Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = passive RFID tags

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1841 KB  
Article
RFID Tag-Integrated Multi-Sensors with AIoT Cloud Platform for Food Quality Analysis
by Zeyu Cao, Zhipeng Wu and John Gray
Electronics 2026, 15(1), 106; https://doi.org/10.3390/electronics15010106 - 25 Dec 2025
Viewed by 242
Abstract
RFID (Radio Frequency Identification) technology has become an essential instrument in numerous industrial sectors, enhancing process efficiency and streamlining operations, allowing for the automated tracking of goods and equipment without the need for manual intervention. Nevertheless, the deployment of industrial IoT systems necessitates [...] Read more.
RFID (Radio Frequency Identification) technology has become an essential instrument in numerous industrial sectors, enhancing process efficiency and streamlining operations, allowing for the automated tracking of goods and equipment without the need for manual intervention. Nevertheless, the deployment of industrial IoT systems necessitates the establishment of complex sensor networks to enable detailed multi-parameter monitoring of items. Despite these advancements, challenges remain in item-level sensing, data analysis, and the management of power consumption. To mitigate these shortcomings, this study presents a holistic AI-assisted, semi-passive RFID-integrated multi-sensor system designed for robust food quality monitoring. The primary contributions are threefold: First, a compact (45 mm ∗ 38 mm) semi-passive UHF RFID tag is developed, featuring a rechargeable lithium battery to ensure long-term operation and extend the readable range up to 10 m. Second, a dedicated IoT cloud platform is implemented to handle big data storage and visualization, ensuring reliable data management. Third, the system integrates machine learning algorithms (LSTM) to analyze sensing data for real-time food quality assessment. The system’s efficacy is validated through real-world experiments on food products, demonstrating its capability for low-cost, long-distance, and intelligent quality control. This technology enables low-cost, timely, and sustainable quality assessments over medium and long distances, with battery life extending up to 27 days under specific conditions. By deploying this technology, quantified food quality assessment and control can be achieved. Full article
Show Figures

Figure 1

16 pages, 4194 KB  
Article
A Wearable Monitor to Detect Tripping During Daily Life in Children with Intoeing Gait
by Warren Smith, Zahra Najafi and Anita Bagley
Sensors 2025, 25(20), 6437; https://doi.org/10.3390/s25206437 - 17 Oct 2025
Viewed by 634
Abstract
Children with intoeing gait are at increased risk of tripping and consequent injury, reduced mobility, and psychological issues. Quantification of tripping is needed outside the gait lab during daily life for improved clinical assessment and treatment evaluation and to enrich the database for [...] Read more.
Children with intoeing gait are at increased risk of tripping and consequent injury, reduced mobility, and psychological issues. Quantification of tripping is needed outside the gait lab during daily life for improved clinical assessment and treatment evaluation and to enrich the database for artificial intelligence (AI) learning. This paper presents the development of a low-cost, wearable tripping monitor to log a child’s Tripping Hazard Events (THEs) and steps taken during two weeks of everyday activity. A combination of sensors results in a high probability of THE detection, even during rapid gait, while guarding against false positives and minimizing power and therefore monitor size. A THE is logged when the feet come closer than a predefined threshold during the intoeing foot swing phase. Foot proximity is determined by a Radio Frequency Identification (RFID) reader in “sniffer” mode on the intoeing foot and a target of passive Near-Field Communication (NFC) tags on the contralateral foot. A Force Sensitive Resistor (FSR) in the intoeing shoe sets a time window for sniffing during gait and enables step counting. Data are stored in 15 min epochs. Laboratory testing and an IRB-approved human participant study validated system performance and identified the need for improved mechanical robustness, prompting a redesign of the monitor. A custom Python (version 3.10.13)-based Graphical User Interface (GUI) lets clinicians initiate recording sessions and view time records of THEs and steps. The monitor’s flexible design supports broader applications to real-world activity detection. Full article
(This article belongs to the Special Issue Artificial Intelligence and Sensor-Based Gait Recognition)
Show Figures

Figure 1

22 pages, 7614 KB  
Article
Virtualized Computational RFID (VCRFID) Solution for Industry 4.0 Applications
by Elisa Pantoja, Yimin Gao, Jun Yin and Mircea R. Stan
Electronics 2025, 14(12), 2397; https://doi.org/10.3390/electronics14122397 - 12 Jun 2025
Viewed by 1227
Abstract
This paper presents a Virtualized Computational Radio Frequency Identification (VCRFID) solution that utilizes far-field UHF RF for sensing, computing, and self-powering at the edge. A standard UHF RFID system is asymmetric as it consists of a relatively large, complex “reader”, which acts as [...] Read more.
This paper presents a Virtualized Computational Radio Frequency Identification (VCRFID) solution that utilizes far-field UHF RF for sensing, computing, and self-powering at the edge. A standard UHF RFID system is asymmetric as it consists of a relatively large, complex “reader”, which acts as an RF transmitter and controller for a number of small simple battery-less “tags”, which work in passive mode as they communicate and harvest RF energy from the reader. Previously proposed Computational RFID (CRFID) solutions enhance the standard RFID tags with microcontrollers and sensors in order to gain enhanced functionality, but they end up requiring a relatively high level of power, and thus ultimately reduced range, which limits their use for many Internet-of-Things (IoT) application scenarios. Our VCRFID solution instead keeps the functionality of the tags minimalistic by only providing a sensor interface to be able to capture desired environmental data (temperature, humidity, vibration, etc.), and then transmit it to the RFID reader, which then performs all the computational load usually carried out by a microcontroller on the tag in prior work. This virtualization of functions enables the design of a circuit without a microcontroller, providing greater flexibility and allowing for wireless reconfiguration of tag functions over RF for a 97% reduction in energy consumption compared to prior energy-harvesting RFID tags with microcontrollers. The target application is Industry 4.0 where our VCRFID solution enables battery-less fine-grain monitoring of vibration and temperature data for pumps and motors for predictive maintenance scenarios. Full article
(This article belongs to the Special Issue RFID Applied to IoT Devices)
Show Figures

Figure 1

17 pages, 25383 KB  
Article
RFID Sensor with Integrated Energy Harvesting for Wireless Measurement of dc Magnetic Fields
by Shijie Fu, Greg E. Bridges and Behzad Kordi
Sensors 2025, 25(10), 3024; https://doi.org/10.3390/s25103024 - 10 May 2025
Viewed by 2645
Abstract
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and [...] Read more.
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and there is a need for wireless sensing methods with high accuracy and a dynamic range. Conventional methods require direct contact with the high-voltage conductors and utilize bulky and complex equipment. In this paper, an ultra-high-frequency (UHF) radio frequency identification (RFID)-based sensor is introduced for the monitoring of the dc current of an HVdc transmission line. The sensor is composed of a passive RFID tag with a custom-designed antenna, integrated with a Hall effect magnetic field device and an RF power harvesting unit. The dc current is measured by monitoring the dc magnetic field around the conductor using the Hall effect device. The internal memory of the RFID tag is encoded with the magnetic field data. The entire RFID sensor can be wirelessly powered and interrogated using a conventional RFID reader. The advantage of this approach is that the sensor does not require batteries and does not need additional maintenance during its lifetime. This is an important feature in a high-voltage environment where any maintenance requires either an outage or special equipment. In this paper, the detailed design of the RFID sensor is presented, including the antenna design and measurements for both the RFID tag and the RF harvesting section, the microcontroller interfacing design and testing, the magnetic field sensor calibration, and the RF power harvesting section. The UHF RFID-based magnetic field sensor was fabricated and tested using a laboratory experimental setup. In the experiment, a 40 mm-diameter-aluminum conductor, typically used in 500 kV HVdc transmission lines carrying a dc current of up to 1200 A, was used to conduct dc current tests for the fabricated sensor. The sensor was placed near the conductor such that the Hall effect device was close to the surface of the conductor, and readings were acquired by the RFID reader. The sensitivity of the entire RFID sensor was 30 mV/mT, with linear behavior over a magnetic flux density range from 0 mT to 4.5 mT. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

39 pages, 6737 KB  
Review
Materials-Driven Advancements in Chipless Radio-Frequency Identification and Antenna Technologies
by Hafsa Anam, Syed Muzahir Abbas, Iain B. Collings and Subhas Mukhopadhyay
Sensors 2025, 25(9), 2867; https://doi.org/10.3390/s25092867 - 1 May 2025
Cited by 2 | Viewed by 1762
Abstract
This article presents a comprehensive analysis of the technical characteristics of advanced versatile materials used in chipless radio-frequency identification (RFID) tags and antennas. The focus is on materials that are used as radiators and substrates. Crucial aspects include flexibility, weight, size, gain, environmental [...] Read more.
This article presents a comprehensive analysis of the technical characteristics of advanced versatile materials used in chipless radio-frequency identification (RFID) tags and antennas. The focus is on materials that are used as radiators and substrates. Crucial aspects include flexibility, weight, size, gain, environmental sustainability, efficiency, fabrication time and type, and cost. A comprehensive set of tables are presented that summarize and compare material properties. The materials include flexible high-tech ink substances, graphene, and liquid crystals, as well as metamaterials which possess properties that allow for an increased bandwidth. Printing techniques are discussed for high-performance high-resolution fabricated tags. This paper contributes by systematically comparing emerging materials for chipless RFID tags, highlighting their impact on performance and sustainability. It also provides practical guidance for material selection and fabrication techniques to enable next-generation wireless applications. It presents a broad understanding of various materials and their use. The paper provides direction for the deployment and utilization of inexpensive passive chipless RFID tags in future intelligent wireless networks. The advancement of chipless RFID is largely driven by the development of innovative materials, especially in the realm of advanced materials and smart materials, which enable the creation of more cost-effective, flexible, and scalable RFID systems. Full article
(This article belongs to the Special Issue Feature Papers in the Internet of Things Section 2025)
Show Figures

Figure 1

28 pages, 9665 KB  
Article
Long-Range RFID Indoor Positioning System for an Autonomous Wheelchair
by João S. Pereira
Sensors 2025, 25(8), 2542; https://doi.org/10.3390/s25082542 - 17 Apr 2025
Cited by 2 | Viewed by 1410
Abstract
A new Radio-Frequency Identification (RFID) indoor positioning system (IPS) has been developed to operate in environments where the Global Positioning System (GPS) is unavailable. Traditional RFID tracking systems, such as anti-theft systems in clothing stores, typically work within close proximity to exit doors. [...] Read more.
A new Radio-Frequency Identification (RFID) indoor positioning system (IPS) has been developed to operate in environments where the Global Positioning System (GPS) is unavailable. Traditional RFID tracking systems, such as anti-theft systems in clothing stores, typically work within close proximity to exit doors. This paper presents a novel RFID IPS capable of locating and tracking passive RFID tags over a larger area with greater precision. These tags, costing approximately EUR 0.10 each, are in the form of small stickers that can be attached to any item requiring tracking. The proposed system is designed for an autonomous wheelchair, built from scratch, which will be identified and monitored using passive RFID tags. Our new RFID IPS, with a 12 m range, is implemented in this “smart” wheelchair. Full article
(This article belongs to the Special Issue Advances in RFID-Based Indoor Positioning Systems)
Show Figures

Figure 1

11 pages, 4877 KB  
Proceeding Paper
Leveraging RFID for Road Safety Sign Detection to Enhance Efficiency and Notify Drivers
by Dhanasekar Ravikumar, Vijayaraja Loganathan, Pranav Ponnovian, Vignesh Loganathan and Bharanidharan Sivalingam
Eng. Proc. 2025, 87(1), 53; https://doi.org/10.3390/engproc2025087053 - 15 Apr 2025
Viewed by 802
Abstract
Road safety signboards are now difficult to see due to pollution and harsh weather elements such as snow and fog, which has resulted in more accidents. The problem is especially common in Western countries where snow can block these critical signs. An approach [...] Read more.
Road safety signboards are now difficult to see due to pollution and harsh weather elements such as snow and fog, which has resulted in more accidents. The problem is especially common in Western countries where snow can block these critical signs. An approach addressing this issue involves a system that uses Radio Frequency Identification (RFID) and Internet of Things (IoT). The real-time alerts that this system sends to drivers improve driver safety in complex environments. For this purpose, an RFID reader is placed in the vehicle, and passive RFID tags are attached to road safety signboards. The reader picks up the signal as a vehicle comes within range, and the warning for the vehicle is sent to the driver. It helps to reduce the number of accidents resulting from poor visibility. In addition, because its multi-lingual audio alerts the drive through speakers and visual warnings displayed on a display screen, the system is accessible to drivers from various regions. To make the system more sustainable, we added some solar panels to the system to cut costs as far as energy efficiency is concerned. The system combines GPS and GSM modules to provide the vehicle position in real time in the cloud. It gives better warnings and helps avoid accidents. In addition to improving road safety, the system offers support for the environment, by limiting emissions and waste of resources caused by accidents. Traffic patterns can thus be studied with the data, creating more efficient and ecofriendly transportation systems. This solution enables a smarter vehicle network that is safer and more sustainable with quick, accurate alerts. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

23 pages, 7456 KB  
Article
An RFID-Based Indoor Guiding System for Visually Impaired People
by Iulia-Francesca Kovacs, Andrei-Cristian Karolyi, Cristina-Sorina Stângaciu, Valentin Stângaciu, Sergiu Nimară and Daniel-Ioan Curiac
Information 2025, 16(3), 220; https://doi.org/10.3390/info16030220 - 13 Mar 2025
Viewed by 1876
Abstract
This paper proposes a solution for guiding visually impaired people to reach predefined locations marked with preregistered passive ultra-high-frequency RFID tags inside public buildings (e.g., secretary’s offices and information desks). Our approach employs an unmanned ground vehicle guidance system that assists customers in [...] Read more.
This paper proposes a solution for guiding visually impaired people to reach predefined locations marked with preregistered passive ultra-high-frequency RFID tags inside public buildings (e.g., secretary’s offices and information desks). Our approach employs an unmanned ground vehicle guidance system that assists customers in following predefined routes. The solution also includes a methodology for recording the best routes between all possible locations that may be visited. When reaching the destination, the system will read the tag, extract all the associated information from a database, and translate it into an audio format played into the user’s headphones. The system includes functionalities such as recording and playback of prerecorded routes, voice commands, and audio instructions. By describing the software and hardware architecture of the proposed guiding systems prototype, we show how combining ultra-high-frequency RFID technology with unmanned ground vehicle guiding systems equipped with ultrasonic, grayscale, hall sensors, and voice interfaces allows the development of accessible, low-cost guiding systems with increased functionalities. Moreover, we compare and analyze two different modes of route recording based on line following and manual recording, obtaining a performance regarding route playback with deviations under 10% for several basic scenarios. Full article
(This article belongs to the Special Issue Advances in Machine Learning and Intelligent Information Systems)
Show Figures

Figure 1

18 pages, 9244 KB  
Article
A Novel Chipless Hybrid RFID Sensor for Metal Crack Detection
by Yamini Devidas Kotriwar, Mahmoodul Haq and Yiming Deng
Appl. Sci. 2025, 15(5), 2303; https://doi.org/10.3390/app15052303 - 21 Feb 2025
Cited by 1 | Viewed by 1755
Abstract
RFID technology has been widely researched and used for structural health applications because of its compact, wireless, and scalable nature. This technology is divided into chipped and chipless sensors. Chipped sensors are costly due to their chipped tags, have narrowband operations, and contribute [...] Read more.
RFID technology has been widely researched and used for structural health applications because of its compact, wireless, and scalable nature. This technology is divided into chipped and chipless sensors. Chipped sensors are costly due to their chipped tags, have narrowband operations, and contribute to shortcomings in detection capability. Chipless tags provide real-time monitoring of cracks in harsh environments like high-temperature areas and high electromagnetic interference areas. This paper presents a design of a novel chipless hybrid circular-hexagon sensor that uses the frequency signature-based method for metal crack detection and characterization using wideband frequency. This sensor is small in size (16 mm × 16 mm × 1.4 mm) and easily mountable in hard-to-reach areas. It is a low-cost, passive chipless sensor that can wirelessly monitor the cracks in metallic structures. The radar cross-section of the chipless tag shows a shift in the resonant frequency of the tag under crack and no crack conditions. Key contributions of this work are that through simulations and experimental investigation, the tag is shown to be able to detect mm-scale cracks, validating the concept and correlating the presence and size of the cracks based on the shift in resonant frequencies in which a pair of Vivaldi antennas are used as a transmitter and receiver to connect to the VNA. The designed small sensor tag is tested in a benchtop setup with no prior calibration, imitating the real-time environment conditions for crack detection. Full article
(This article belongs to the Special Issue Progress in Nondestructive Testing and Evaluation)
Show Figures

Figure 1

26 pages, 6862 KB  
Article
Application of Anti-Collision Algorithm in Dual-Coupling Tag System
by Junpeng Cui, Muhammad Mudassar Raza, Renhai Feng and Jianjun Zhang
Electronics 2025, 14(4), 787; https://doi.org/10.3390/electronics14040787 - 17 Feb 2025
Viewed by 1041
Abstract
Radio Frequency Identification (RFID) is a key component in automatic systems that address challenges in environment monitoring. However, tag collision continues to be an essential challenge in such applications due to high-density RFID deployments. This paper addresses the issue of RFID tag collision [...] Read more.
Radio Frequency Identification (RFID) is a key component in automatic systems that address challenges in environment monitoring. However, tag collision continues to be an essential challenge in such applications due to high-density RFID deployments. This paper addresses the issue of RFID tag collision in large-scale intensive tags, particularly in industrial membrane contamination monitoring systems, and improves the system performance by minimizing collision rates through an innovative collision-avoiding algorithm. This research improved the Predictive Framed Slotted ALOHA–Collision Tracking Tree (PRFSCT) algorithm by cooperating probabilistic and deterministic methods through dynamic frame length adjustment and multi-branch tree processes. After simulation and validation in MATLAB R2023a, we performed a hardware test with the RFM3200 and UHFReader18 passive tags. The method’s efficiency is evaluated through collision slot reduction, delay minimization, and enhanced throughput. PRFSCT significantly reduces collision slots when the number of tags to identify is the same for PRFSCT, Framed Slotted ALOHA (FSA), and Collision Tracking Tree (CTT); the PRFSCT method needs the fewest time slots. When identifying more than 200 tags, PRFSCT has 225 collision slots for 500 tags compared to FSA and CTT, which have approximately 715 and 883 for 500 tags, respectively. It demonstrates exceptional stability and adaptability under increased density needs while improving tag reading at distances. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

20 pages, 4123 KB  
Article
RFID Unpacked: A Case Study in Employing RFID Tags from Item to Pallet Level
by Ethan Claucherty, Danielle Cummins and Bahar Aliakbarian
Electronics 2025, 14(2), 278; https://doi.org/10.3390/electronics14020278 - 11 Jan 2025
Viewed by 4626
Abstract
As the use of passive ultra-high frequency (UHF) radio frequency identification (RFID) tags continues to surge in supply chain management, it becomes crucial to optimize their application at various levels of packaging to ensure reliability. These packaging levels play a pivotal role in [...] Read more.
As the use of passive ultra-high frequency (UHF) radio frequency identification (RFID) tags continues to surge in supply chain management, it becomes crucial to optimize their application at various levels of packaging to ensure reliability. These packaging levels play a pivotal role in achieving maximum readability and widespread adoption within the industry. This research paper aims to determine the most suitable passive UHF RFID tag for consumer goods filled with liquid and wrapped in foil packaging. In this study, two distinct RFID tags from separate manufacturers were evaluated. The research focused on critical factors such as reader height, distance, and item configuration across different packaging levels (item, case, and pallet). The results demonstrated that the packaging configuration impacts the readability of RFID tags at each packaging level. Through rigorous testing, it was found that achieving a tag readability rate higher than 99.7% is feasible and readability can be optimized by adjusting the reader position, packaging configuration, and tag design. The optimized configuration and testing platform developed in this study can be used for comparable products in other supply chains such as consumer goods, pharmaceuticals, and food. The results of this study emphasize RFID’s potential to revolutionize supply chain management. Full article
(This article belongs to the Special Issue RFID Technology and Its Applications)
Show Figures

Figure 1

11 pages, 26868 KB  
Article
Wearable Displacement Sensor Using Inductive Coupling of Printed RFID Tag with Metallic Strip
by Tauseef Hussain, Ignacio Gil and Raúl Fernández-García
Electronics 2025, 14(2), 262; https://doi.org/10.3390/electronics14020262 - 10 Jan 2025
Cited by 3 | Viewed by 4256
Abstract
This paper presents a passive displacement sensor based on the inductive coupling between a printed UHF RFID tag and a metallic strip. The sensor operates by exploiting variations in mutual inductive coupling, which modulate the tag impedance and transmission coefficient, thereby altering the [...] Read more.
This paper presents a passive displacement sensor based on the inductive coupling between a printed UHF RFID tag and a metallic strip. The sensor operates by exploiting variations in mutual inductive coupling, which modulate the tag impedance and transmission coefficient, thereby altering the backscattered signal strength and the maximum read range of the RFID tag. The performance of the sensor is validated through simulations and experiments, which demonstrate a sensitivity characterized by an approximately 9 dB reduction in the received signal strength indicator (RSSI) and a 2.3 m decrease in the read range within the first 12 mm of displacement. Furthermore, its potential for wearable applications is showcased through respiratory monitoring, where RSSI variations of approximately 5 dB are observed between the inspiration and expiration phases when positioned on the abdominal region of a volunteer. Thus, the proposed displacement sensing approach offers a cost-effective and battery-free solution for wearable applications with remote monitoring capabilities. Full article
(This article belongs to the Special Issue RFID Technology and Its Applications)
Show Figures

Figure 1

13 pages, 24784 KB  
Article
Long-Distance Passive Sensing Tag Design Based on Multi-Source Energy Harvesting and Reflection Amplification
by Gang Li, Chong Pan, Bo Wu, Zhiliang Xu, Shihua Li, Yehua Zhang, Yongjun Yang, Zhuohang Zou, Chang Shi and Muze Wang
Micromachines 2025, 16(1), 18; https://doi.org/10.3390/mi16010018 - 26 Dec 2024
Viewed by 1520
Abstract
Wireless sensor networks often rely on battery power, which incurs high costs, considerable volume, and a limited lifespan. Additionally, the communication range of existing passive sensor tags remains short, which challenges their suitability for evolving Internet of Things (IoT) applications. This paper, therefore, [...] Read more.
Wireless sensor networks often rely on battery power, which incurs high costs, considerable volume, and a limited lifespan. Additionally, the communication range of existing passive sensor tags remains short, which challenges their suitability for evolving Internet of Things (IoT) applications. This paper, therefore, presents a long-distance passive RFID sensing tag that integrates multi-source energy harvesting and reflection amplification. Multi-source energy harvesting enhances tag receiving sensitivity and extends the system’s downlink communication distance, while reflection amplification increases tag reflection power and improves the uplink communication distance, thereby significantly expanding the overall communication range. The test results show that the tag achieves a receiving sensitivity of −45 dBm, a reflection gain of 44 dB, and a communication distance of up to 96 m. Full article
Show Figures

Figure 1

22 pages, 3257 KB  
Article
Tag-Array-Based UHF Passive RFID Tag Attitude Identification of Tracking Methods
by Honggang Wang, Sicheng Li, Yurun Zhou, Yongli Wang, Ruoyu Pan and Shengli Pang
Sensors 2024, 24(19), 6305; https://doi.org/10.3390/s24196305 - 29 Sep 2024
Cited by 3 | Viewed by 2983
Abstract
Attitude information is as important as position information in describing and localizing objects. Based on this, this paper proposes a method for object attitude sensing utilizing ultra-high frequency passive RFID technology. This method adopts a double tag array strategy, which effectively enhances the [...] Read more.
Attitude information is as important as position information in describing and localizing objects. Based on this, this paper proposes a method for object attitude sensing utilizing ultra-high frequency passive RFID technology. This method adopts a double tag array strategy, which effectively enhances the spatial freedom and eliminates phase ambiguity by leveraging the phase difference information between the two tags. Additionally, we delve into the issue of the phase shift caused by coupling interference between the two tags. To effectively compensate for this coupling effect, a series of experiments were conducted to thoroughly examine the specific impact of coupling effects between tags, and based on these findings, a coupling model between tags was established. This model was then integrated into the original phase model to correct for the effects of phase shift, significantly improving the sensing accuracy. Furthermore, we considered the influence of the object rotation angle on phase changes to construct an accurate object attitude recognition and tracking model. To reduce random errors during phase measurement, we employed a polynomial regression method to fit the measured tag phase information, further enhancing the precision of the sensing model. Compared to traditional positioning modes, the dual-tag array strategy essentially increases the number of virtual antennas available for positioning, providing the system with more refined directional discrimination capabilities. The experimental results demonstrated that incorporating the effects of inter-tag coupling interference and rotation angle into the phase model significantly improved the recognition accuracy for both object localization and attitude angle determination. Specifically, the average error of object positioning was reduced to 12.3 cm, while the average error of attitude angle recognition was reduced to 8.28°, making the method suitable for various practical application scenarios requiring attitude recognition. Full article
(This article belongs to the Special Issue Indoor Positioning Technologies for Internet-of-Things)
Show Figures

Figure 1

29 pages, 26306 KB  
Article
Efficiency Measurements of Energy Harvesting from Electromagnetic Environment for Selected General Purpose Telecommunication Systems
by Kazimierz Kamuda, Dariusz Klepacki, Wiesław Sabat, Kazimierz Kuryło, Mariusz Skoczylas and Piotr Jankowski-Mihułowicz
Electronics 2024, 13(16), 3111; https://doi.org/10.3390/electronics13163111 - 6 Aug 2024
Cited by 3 | Viewed by 1800
Abstract
The results of measurements of the efficiency of energy harvesting from commonly available general-purpose telecommunications systems, divided into typical bands available under European conditions, have been presented in this paper. Specially designed harvesters were used, dedicated to powering autonomous semi-passive Radio Frequency Identification [...] Read more.
The results of measurements of the efficiency of energy harvesting from commonly available general-purpose telecommunications systems, divided into typical bands available under European conditions, have been presented in this paper. Specially designed harvesters were used, dedicated to powering autonomous semi-passive Radio Frequency Identification (RFID) tags. For the assumed resistive loads, the achievable output voltage values of the harvesters were measured across a wide spectrum of electromagnetic field strengths, simulating real conditions. The performance and dynamics of the energy storage process with fixed parameters were studied at an intermediate stage, before the energy conditioning process. The harvesters were treated as typical energy sources with unknown but variable parameters, so their dynamic parameters and instantaneous energy supply were also analyzed. These activities will enable the final development of a power supply system with parameters acceptable for the planned applications and whose efficiency will be maximized under the given conditions. For this purpose, the energy harvesting systems were designed, a suitable laboratory stand was built, and the elaborated circuits were measured to determine the expected parameters of energy harvesting. Full article
Show Figures

Figure 1

Back to TopTop