Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = partial amorphous state

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10162 KiB  
Article
Interfacial Behavior During Reactions Between Sn and Electroplated Co–Zn Alloys
by Chao-Hong Wang and Che-Yang Lin
Materials 2025, 18(12), 2680; https://doi.org/10.3390/ma18122680 - 6 Jun 2025
Viewed by 468
Abstract
This study investigates the electroplating characteristics of Co-Zn alloy coatings with varying Zn contents (0.55 wt.%~8.8 wt.%) and their influence on intermetallic compound (IMC) formation during reactions with Sn solder. Co-Zn alloy coatings were successfully fabricated by electroplating using cobalt plating solutions with [...] Read more.
This study investigates the electroplating characteristics of Co-Zn alloy coatings with varying Zn contents (0.55 wt.%~8.8 wt.%) and their influence on intermetallic compound (IMC) formation during reactions with Sn solder. Co-Zn alloy coatings were successfully fabricated by electroplating using cobalt plating solutions with different concentrations of zinc sulfate. The results reveal anomalous co-deposition behavior, where the less noble Zn preferentially deposits over Co. Surface morphologies and microstructures evolve significantly with increasing Zn content, transitioning from columnar to dendritic structures. Zn incorporation into the Co lattice disrupts its crystallinity, leading to decreased crystallinity and partial amorphization. Liquid-state and solid-state interfacial reactions with Sn solder demonstrate that Zn content considerably influences IMC formation. In liquid-state reactions at 250 °C, lower Zn contents (0.55–4.8 wt.%) slightly enhance CoSn3 growth. It exhibits a dense layered-structure without IMC spallation. In contrast, a higher Zn content (8.8 wt.%) significantly reduces IMC formation by approximately 50% and produces a duplex structure with two distinct layers. In solid-state reactions at 160 °C, the suppression effect becomes even more pronounced. The Co-0.55Zn deposit exhibits significant inhibition of CoSn3 growth, while the Co-8.8Zn sample forms only a thin IMC layer, achieving a suppression rate exceeding 85%. These findings demonstrate that Zn doping effectively limits CoSn3 formation during solid-state reactions and improves interfacial stability. Full article
Show Figures

Graphical abstract

19 pages, 3303 KiB  
Article
Microstructure and Hydrogen Sorption Kinetics of Ball-Milled Mg60Ni25Cu10Ce5 Nanocrystalline Powders
by Ádám Révész, Richárd Nagy, Zoltán Dankházi, Stanislava Todorova and Tony Spassov
Energies 2025, 18(11), 2925; https://doi.org/10.3390/en18112925 - 3 Jun 2025
Viewed by 389
Abstract
High-energy ball milling for different durations was used to synthesize nanocrystalline Mg60Ni25Cu10Ce5 powders. The morphology and microstructure of the milled powders were investigated by scanning electron microscopy and X-ray diffraction, respectively. It was found that different [...] Read more.
High-energy ball milling for different durations was used to synthesize nanocrystalline Mg60Ni25Cu10Ce5 powders. The morphology and microstructure of the milled powders were investigated by scanning electron microscopy and X-ray diffraction, respectively. It was found that different milling times result in considerably different phase composition. The powder milled for 1 h is characterized by elemental Mg, Ni, Cu and Ce with some minor content of intermetallics. In total, 3 h milling promotes the intensive formation of intermetallic compounds, while 10 h of powder processing results in a partially amorphous state coupled with compound phases. Isothermal hydrogenation and dehydrogenation experiments were conducted in a Sieverts’-type apparatus. It was found that all powders absorb H2 reversibly, while the shortest milling time provides the best overall capacity. Excellent kinetics without any activation cycle were obtained for the 3 h milled composite, releasing and absorbing 50% of the total hydrogen content within 120 s. Each kinetic measurement has satisfactorily been fitted by the Johnson–Mehl–Avrami function. X-ray diffraction analysis on the dehydrided powders confirmed the complete desorption. Full article
Show Figures

Figure 1

12 pages, 16015 KiB  
Article
Compact Nonvolatile Reconfigurable Mode Converter by Sb2S3 Embedded in 4H-Silicon-Carbide-on-Insulator Platform
by Danfeng Zhu, Junbo Chen, Shaobin Qiu, Dingnan Deng and Jinming Luo
Nanomaterials 2025, 15(9), 689; https://doi.org/10.3390/nano15090689 - 1 May 2025
Viewed by 413
Abstract
Nonvolatile switching is emerging and shows potential in integrated optics. A compact nonvolatile reconfigurable mode converter implemented on a 4H-silicon-carbide-on-insulator (4H-SiCOI) platform with a footprint of 0.5 × 1 × 1.8 μm3 is proposed in this study. The functional region features an [...] Read more.
Nonvolatile switching is emerging and shows potential in integrated optics. A compact nonvolatile reconfigurable mode converter implemented on a 4H-silicon-carbide-on-insulator (4H-SiCOI) platform with a footprint of 0.5 × 1 × 1.8 μm3 is proposed in this study. The functional region features an Sb2S3 film embedded in a 4H-SiC strip waveguide. The functionality is achieved through manipulating the phase state of the Sb2S3. The high refractive index contrast between the crystalline Sb2S3 and 4H-SiC enables high-efficiency mode conversion within a compact footprint. The incident TM0 mode is converted to the TM1 mode with a high transmittance (T) beyond 0.91 and a mode purity (MP) over 91.72% across the 1500–1600 nm waveband. Additionally, when the Sb2S3 transitions to its amorphous state, the diminished refractive index contrast efficiently mitigates the mode conversion effect. In this state, the TM0 mode propagates through the functional region with minimal perturbation, exhibiting T ≥ 0.99 and MPTM0 ≥ 97.65% within a 1500–1600 nm waveband. Furthermore, the device performances were investigated under partially crystallized states of Sb2S3. The proposed structure offers a broad range of transmittance differences (−16.42 dB ≤ ΔT ≤ 17.1 dB) and mode purity differences (−90.91% ≤ ΔMP ≤ 96.11%) between the TM0 mode and TM1 mode. The proposed device exhibits a high robustness within ±20 nm Δl and ±10 nm Δw. We believe that the proposed multi-level manipulation can facilitate a large communication capacity and that it can be deployed in neuromorphic optical computing. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

18 pages, 4747 KiB  
Article
Evaluation of Permeability, Safety, and Stability of Nanosized Ketoprofen Co-Spray-Dried with Mannitol for Carrier-Free Pulmonary Systems
by Heba Banat, Ilona Gróf, Mária A. Deli, Rita Ambrus and Ildikó Csóka
Appl. Sci. 2025, 15(3), 1547; https://doi.org/10.3390/app15031547 - 3 Feb 2025
Cited by 1 | Viewed by 1132
Abstract
Pulmonary drug delivery presents a promising approach for managing respiratory diseases, enabling localized drug deposition and minimizing systemic side effects. Building upon previous research, this study investigates the cytotoxicity, permeability, and stability of a novel carrier-free dry powder inhaler (DPI) formulation comprising nanosized [...] Read more.
Pulmonary drug delivery presents a promising approach for managing respiratory diseases, enabling localized drug deposition and minimizing systemic side effects. Building upon previous research, this study investigates the cytotoxicity, permeability, and stability of a novel carrier-free dry powder inhaler (DPI) formulation comprising nanosized ketoprofen (KTP) and mannitol (MNT). The formulation was prepared using wet media milling to produce KTP-nanosuspensions, followed by spray drying to achieve combined powders suitable for inhalation. Cell viability and permeability were conducted in both alveolar (A549) and bronchial (CFBE) models. Stability was assessed after storage in hydroxypropyl methylcellulose (HPMC) capsules under stress conditions (40 °C, 75% RH), as per ICH guidelines. KTP showed good penetration through both models, with lower permeability through the CFBE barrier. The MNT-containing sample (F1) increased permeability by 1.4-fold in A549. All formulations had no effect on cell barrier integrity or viability after the impedance test, confirming their safety. During stability assessment, the particle size remained consistent, and the partially amorphous state of KTP was retained over time. However, moisture absorption induced surface roughening and partial agglomeration, leading to reduced fine particle fraction (FPF) and emitted fraction (EF). Despite these changes, the mass median aerodynamic diameter (MMAD) remained stable, confirming the formulation’s continued applicability for pulmonary delivery. Future research should focus on optimizing excipient content, alternative capsule materials, and storage conditions to mitigate moisture-related issues. Hence, the findings demonstrate that the developed ketoprofen–mannitol DPI retains its quality and performance characteristics over an extended period, making it a viable option for pulmonary drug delivery. Full article
Show Figures

Figure 1

17 pages, 1496 KiB  
Article
Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization
by Nikola Pešić, Branka Ivković, Tanja Barudžija, Branka Grujić, Svetlana Ibrić and Djordje Medarević
Pharmaceutics 2025, 17(1), 6; https://doi.org/10.3390/pharmaceutics17010006 - 24 Dec 2024
Cited by 2 | Viewed by 1285
Abstract
Background/Objectives: Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous [...] Read more.
Background/Objectives: Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous dosage forms with high drug loading. When the powder mixture is exposed to elevated temperatures during SLS printing, the active ingredients can be converted from the crystalline to the amorphous state, which can be used as a strategy to improve the dissolution rate and bioavailability of poorly soluble drugs. This study investigates the potential application of SLS 3D printing for the fabrication of tablets containing the poorly soluble drug carvedilol with the aim of improving the dissolution rate of the drug by forming an amorphous form through the printing process. Methods: Using SLS 3D printing, eight tablet formulations were produced using two different powder mixtures and four combinations of experimental conditions, followed by physicochemical characterization and dissolution testing. Results: Physicochemical characterization revealed that at least partial amorphization of carvedilol occurred during the printing process. Although variations in process parameters were minimal, higher temperatures in combination with lower laser speeds appeared to facilitate a greater degree of amorphization. Ultimately, the partial conversion to the amorphous form significantly improved the dissolution of carvedilol compared to its pure crystalline form. Conclusions: Obtained results suggest that the SLS 3D printing technique can be effectively used to convert poorly water-soluble drugs to their amorphous state, thereby improving solubility and bioavailability. Full article
(This article belongs to the Special Issue 3D Printing of Drug Delivery Systems)
Show Figures

Figure 1

21 pages, 3951 KiB  
Article
Characterization and Evaluation of Zero-Order Release System Comprising Glycero-(9,10-trioxolane)-trialeate and PLA: Opportunity for Packaging and Biomedicine Applications
by Olga V. Alexeeva, Marina L. Konstantinova, Valentina Siracusa, Vyacheslav V. Podmasterev, Levon Yu. Martirosyan, Olga K. Karyagina, Sergey S. Kozlov, Sergey M. Lomakin, Ilya V. Tretyakov, Tuyara V. Petrova and Alexey L. Iordanskii
Polymers 2024, 16(24), 3554; https://doi.org/10.3390/polym16243554 - 20 Dec 2024
Viewed by 1056
Abstract
Glycerol-(9,10-trioxolane) trioleate (OTOA) is a promising material that combines good plasticizing properties for PLA with profound antimicrobial activity, which makes it suitable for application in state-of-the-art biomedical and packaging materials with added functionality. On the other hand, application of OTOA in PLA-based antibacterial [...] Read more.
Glycerol-(9,10-trioxolane) trioleate (OTOA) is a promising material that combines good plasticizing properties for PLA with profound antimicrobial activity, which makes it suitable for application in state-of-the-art biomedical and packaging materials with added functionality. On the other hand, application of OTOA in PLA-based antibacterial materials is hindered by a lack of knowledge on kinetics of the OTOA release. In this work, the release of glycero-(9,10-trioxolane) trioleate (OTOA) from PLA films with 50% OTOA content was studied during incubation in normal saline solution, and for the first time, the kinetics of OTOA release from PLA film was evaluated. Morphological, thermal, structural and mechanical properties of the PLA + 50% OTOA films were studied during incubation in normal saline and corresponding OTOA release using differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy and mechanical tests. It was confirmed by DSC and XRD that incubation in the saline solution and corresponding OTOA release from PLA film does not lead to significant changes in the structure of the polymer matrix. Thus, the formation of more disturbed α’ crystalline phase of PLA due to partial hydrolysis of amorphous zones and/or most unstable crystallites in the PLA/OTOA semi-crystalline structure was observed. The degree of crystallinity of PLA + OTOA film was also slightly increased at the prolonged stages of OTOA release. PLA + 50% OTOA film retained its strength properties after incubation in normal saline, with a slight increase in the elastic modulus and tensile strength, accompanied by a significant decrease in relative elongation at break. The obtained results showed that PLA + 50% OTOA film could be characterized by sustained OTOA release with the amount of released OTOA exceeding 50% of the initial content in the PLA film. The OTOA release profile was close to zero-order kinetics, which is beneficial in order to provide stable drug release pattern. Developed PLA + 50% OTOA films showed a strong and stable antibacterial effect against Raoultella terrigena and Escherichia coli, bacterial strains with multidrug resistance behavior. The resulting PLA + OTOA films could be used in a variety of biomedical and packaging applications, including wound dressings and antibacterial food packaging. Full article
Show Figures

Figure 1

19 pages, 11258 KiB  
Article
Impact of Physical Processes and Temperatures on the Composition, Microstructure, and Pozzolanic Properties of Oil Palm Kernel Ash
by Ramón Torres-Ortega, Diego Torres-Sánchez and Manuel Saba
ChemEngineering 2024, 8(6), 122; https://doi.org/10.3390/chemengineering8060122 - 2 Dec 2024
Cited by 3 | Viewed by 1575
Abstract
In recent decades, the global use of ashes derived from agro-industrial by-products, such as oil palm kernel shells, which are widely cultivated in Colombia and other tropical regions of the world, has increased. However, the application of these ashes in engineering remains limited [...] Read more.
In recent decades, the global use of ashes derived from agro-industrial by-products, such as oil palm kernel shells, which are widely cultivated in Colombia and other tropical regions of the world, has increased. However, the application of these ashes in engineering remains limited due to their heterogeneity and variability. This study utilized scanning electron microscopy (SEM) to assess the influence of calcination temperatures, ranging from 500 °C to 1000 °C, as well as the physical processes of cutting, grinding, and crushing, on the silica content of the studied ashes. Specifically, the sample labeled M18A-c-m-T600°C-t1.5h-tr1h, which was subjected to a calcination temperature of 600 °C and underwent cutting and grinding before calcination, followed by post-calcination crushing, exhibited the highest silica concentration. Complementary techniques such as X-ray fluorescence (XRF) and X-ray diffraction (XRD), were applied to this sample to evaluate its feasibility as an additive or partial replacement for cement in concrete. XRF analysis revealed a composition of 71.24% SiO2, 9.39% Al2O3, and 2.65% Fe2O3, thus, meeting the minimum oxide content established by ASTM C 618 for the classification as a pozzolanic material. Furthermore, XRD analysis confirmed that the sample M18A-c-m-T600°C-t1.5h-tr1h is in an amorphous state, which is the only state in which silica can chemically react with calcium hydroxide resulting from the hydration reactions of cement, forming stable cementitious products with strong mechanical properties. Full article
Show Figures

Figure 1

12 pages, 4508 KiB  
Article
Nanocrystalline/Amorphous Tuning of Al–Fe–Nb (Mn) Alloy Powders Produced via High-Energy Ball Milling
by Nguyen Thi Hoang Oanh, Dao Truong An and Nguyen Hoang Viet
Materials 2024, 17(22), 5627; https://doi.org/10.3390/ma17225627 - 18 Nov 2024
Cited by 3 | Viewed by 1608
Abstract
The demand for advanced Al-based alloys with tailored structural and magnetic properties has intensified for applications requiring a high thermal stability and performance under challenging conditions. This study investigated the phase evolution, magnetic properties, thermal stability, and microstructural changes in the Al-based alloys [...] Read more.
The demand for advanced Al-based alloys with tailored structural and magnetic properties has intensified for applications requiring a high thermal stability and performance under challenging conditions. This study investigated the phase evolution, magnetic properties, thermal stability, and microstructural changes in the Al-based alloys Al82Fe16Nb2 and Al82Fe14Nb2Mn2, synthesized via mechanical alloying (MA), using stearic acid as a process control agent. The X-ray diffraction results indicated that Al82Fe16Nb2 achieved a β-phase solid solution with 13–14 nm crystallite sizes after 5 h of milling, reaching an amorphous state after 10 h. In contrast, Al82Fe14Nb2Mn2 formed a partially amorphous structure within 10 h, with enhanced stability with additional milling. Magnetic measurements indicated that both alloys possessed soft magnetic behavior under shorter milling times (1–5 h) and transitioned to hard magnetic behavior as amorphization progressed. This phenomenon was associated with a decrease in saturation magnetization (Ms) and an increase in coercivity (Hc) due to structural disorder and residual stresses. Thermal stability analyses on 10 h milled samples conducted via differential scanning calorimetry showed exothermic peaks between 300 and 800 °C, corresponding to phase transformations upon heating. Post-annealing analyses at 550 °C demonstrated the presence of phases including Al, β-phase solid solutions, Al₁3Fe₄, and residual amorphous regions. At 600 °C, the Al3Nb phase emerged as the β-phase, and the amorphous content decreased, while annealing at 700 °C fully decomposed the amorphous phases into stable crystalline forms. Microstructural analyses demonstrated a consistent reduction in and homogenization of particle sizes, with particles decreasing to 1–3 μm in diameter after 10 h. Altogether, these findings highlight MA’s effectiveness in tuning the microstructure and magnetic properties of Al–Fe–Nb (Mn) alloys, making these materials suitable for applications requiring a high thermal stability and tailored magnetic responses. Full article
Show Figures

Figure 1

18 pages, 4445 KiB  
Article
Quantitative Analysis of Amorphous Form in Indomethacin by Near Infrared Spectroscopy Combined with Partial Least Squares Regression Analysis
by Mingdi Liu, Rui Fu, Jichao Liu, Ping Song, Haichao Li, Weibing Dong and Zan Sun
Molecules 2024, 29(22), 5290; https://doi.org/10.3390/molecules29225290 - 8 Nov 2024
Cited by 2 | Viewed by 1329
Abstract
Indomethacin (INDO) is a synthetic non-steroidal antipyretic, analgesic, and anti-inflammatory drug that commonly exists in both amorphous and crystalline states. Its amorphous state (A-INDO) is utilized by pharmaceutical companies as an active pharmaceutical ingredient (API) in the production of INDO drugs due to [...] Read more.
Indomethacin (INDO) is a synthetic non-steroidal antipyretic, analgesic, and anti-inflammatory drug that commonly exists in both amorphous and crystalline states. Its amorphous state (A-INDO) is utilized by pharmaceutical companies as an active pharmaceutical ingredient (API) in the production of INDO drugs due to its higher apparent solubility and bioavailability. The crystal state also encompasses various crystal forms such as the α-crystal form (α-INDO) and γ-crystal form (γ-INDO), with the highly crystalline and insoluble γ-INDO being commercially available. A-INDO, existing in a thermodynamically high-energy state, is susceptible to several factors during the preparation, storage, and transportation of API leading to its conversion into γ-INDO, thus impacting the bioavailability and efficacy of INDO drugs. Therefore, quantitative analysis of the A-INDO/γ-INDO content in INDO API becomes essential for controlling the production quality of INDO. The primary objective of this study is to investigate the feasibility of NIR for the quantitative analysis of A-INDO in INDO API, and to further elucidate its quantitative analysis mechanism. The NIR spectral data were collected for A-INDO and γ-INDO binary mixture samples with different resolutions, and these spectra were then selected and reconstructed using the interval partial least square (iPLS) method. Different pretreatment methods were employed to enhance the reconstructed spectra by highlighting relevant eigen information while eliminating invalid information caused by environmental factors or physical characteristics of samples. The most suitable PLSR model for quantitative analysis of A-INDO within the range of 0.0000–100.0000% w/w% was established, screened, and validated. From various perspectives, including distribution of spectral effective information, impact of resolution on PLSR model performance, variance contribution/cumulative variance contribution of PLSR model principal components (PCs), PCI loadings, relationship between spectral scores, and A-INDO content, feasibility assessment was conducted for the quantitative analysis of A-INDO in INDO using NIR spectroscopy. Additionally, a detailed investigation on the quantitative analysis mechanism of the optimal PLSR model was undertaken including the correlation between the characteristic peaks of spectra and information regarding hydrogen groups or hydrogen bonds in A-INDO or γ-INDO molecules. This study aims to provide theoretical support for the quantitative analysis of A-INDO in INDO API as well as serve as a reliable reference method for API quantification and quality control in similar drugs. Full article
Show Figures

Figure 1

13 pages, 4033 KiB  
Article
Use of Poly(vinyl alcohol) in Spray-Dried Dispersions: Enhancing Solubility and Stability of Proteolysis Targeting Chimeras
by Lena Mareczek, Lena K. Mueller, Laura Halstenberg, Thomas M. Geiger, Michael Walz, Min Zheng and Felix Hausch
Pharmaceutics 2024, 16(7), 924; https://doi.org/10.3390/pharmaceutics16070924 - 11 Jul 2024
Cited by 5 | Viewed by 2124
Abstract
PROTACs, proteolysis targeting chimeras, are bifunctional molecules inducing protein degradation through a unique proximity-based mode of action. While offering several advantages unachievable by classical drugs, PROTACs have unfavorable physicochemical properties that pose challenges in application and formulation. In this study, we show the [...] Read more.
PROTACs, proteolysis targeting chimeras, are bifunctional molecules inducing protein degradation through a unique proximity-based mode of action. While offering several advantages unachievable by classical drugs, PROTACs have unfavorable physicochemical properties that pose challenges in application and formulation. In this study, we show the solubility enhancement of two PROTACs, ARV-110 and SelDeg51, using Poly(vinyl alcohol). Hereby, we apply a three-fluid nozzle spray drying set-up to generate an amorphous solid dispersion with a 30% w/w drug loading with the respective PROTACs and the hydrophilic polymer. Dissolution enhancement was achieved and demonstrated for t = 0 and t = 4 weeks at 5 °C using a phosphate buffer with a pH of 6.8. A pH shift study on ARV-110-PVA is shown, covering transfer from simulated gastric fluid (SGF) at pH 2.0 to fasted-state simulated intestinal fluid (FaSSIF) at pH 6.5. Additionally, activity studies and binding assays of the pure SelDeg51 versus the spray-dried SelDeg51-PVA indicate no difference between both samples. Our results show how modern enabling formulation technologies can partially alleviate challenging physicochemical properties, such as the poor solubility of increasingly large ‘small’ molecules. Full article
(This article belongs to the Special Issue Spray Drying in the Pharmaceutical and Nutraceutical Field)
Show Figures

Figure 1

18 pages, 3322 KiB  
Article
Protocrystallinity of Monodispersed Ultra-Small Templated Mesoporous Silica Nanoparticles
by Laurent Bonneviot, Belén Albela, Feifei Gao, Pascal Perriat, Thierry Epicier and Mohamad El Eter
Nanomaterials 2024, 14(12), 1052; https://doi.org/10.3390/nano14121052 - 19 Jun 2024
Cited by 2 | Viewed by 1426
Abstract
Monodisperse and semi-faceted ultra-small templated mesoporous silica nanoparticles (US-MSNs) of 20–25 nm were synthesized using short-time hydrolysis of tetraethoxysilane (TEOS) at room temperature, followed by a dilution for nucleation quenching. According to dynamic light scattering (DLS), a two-step pH adjustment was necessary for [...] Read more.
Monodisperse and semi-faceted ultra-small templated mesoporous silica nanoparticles (US-MSNs) of 20–25 nm were synthesized using short-time hydrolysis of tetraethoxysilane (TEOS) at room temperature, followed by a dilution for nucleation quenching. According to dynamic light scattering (DLS), a two-step pH adjustment was necessary for growth termination and colloidal stabilization. The pore size was controlled by cetyltrimethylammonium bromide (CTAB), and a tiny amount of neutral surfactant F127 was added to minimize the coalescence between US-MSNs and to favor the transition towards internal ordering. Flocculation eventually occurred, allowing us to harvest a powder by centrifugation (~60% silica yield after one month). Scanning transmission electron microscopy (STEM) and 3D high-resolution transmission electron microscopy (3D HR-TEM) images revealed that the US-MSNs are partially ordered. The 2D FT transform images provide evidence for the coexistence of four-, five-, and sixfold patterns characterizing an “on-the-edge” crystallization step between amorphous raspberry and hexagonal pore array morphologies, typical of a protocrystalline state. Calcination preserved this state and yielded a powder characterized by packing, developing a hierarchical porosity centered at 3.9 ± 0.2 (internal pores) and 68 ± 7 nm (packing voids) of high potential for support for separation and catalysis. Full article
(This article belongs to the Special Issue Advanced Porous Nanomaterials: Synthesis, Properties, and Application)
Show Figures

Figure 1

22 pages, 3215 KiB  
Article
Thermo-Structural Characterization of Phase Transitions in Amorphous Griseofulvin: From Sub-Tg Relaxation and Crystal Growth to High-Temperature Decomposition
by Roman Svoboda and Kateřina Kozlová
Molecules 2024, 29(7), 1516; https://doi.org/10.3390/molecules29071516 - 28 Mar 2024
Cited by 7 | Viewed by 1318
Abstract
The processes of structural relaxation, crystal growth, and thermal decomposition were studied for amorphous griseofulvin (GSF) by means of thermo-analytical, microscopic, spectroscopic, and diffraction techniques. The activation energy of ~395 kJ·mol−1 can be attributed to the structural relaxation motions described in terms [...] Read more.
The processes of structural relaxation, crystal growth, and thermal decomposition were studied for amorphous griseofulvin (GSF) by means of thermo-analytical, microscopic, spectroscopic, and diffraction techniques. The activation energy of ~395 kJ·mol−1 can be attributed to the structural relaxation motions described in terms of the Tool–Narayanaswamy–Moynihan model. Whereas the bulk amorphous GSF is very stable, the presence of mechanical defects and micro-cracks results in partial crystallization initiated by the transition from the glassy to the under-cooled liquid state (at ~80 °C). A key aspect of this crystal growth mode is the presence of a sufficiently nucleated vicinity of the disrupted amorphous phase; the crystal growth itself is a rate-determining step. The main macroscopic (calorimetrically observed) crystallization process occurs in amorphous GSF at 115–135 °C. In both cases, the common polymorph I is dominantly formed. Whereas the macroscopic crystallization of coarse GSF powder exhibits similar activation energy (~235 kJ·mol−1) as that of microscopically observed growth in bulk material, the activation energy of the fine GSF powder macroscopic crystallization gradually changes (as temperature and/or heating rate increase) from the activation energy of microscopic surface growth (~105 kJ·mol−1) to that observed for the growth in bulk GSF. The macroscopic crystal growth kinetics can be accurately described in terms of the complex mechanism, utilizing two independent autocatalytic Šesták–Berggren processes. Thermal decomposition of GSF proceeds identically in N2 and in air atmospheres with the activation energy of ~105 kJ·mol−1. The coincidence of the GSF melting temperature and the onset of decomposition (both at 200 °C) indicates that evaporation may initiate or compete with the decomposition process. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

18 pages, 2065 KiB  
Article
Study on Drying of Seaweeds and Importance of Glass Transition and Stabilization
by Ignat Tolstorebrov, Wijitha Senadeera, Trygve Magne Eikevik, Michael Bantle, Maren Sæther and Inna Petrova
Processes 2024, 12(2), 373; https://doi.org/10.3390/pr12020373 - 12 Feb 2024
Cited by 4 | Viewed by 3262
Abstract
In this study, the thermal transition of seaweed Saccharina latissima (raw and blanched) during drying and quality stabilization was considered in view of understanding physico-chemical changes, color changes, sorption changes and thermal property changes with respect to drying kinetics. The variations in the [...] Read more.
In this study, the thermal transition of seaweed Saccharina latissima (raw and blanched) during drying and quality stabilization was considered in view of understanding physico-chemical changes, color changes, sorption changes and thermal property changes with respect to drying kinetics. The variations in the effective moisture diffusivity coefficient with shrinkage changes and temperature lie between 1.0 and 5.0 × 10−10 m2 s−1 (raw) and 0.5 and 3.6 × 10−10 m2 s−1 (blanched), respectively. Noticeable physical and chemical changes were observed during longer drying times, especially in the case of blanched seaweeds. At the temperature of 38.0 °C, a more yellow-colored product was obtained from raw form input materials. The blanched seaweeds accumulated moisture in a linear manner with an increase in the relative humidity of the drying air in the range of 20.0~80.0%, which resulted in high level of hysteresis between the sorption and desorption behavior. Shrinkage changes during the drying of blanched and raw samples were also calculated. The thermal stabilization of raw and blanched forms started at different initial moisture contents showed changed glass transition phenomena during a wide range of temperature sand one melting endotherm between 141.9 and 167.9 °C. Some glass transitions were driven by the presence of water-soluble contents in the material. The dried seaweeds at low temperatures showed a partial glassy state and an amorphous/crystalline state. This study evaluated the effects of process parameters on the properties of dried product. Full article
Show Figures

Figure 1

14 pages, 3913 KiB  
Article
Consolidation of Spray-Dried Amorphous Calcium Phosphate by Ultrafast Compression: Chemical and Structural Overview
by Sylvain Le Grill, Christophe Drouet, Olivier Marsan, Yannick Coppel, Vincent Mazel, Marie-Claire Barthelemy and Fabien Brouillet
Nanomaterials 2024, 14(2), 152; https://doi.org/10.3390/nano14020152 - 10 Jan 2024
Cited by 4 | Viewed by 1763
Abstract
A large amount of research in orthopedic and maxillofacial domains is dedicated to the development of bioactive 3D scaffolds. This includes the search for highly resorbable compounds, capable of triggering cell activity and favoring bone regeneration. Considering the phosphocalcic nature of bone mineral, [...] Read more.
A large amount of research in orthopedic and maxillofacial domains is dedicated to the development of bioactive 3D scaffolds. This includes the search for highly resorbable compounds, capable of triggering cell activity and favoring bone regeneration. Considering the phosphocalcic nature of bone mineral, these aims can be achieved by the choice of amorphous calcium phosphates (ACPs). Because of their metastable property, these compounds are however to-date seldom used in bulk form. In this work, we used a non-conventional “cold sintering” approach based on ultrafast low-pressure RT compaction to successfully consolidate ACP pellets while preserving their amorphous nature (XRD). Complementary spectroscopic analyses (FTIR, Raman, solid-state NMR) and thermal analyses showed that the starting powder underwent slight physicochemical modifications, with a partial loss of water and local change in the HPO42- ion environment. The creation of an open porous structure, which is especially adapted for non-load bearing bone defects, was also observed. Moreover, the pellets obtained exhibited sufficient mechanical resistance allowing for manipulation, surgical placement and eventual cutting/reshaping in the operation room. Three-dimensional porous scaffolds of cold-sintered reactive ACP, fabricated through this low-energy, ultrafast consolidation process, show promise toward the development of highly bioactive and tailorable biomaterials for bone regeneration, also permitting combinations with various thermosensitive drugs. Full article
(This article belongs to the Special Issue Synthesis and Spectral Characterization of Ceramics and Nanomaterials)
Show Figures

Figure 1

11 pages, 4880 KiB  
Article
Synthesis and Luminescent Properties of Barium Molybdate Nanoparticles
by Maria Gancheva, Reni Iordanova, Iovka Koseva, Georgi Avdeev, Gergana Burdina and Petar Ivanov
Materials 2023, 16(21), 7025; https://doi.org/10.3390/ma16217025 - 3 Nov 2023
Cited by 8 | Viewed by 1645
Abstract
BaMoO4 was obtained via facile mechanochemical synthesis at room temperature and a solid-state reaction. An evaluation of the phase composition and structural and optical properties of BaMoO4 was conducted. The influence of different milling speeds on the preparation of BaMoO4 [...] Read more.
BaMoO4 was obtained via facile mechanochemical synthesis at room temperature and a solid-state reaction. An evaluation of the phase composition and structural and optical properties of BaMoO4 was conducted. The influence of different milling speeds on the preparation of BaMoO4 was explored. A shorter reaction time for the phase formation of BaMoO4 was achieved using a milling speed of 850 rpm. A milling speed of 500 rpm led to partial amorphization of the initial reagents and to prolongation of the synthesis time of up to 3 h of milling time. Solid-state synthesis was performed via heat treatment at 900 °C for 15 h. X-ray diffraction analysis (XRD), infrared (IR) and UV diffuse reflectance (UV-Vis) and photoluminescence (PL) spectroscopy were carried out to characterize the samples. Independently of the method of preparation, the obtained samples had tetragonal symmetry. The average crystallite sizes of all samples, calculated using Scherrer’s formula, were in the range of 240 to 1540 Å. IR spectroscopy showed that more distorted structural MoO4 units were formed when the compound was synthesized via a solid-state reaction. The optical band gap energy of the obtained materials was found to decrease from 4.50 to 4.30 eV with increasing crystallite sizes. Green- and blue-light emissions were observed for BaMoO4 phases under excitation wavelengths of 330 and 488 nm. It was established that the intensity of the PL peaks depends on two factors: the symmetry of MoO4 units and the crystallite sizes. Full article
Show Figures

Figure 1

Back to TopTop