Microstructure and Hydrogen Sorption Kinetics of Ball-Milled Mg60Ni25Cu10Ce5 Nanocrystalline Powders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microstructural Characterization
2.2.1. Scanning Electron Microscopy
2.2.2. X-Ray Diffraction
2.3. Hydrogen Storage Experiments
3. Results and Discussion
Characterization of the As-Milled Mg60Ni25Cu10Ce5 Powders
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turner, J.A.; Williams, M.C.; Rajeshwar, K. Hydrogen Economy Based on Renewable Energy Sources. Electrochem. Soc. Interface 2004, 13, 3. [Google Scholar] [CrossRef]
- Jackson, R.B.; Friedlingstein, P. Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environ. Res. Lett. 2019, 14, 12001. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Li, Y.; Hao, Y.; Wu, P.; Ding, Z. Magnesium-Based Hydrogen Storage Alloys: Advances, Strategies, and Future Outlook for Clean Energy Applications. Molecules 2024, 29, 2525. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen Production, Storage, Transportation and Key Challenges with Applications: A Review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- US DOE Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed on 20 April 2025).
- Cipriani, G.; Dio, V.D.; Genduso, F.; Cascia, D.L.; Liga, R.; Miceli, R.; Galluzzo, G.R. Perspective on hydrogen energy carrier and its automotive applications. Int. J. Hydrogen Energy 2014, 39, 8482–8494. [Google Scholar] [CrossRef]
- Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D.J. High capacity hydrogenstorage materials: Attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656–675. [Google Scholar] [CrossRef]
- Hirscher, M.; Yartys, V.A.; Baricco, M.; Bellosta von Colbe, J.; Blanchard, D.; Bowman, R.C.; Broom, D.P.; Buckley, C.E.; Chang, F.; Chen, P.; et al. Materials for hydrogen-based energy storage—Past, recent progress and future outlook. J. Alloys Compd. 2020, 827, 153548. [Google Scholar] [CrossRef]
- Schlabach, L.; Zuttel, A. Hydrogen-Storage Materials for Mobile Applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Musyoka, N.M.; Langmi, H.W.; Mathe, M.; Liao, S. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. Int. J. Hydrogen Energy 2017, 42, 289–311. [Google Scholar] [CrossRef]
- Lin, H.-J.; Lu, Y.-S.; Zhang, L.-T.; Liu, H.-Z.; Edalati, K.; Révész, Á. Recent Advances in Metastable Alloys for Hydrogen Storage: A Review. Rare Met. 2022, 41, 1797–1817. [Google Scholar] [CrossRef]
- Drawer, C.; Lange, J.; Kaltschmitt, M. Metal Hydrides for Hydrogen Storage—Identification and Evaluation of Stationary and Transportation Applications. J. Energy Storage 2024, 77, 109988. [Google Scholar] [CrossRef]
- Crivello, J.-C.; Dam, B.; Denys, R.V.; Dornheim, M.; Grant, D.M.; Huot, J.; Jensen, T.R.; de Jongh, P.; Latroche, M.; Milanese, C.; et al. Review of Magnesium Hydride-Based Materials: Development and Optimisation. Appl. Phys. A 2016, 122, 97. [Google Scholar] [CrossRef]
- Li, Q.; Lu, Y.; Luo, Q.; Yang, X.; Yang, Y.; Tan, J.; Dong, Z.; Dang, J.; Li, J.; Chen, Y.; et al. Thermodynamics and Kinetics of Hydriding and Dehydriding Reactions in Mg-Based Hydrogen Storage Materials. J. Magnes. Alloys 2021, 9, 1922–1941. [Google Scholar] [CrossRef]
- Li, Q.; Peng, X.; Pan, F. Magnesium-Based Materials for Energy Conversion and Storage. J. Magnes. Alloys 2021, 9, 2223–2224. [Google Scholar] [CrossRef]
- Aguey-Zinsou, K.-F.; Ares-Fernández, J.-R. Hydrogen in Magnesium: New Perspectives toward Functional Stores. Energy Environ. Sci. 2010, 3, 526–543. [Google Scholar] [CrossRef]
- Pasquini, L. The Effects of Nanostructure on the Hydrogen Sorption Properties of Magnesium-Based Metallic Compounds: A Review. Crystals 2018, 8, 106. [Google Scholar] [CrossRef]
- Gupta, A.; Faisal, M. Magnesium Based Multi-Metallic Hybrids with Soot for Hydrogen Storage. Int. J. Hydrogen Energy 2024, 53, 93–104. [Google Scholar] [CrossRef]
- Song, J.; She, J.; Chen, D.; Pan, F. Latest Research Advances on Magnesium and Magnesium Alloys Worldwide. J. Magnes. Alloys 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Li, X.; Yuan, Z.; Liu, C.; Sui, Y.; Zhai, T.; Hou, Z.; Han, Z.; Zhang, Y. Research progress in improved hydrogen storage properties of Mg-based alloys with metal-based materials and light metals. Int. J. Hydrogen Energy 2024, 50, 1401–1417. [Google Scholar] [CrossRef]
- Xinglin, Y.; Xiaohui, L.; Jiaqi, Z.; Quanhui, H.; Junhu, Z. Progress in improving hydrogen storage properties of Mg-based materials. Mater. Today Adv. 2023, 19, 100387. [Google Scholar] [CrossRef]
- Edalati, K.; Akiba, E.; Botta, W.J.; Estrin, Y.; Floriano, R.; Fruchart, D.; Grosdidier, T.; Horita, Z.; Huot, J.; Li, H.W.; et al. Impact of Severe Plastic Deformation on Kinetics and Thermodynamics of Hydrogen Storage in Magnesium and Its Alloys. J. Mater. Sci. Technol. 2023, 146, 221–239. [Google Scholar] [CrossRef]
- Révész, Á.; Gajdics, M. Improved H-Storage Performance of Novel Mg-Based Nanocomposites Prepared by High-Energy Ball Milling: A Review. Energies 2021, 14, 6400. [Google Scholar] [CrossRef]
- Sadhasivam, T.; Kim, H.-T.; Jung, S.; Roh, S.-H.; Park, J.-H.; Jung, H.-Y. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications. Renew. Sustain. Energy Rev. 2017, 72, 523–534. [Google Scholar] [CrossRef]
- Edalati, K.; Bachmaier, A.; Beloshenko, V.A.; Beygelzimer, Y.; Blank, V.D.; Botta, W.J.; Bryła, K.; Čížek, J.; Divinski, S.; Enikeev, N.A.; et al. Nanomaterials by Severe Plastic Deformation: Review of Historical Developments and Recent Advances. Mater. Res. Lett. 2022, 10, 163–256. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Hou, Q.; Hao, Y.; Ding, Z. Ball Milling Innovations Advance Mg-Based Hydrogen Storage Materials Towards Practical Applications. Materials 2024, 17, 2510. [Google Scholar] [CrossRef]
- Fátay, D.; Spassov, T.; Delchev, P.; Ribárik, G.; Révész, Á. Microstructural development in nanocrystalline MgH2 during H-absorption/desorption cycling. Int. J. Hydrogen Energy 2007, 32, 2914–2919. [Google Scholar] [CrossRef]
- Polanski, M.; Bystrzycki, J.; Plocinski, T. The effect of milling conditions on microstructure and hydrogen absorption/desorption properties of magnesium hydride (MgH2) without and with Cr2O3 nanoparticles. Int. J. Hydrogen Energy 2008, 33, 1859–1867. [Google Scholar] [CrossRef]
- Révész, Á.; Fátay, D. Microstructural evolution of ball-milled MgH2 during a complete dehydrogenation–hydrogenation cycle. J. Power Sources 2010, 195, 6997–7002. [Google Scholar] [CrossRef]
- Révész, Á.; Kánya, Z.; Verebélyi, T.; Szabó, P.J.; Zhilyaev, A.P.; Sapssov, T. The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30. J. Alloys Compd. 2010, 504, 83–88. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Ren, H.; Guo, S.; Zhao, D.; Wang, X. Hydrogenation and dehydrogenation behaviours of nanocrystalline Mg20Ni10−xCux (x = 0−4) alloys prepared by melt spinning. Int. J. Hydrogen Energy 2010, 35, 2040–2047. [Google Scholar] [CrossRef]
- Gennari, F.C.; Esquivel, M.R. Structural characterization and hydrogen sorption properties of nanocrystalline Mg2Ni. J. Alloys Compd. 2008, 459, 425–432. [Google Scholar] [CrossRef]
- Rojas, P.; Ordonez, S.; Serafini, D.; Zuniga, A.; Lavernia, E. Microstructural evolution during mechanical alloying of Mg and Ni. J. Alloys Compd. 2005, 391, 267–276. [Google Scholar] [CrossRef]
- Khan, D.; Zou, J.; Zeng, X.; Ding, W. Hydrogen storage properties of nanocrystalline Mg2Ni prepared from compressed 2MgH2–Ni powder. Int. J. Hydrogen Energy 2018, 43, 22391–22400. [Google Scholar] [CrossRef]
- Zhang, Q.; Zang, L.; Huang, Y.; Gao, P.; Jiao, L.; Yuan, H.; Wang, Y. Improved hydrogen storage properties of MgH2 with Ni-based compounds. Int. J. Hydrogen Energy 2017, 42, 24247–24255. [Google Scholar] [CrossRef]
- Révész, Á.; Gajdics, M.; Spassov, T. Microstructural evolution of ball-milled Mg–Ni powder during hydrogen sorption. Int. J. Hydrogen Energy 2013, 38, 8342–8349. [Google Scholar] [CrossRef]
- Gajdics, M.; Calizzi, M.; Pasquini, L.; Schafler, E.; Révész, Á. Characterization of a nanocrystalline Mg-Ni alloy processed by high-pressure torsion during hydrogenation and dehydrogenation. Int. J. Hydrogen Energy 2016, 41, 9803–9809. [Google Scholar] [CrossRef]
- Révész, Á.; Gajdics, M.; Varga, L.K.; Spassov, T. Hydrogenation of Nanocrystalline Mg2Ni Alloy Prepared by High Energy Ball-Milling Followed by Equal-Channel Angular Pressing or Cold Rolling. Adv. Sci. Technol. 2014, 93, 112–117. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Hou, Z.; Yuan, Z.; Qi, Y.; Zhao, D. Study on the gaseous and electrochemical hydrogen storage properties of as-milled Ce-Mg-Ni-based alloys. Int. J. Hydrogen Energy 2019, 44, 29224–29234. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Bu, W.; Cai, Y.; Qi, Y.; Guo, S. Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce-Mg-Ni-based CeMg12-type alloys synthesized by ball milling. Renew. Energy 2019, 132, 167–175. [Google Scholar] [CrossRef]
- Qi, Y.; Sheng, P.; Sun, H.; Li, J.; Zhang, W.; Guo, S.; Zhao, D.; Zhang, Y. Hydrogen storage thermodynamics and kinetics of the as-cast and milled Ce-Mg-Ni-based alloy. Mater. Today Commun. 2023, 35, 106217. [Google Scholar] [CrossRef]
- Sun, W.; Sun, H.; Zhang, X.; Sheng, P.; Li, J.; Zhang, Y. Improved Hydrogen Storage Thermodynamics and Kinetics of As-Milled Ce-Mg-Ni-Based Alloys by Adding Ni. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Song, F.; Yao, J.; Yong, H.; Wang, S.; Xu, X.; Chen, Y.; Zhang, L.; Hu, J. Investigation of ball-milling process on microstructure, thermodynamics and kinetics of Ce–Mg–Ni-based hydrogen storage alloy. Int. J. Hydrogen Energy 2023, 48, 11274–11286. [Google Scholar] [CrossRef]
- Feng, H.; Jin, X.; Junyu, B.; Ruihan, L.; Yifei, Y.; Jianyi, X.; Guofang, Z.; Xin, Z.; Dandan, K. Synergistic function of milling time and Ni addition on microstructure and hydrogen storage properties of CeMg12 type materials. J. Alloys Compd. 2025, 1010, 177324. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Zhang, W.; Yuan, Z.; Wei, X.; Gao, J.; Ren, H. Improvement of substituting La with Ce on hydrogen storage thermodynamics and kinetics of Mg-based alloys. Int. J. Hydrogen Energy 2021, 46, 28719–28733. [Google Scholar] [CrossRef]
- Révész, Á.; Gajdics, M.; Alifah, M.; Kovács Kis, V.; Schaffer, E.; Varga, L.K.; Todorova, S.; Spassov, T.; Baricco, M. Thermal, Microstructural and Electrochemical Hydriding Performance of a Mg65Ni20Cu5Y10 Metallic Glass Catalyzed by CNT and Processed by High-Pressure Torsion. Energies 2022, 15, 5710. [Google Scholar] [CrossRef]
- Zheng, C.; Zhou, D.; Feng, D.; Ren, H.; Zhang, Y. Effect of Y content on the hydrogen storage properties of ball-milled Mg2.4-xYxNi (x = 0.05, 0.1, 0.15, 0.2) alloys. J. Phys. Chem. Solids 2023, 178, 111320. [Google Scholar] [CrossRef]
- Révész, Á.; Kis-Tóth, Á.; Varga, L.K.; Schafler, E.; Bakonyi, I.; Spassov, T. Hydrogen Storage of Melt-Spun Amorphous Mg65Ni20Cu5Y10 Alloy Deformed by High-Pressure Torsion. Int. J. Hydrogen Energy 2012, 37, 5769–5776. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, L.; Li, B.; He, X.; Zhang, X.; Xu, J.; Zhao, Y.; Yan, H. Regulation strategy of preparation methods for new spherical La-Y-Ni hydrogen storage alloy with ultra-long cycle lives. J. Power Sources 2025, 628, 235928. [Google Scholar] [CrossRef]
- Lin, M.; Xu, Z.; Gao, P.; Luo, L.; Xie, X.; Xia, J.; Chen, P.; Zhang, Y.; Huang, Y.; Han, S. Hydrogen storage properties of Mg95-xNi5Ndx (x = 0, 1, 3, 5) alloys. Int. J. Hydrogen Energy 2025, 97, 11–24. [Google Scholar] [CrossRef]
- Li, R.; Hu, F.; Wu, R.; Xu, J.; Xu, J.; Hou, Z.; Zhou, M.; Bai, J.; Zhang, Y. Effect of ball-milling time on hydrogen storage properties of NdMg12-Ni alloy. Int. J. Hydrogen Energy 2025, 98, 1262–1274. [Google Scholar] [CrossRef]
- Pang, X.; Ran, L.; Chen, Y.; Luo, Y.; Pan, F. Enhancing Hydrogen Storage Performance via Optimizing Y and Ni Element in Magnesium Alloy. J. Magnes. Alloys 2022, 10, 821–835. [Google Scholar] [CrossRef]
- Denys, R.V.; Poletaev, A.A.; Maehlen, J.P.; Solberg, J.K.; Tarasov, B.P.; Yartys, V.A. Nanostructured Rapidly Solidified LaMg11Ni Alloy. II. In Situ Synchrotron X-Ray Diffraction Studies of Hydrogen Absorption–Desorption Behaviours. Int. J. Hydrogen Energy 2012, 37, 5710–5722. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Révész, Á.; Paramonov, R.; Spassov, T.; Gajdics, M. Microstructure and Hydrogen Storage Performance of Ball-Milled MgH2 Catalyzed by FeTi. Energies 2023, 16, 1061. [Google Scholar] [CrossRef]
- Paramonov, R.; Spassov, T.; Nagy, P.; Révész, Á. Synergetic Effect of FeTi in Enhancing the Hydrogen-Storage Kinetics of Nanocrystalline MgH2. Energies 2024, 17, 794. [Google Scholar] [CrossRef]
- Mintz, M.H.; Zeiri, Y. Hydriding kinetics of powders. J. Alloys Compd. 1995, 216, 159–175. [Google Scholar] [CrossRef]
- Asakuma, Y.; Miyauchi, S.; Yamamoto, T.; Aoki, H.; Miura, T. Numerical analysis of absorbing and desorbing mechanism for the metal hydride by homogenization method. Int. J. Hydrogen Energy 2003, 28, 529. [Google Scholar] [CrossRef]
- Chou, K.C.; Li, Q.; Lin, Q.; Jiang, L.J.; Xu, K.D. Kinetics of absorption and desorption of hydrogen in alloy powder. Int. J. Hydrogen Energy 2005, 30, 301. [Google Scholar] [CrossRef]
- Luo, Q.; Li, J.; Li, B.; Liu, B.; Shao, H.; Li, Q. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism. J. Magnes. Alloys 2019, 7, 58–71. [Google Scholar] [CrossRef]
- Révész, Á.; Pintér, Á. Time-dependent multi-particle model describing hydrogen absorption of nanocrystalline magnesium powders. Energies 2024, 17, 2322. [Google Scholar] [CrossRef]
- Jacobs, P.W.M.; Tompkins, F.C. Classification and theory of solid reactions. In Chemistry of the Solid State; Garner, W.E., Ed.; Butterworth: London, UK, 1955; pp. 184–212. [Google Scholar]
- Avrami, M. Kinetics of phase change II. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Christian, J.W. The Theory of Transformations in Metals and Alloys; Pergamon: Oxford, UK, 1975. [Google Scholar]
Elements (at.%) | 1 h | 3 h | 10 h |
---|---|---|---|
Mg | 85.82 | 67.14 | 62.93 |
Ni | 8.50 | 19.31 | 23.72 |
Cu | 2.16 | 9.91 | 8.96 |
Ce | 3.51 | 3.64 | 4.39 |
Elements (at.%) | A | B | C | D |
---|---|---|---|---|
Mg | 42.41 | 79.21 | 77.73 | 80.03 |
Ni | 53.68 | 9.33 | 12.16 | 7.06 |
Cu | 2.91 | 7.99 | 7.48 | 5.26 |
Ce | 1.01 | 3.47 | 2.63 | 7.65 |
Milling Time (h) | Hydrogen Capacity (wt.%) | Total Time (s) | Time to Reach 50% Capacity (s) | |
---|---|---|---|---|
1 | ABS1 | 1.18 | 1942 | 312 |
ABS2 | 4.43 | 3273 | 546 | |
DES1 | –1.38 | 2950 | 726 | |
DES2 | –4.25 | 450 | 68 | |
3 | ABS1 | 0.69 | 1920 | 255 |
ABS2 | 0.79 | 2402 | 275 | |
DES1 | –0.75 | 3245 | 127 | |
DES2 | –0.71 | 1001 | 126 | |
10 | ABS1 | 0.26 | 1610 | 99 |
ABS2 | – | – | – | |
DES1 | –0.29 | 1420 | 87 | |
DES2 | –0.27 | 1250 | 102 |
Milling Time (h) | ABS1 Exponent [n] | ABS2 Exponent [n] | DES1 Exponent [n] | DES2 Exponent [n] | |
---|---|---|---|---|---|
1 | 0.91 | 0.83 | 1.09 | 1.34 | |
3 | 1.37 | 0.79 | 0.79 | 1.22 | 1.38 |
10 | 0.75 | - | 0.67 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Révész, Á.; Nagy, R.; Dankházi, Z.; Todorova, S.; Spassov, T. Microstructure and Hydrogen Sorption Kinetics of Ball-Milled Mg60Ni25Cu10Ce5 Nanocrystalline Powders. Energies 2025, 18, 2925. https://doi.org/10.3390/en18112925
Révész Á, Nagy R, Dankházi Z, Todorova S, Spassov T. Microstructure and Hydrogen Sorption Kinetics of Ball-Milled Mg60Ni25Cu10Ce5 Nanocrystalline Powders. Energies. 2025; 18(11):2925. https://doi.org/10.3390/en18112925
Chicago/Turabian StyleRévész, Ádám, Richárd Nagy, Zoltán Dankházi, Stanislava Todorova, and Tony Spassov. 2025. "Microstructure and Hydrogen Sorption Kinetics of Ball-Milled Mg60Ni25Cu10Ce5 Nanocrystalline Powders" Energies 18, no. 11: 2925. https://doi.org/10.3390/en18112925
APA StyleRévész, Á., Nagy, R., Dankházi, Z., Todorova, S., & Spassov, T. (2025). Microstructure and Hydrogen Sorption Kinetics of Ball-Milled Mg60Ni25Cu10Ce5 Nanocrystalline Powders. Energies, 18(11), 2925. https://doi.org/10.3390/en18112925