossRef]
- Kozlov, M. Landmark study links microplastics to serious health problems. Nature 2024, in press. [Google Scholar] [CrossRef] [PubMed]
Placental Transfer Assessment Methods | Advantages | Disadvantages |
---|---|---|
In vitro studies | Constitute an effective approach simulating in vivo animal models. Reduced costs compared with in vivo animal studies. More suitable to investigate prenatal cell toxicity and the risk of chromosomal abnormalities. | Exhibit low viability. |
Ex vivo perfusion technique | The most dependable, accurate, informative, and metabolically stable approach for assessing placental transfer and metabolism. Investigates placental transfer, directly eliminating the need for extrapolation from animal models. Preserves the placental structure entirely, enabling comprehensive insights into various transporters associated with active transport and tissue binding. | Time-consuming method with a relatively low success rate. Not suitable for longer perfusion periods (>12 h) required for studying the transmission of infectious diseases. Utilizes full-term placentas and does not accurately represent the first-trimester placenta. Necessitating a consistent supply of placentas. Not appropriate for large-scale studies at a population level. |
Animal studies | Provide quite sufficient data about the placental transfer and the potential toxic effects of xenobiotics on the fetus. Help to design novel targeted therapies. | More costly and raise serious ethical issues. There is serious concern about the relevance of experimental data from animal placental studies to human conditions. Distinct structural and functional differences between the human placenta and those of other mammals. |
Human studies | The assessment of the feto-maternal concentration ratio is a straightforward and ethically acceptable technique. | Ethical considerations. |
Transporters | Transport Mechanism | Drug Transporter |
---|---|---|
P-glycoprotein (P-gp) | Active transport | Transports hydrophobic amphipathics, such as anticancer, immunosuppressive, and cardioprotective drugs, but also steroids and lipid-lowering agents. Blocks calcium channel blockers used to treat gestational hypertension. |
Multidrug resistance-associated proteins (MRPs) | Active transport | MRP1 prevents the entry of glutathione/glucuronide metabolites. MRP5 transports cyclic nucleotides (especially cGMP). |
Breast cancer-resistant protein (BCRP) | Active transport | Provides resistance against anthracycline antitumor drugs and mitoxantrone. Nitrofurantoin, cimetidine, and glyburide are substrates of BCRP. Pregnancy-related steroid hormones, growth factors, and cytokines regulate BCRP expression. Protective role in removing cytotoxic drugs or chemicals from fetus. |
Organic anion transporters (OATs) | Active transport | Transfer organic anions like steroid sulfates derived from cigarette smoking. OATP2B1 contributes to transepithelial transport of steroid sulfates. Transporters of drugs such as anticancer drugs (e.g., methotrexate), non-steroidal anti-inflammatory drugs, and antibiotics. |
Organic cation transporters (OCTs) | Active transport | Transporters of carnitine, procaineamide and ofloxacin, clonidine and verapamil. OCTN3 removes catecholamines from the fetus. |
Neuronal monoamine transporters (NMTs) | Active transport | Serotonin, dopamine, norepinephrine, and epinephrine constitute the most important physiological substrates of NMTs. Antidepressants and cocaine act as inhibitors of NMTs. Amphetamines are substrates that can be transported, inhibiting NMTs’ capacity to transfer endogenous substrates. |
Amino acid transporters (AATs) | Active transport | Facilitate the transportation of xenobiotics. Transport certain pharmaceuticals that have similar chemical structure with amino acids, such as gabapentin. |
Equilibrative nucleoside transporters (ENTs) | Active transport | Transport antiviral nucleoside analog drugs, such as didanosine, zalcitabine, and zidovudine, as well as certain anticancer drugs like cytarabine and gemcitabine. |
Chemical/Drug | Enzymes | Organ/Tissue |
---|---|---|
Theophylline and caffeine | Suppress the microsomal enzymes that metabolize drugs. | Liver |
Tobacco | P450 monooxygenase CYP1A1. UDP-glucuronosyltransferase (UGT) activity is stimulated (by both tobacco and alcohol). | Placenta |
Glucocorticoids | Suppress the activity of certain placental xenobiotic-metabolizing enzymes. | Placenta |
Azidothymidine | Increases CYP1A1, CYP reductase, β-glucuronidase, and GST activities. | Placenta |
Phenobarbital | Induces metabolic enzymes in the liver but has no effect on placental enzyme activity. | Liver |
Environmental chemical pollutants | CYP1A1 and placental glutathione. | Placenta |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotta-Loizou, I.; Pritsa, A.; Antasouras, G.; Vasilopoulos, S.N.; Voulgaridou, G.; Papadopoulou, S.K.; Coutts, R.H.A.; Lechouritis, E.; Giaginis, C. Fetus Exposure to Drugs and Chemicals: A Holistic Overview on the Assessment of Their Transport and Metabolism across the Human Placental Barrier. Diseases 2024, 12, 114. https://doi.org/10.3390/diseases12060114
Kotta-Loizou I, Pritsa A, Antasouras G, Vasilopoulos SN, Voulgaridou G, Papadopoulou SK, Coutts RHA, Lechouritis E, Giaginis C. Fetus Exposure to Drugs and Chemicals: A Holistic Overview on the Assessment of Their Transport and Metabolism across the Human Placental Barrier. Diseases. 2024; 12(6):114. https://doi.org/10.3390/diseases12060114
Chicago/Turabian StyleKotta-Loizou, Ioly, Agathi Pritsa, Georgios Antasouras, Spyridon N. Vasilopoulos, Gavriela Voulgaridou, Sousana K. Papadopoulou, Robert H. A. Coutts, Eleftherios Lechouritis, and Constantinos Giaginis. 2024. "Fetus Exposure to Drugs and Chemicals: A Holistic Overview on the Assessment of Their Transport and Metabolism across the Human Placental Barrier" Diseases 12, no. 6: 114. https://doi.org/10.3390/diseases12060114
APA StyleKotta-Loizou, I., Pritsa, A., Antasouras, G., Vasilopoulos, S. N., Voulgaridou, G., Papadopoulou, S. K., Coutts, R. H. A., Lechouritis, E., & Giaginis, C. (2024). Fetus Exposure to Drugs and Chemicals: A Holistic Overview on the Assessment of Their Transport and Metabolism across the Human Placental Barrier. Diseases, 12(6), 114. https://doi.org/10.3390/diseases12060114