Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (530)

Search Parameters:
Keywords = parking management system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1053 KiB  
Article
Evaluating Emissions from Select Urban Parking Garages in Cincinnati, OH, Using Portable Sensors and Their Potentials for Sustainability Improvement
by Alyssa Yerkeson and Mingming Lu
Sustainability 2025, 17(15), 7108; https://doi.org/10.3390/su17157108 - 5 Aug 2025
Abstract
Urban parking around the world faces similar challenges of inadequate space, pollution, and carbon emissions. Although various smart parking technologies have been tested and implemented, they primarily aim to reduce the time spent searching for parking, without considering the impact on air quality. [...] Read more.
Urban parking around the world faces similar challenges of inadequate space, pollution, and carbon emissions. Although various smart parking technologies have been tested and implemented, they primarily aim to reduce the time spent searching for parking, without considering the impact on air quality. In this study, the air quality in three urban garages was investigated with portable instruments at the entrance and exit gates and inside the garages. Garage emissions measured include CO2, PM2.5, PM10, NO2, and total VOCs. The results suggested that the PM2.5 levels in these garages tend to be higher than the ambient levels. The emissions also exhibit seasonal variations, with the highest concentrations occurring in the summer, which are 20.32 µg/m3 in Campus Green, 14.25 µg/m3 in CCM, and 15.23 µg/m3 in Washington Park garages, respectively. PM2.5 measured from these garages is strongly correlated (with an R2 of 0.64) with ambient levels. CO2 emissions are higher than ambient levels but within the indoor air quality limit. This suggests that urban garages in Cincinnati tend to enrich ambient air concentrations, which can affect garage users and garage attendants. Portable sensors are capable of long-term emission monitoring and are compatible with other technologies in smart garage development. With portable air sensors becoming increasingly accessible and affordable, there is an opportunity to integrate these devices with smart garage management systems to enhance the sustainability of parking garages. Full article
(This article belongs to the Special Issue Control of Traffic-Related Emissions to Improve Air Quality)
25 pages, 1529 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 - 2 Aug 2025
Viewed by 154
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
Show Figures

Figure 1

18 pages, 285 KiB  
Review
The Historical Evolution of the Role of Vegetation in the Enhancement and Conservation of Archaeological Sites: A Landscape Architecture Perspective Focused Mainly on Cases from Italy and Greece
by Electra Kanellou and Maria Papafotiou
Plants 2025, 14(15), 2302; https://doi.org/10.3390/plants14152302 - 25 Jul 2025
Viewed by 204
Abstract
Vegetation plays a multifaceted role in the enhancement and conservation of archaeological sites, functioning not only as an aesthetic element but also as a core component of landscape architecture practice. This review traces the historical evolution of vegetation management, though the lens of [...] Read more.
Vegetation plays a multifaceted role in the enhancement and conservation of archaeological sites, functioning not only as an aesthetic element but also as a core component of landscape architecture practice. This review traces the historical evolution of vegetation management, though the lens of landscape architecture, highlighting its potential as a design and planning tool for historical interpretation and sustainable integration of heritage sites into broader contexts. From Romantic landscaping ideals to modern interdisciplinary conservation frameworks, the review draws on key milestones such as the Athens and Venice Charters, and examines case studies like Rome’s Passeggiata Archeologica, the Acropolis slopes, Ruffenhofen Park, and Campo Lameiro. These examples illustrate how landscape architectural approaches can use vegetation to reconstruct lost architectural forms, enhance visitor engagement, and provide ecosystem functions. The article also addresses challenges related to historical authenticity, species selection, and ecological performance, arguing for future strategies that integrate archaeological sites into dynamic, living heritage systems, through collaborative, ecologically informed design. Full article
(This article belongs to the Special Issue Floriculture and Landscape Architecture—2nd Edition)
34 pages, 6467 KiB  
Article
Predictive Sinusoidal Modeling of Sedimentation Patterns in Irrigation Channels via Image Analysis
by Holger Manuel Benavides-Muñoz
Water 2025, 17(14), 2109; https://doi.org/10.3390/w17142109 - 15 Jul 2025
Viewed by 329
Abstract
Sediment accumulation in irrigation channels poses a significant challenge to water resource management, impacting hydraulic efficiency and agricultural sustainability. This study introduces an innovative multidisciplinary framework that integrates advanced image analysis (FIJI/ImageJ 1.54p), statistical validation (RStudio), and vector field modeling with a novel [...] Read more.
Sediment accumulation in irrigation channels poses a significant challenge to water resource management, impacting hydraulic efficiency and agricultural sustainability. This study introduces an innovative multidisciplinary framework that integrates advanced image analysis (FIJI/ImageJ 1.54p), statistical validation (RStudio), and vector field modeling with a novel Sinusoidal Morphodynamic Bedload Transport Equation (SMBTE) to predict sediment deposition patterns with high precision. Conducted along the Malacatos River in La Tebaida Linear Park, Loja, Ecuador, the research captured a natural sediment transport event under controlled flow conditions, transitioning from pressurized pipe flow to free-surface flow. Observed sediment deposition reduced the hydraulic cross-section by approximately 5 cm, notably altering flow dynamics and water distribution. The final SMBTE model (Model 8) demonstrated exceptional predictive accuracy, achieving RMSE: 0.0108, R2: 0.8689, NSE: 0.8689, MAE: 0.0093, and a correlation coefficient exceeding 0.93. Complementary analyses, including heatmaps, histograms, and vector fields, revealed spatial heterogeneity, local gradients, and oscillatory trends in sediment distribution. These tools identified high-concentration sediment zones and quantified variability, providing actionable insights for optimizing canal design, maintenance schedules, and sediment control strategies. By leveraging open-source software and real-world validation, this methodology offers a scalable, replicable framework applicable to diverse water conveyance systems. The study advances understanding of sediment dynamics under subcritical (Fr ≈ 0.07) and turbulent flow conditions (Re ≈ 41,000), contributing to improved irrigation efficiency, system resilience, and sustainable water management. This research establishes a robust foundation for future advancements in sediment transport modeling and hydrological engineering, addressing critical challenges in agricultural water systems. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

26 pages, 891 KiB  
Article
Modeling the Interactions Between Smart Urban Logistics and Urban Access Management: A System Dynamics Perspective
by Gaetana Rubino, Domenico Gattuso and Manfred Gronalt
Appl. Sci. 2025, 15(14), 7882; https://doi.org/10.3390/app15147882 - 15 Jul 2025
Viewed by 315
Abstract
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach [...] Read more.
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach to investigate how urban logistics and access management policies may interact. At the center, there is a Causal Loop Diagram (CLD) that illustrates dynamic interdependencies among fleet composition, access regulations, logistics productivity, and environmental externalities. The CLD is a conceptual basis for future stock-and-flow simulations to support data-driven decision-making. The approach highlights the importance of route optimization, dynamic access control, and smart parking management systems as strategic tools, increasingly enabled by Industry 4.0 technologies, such as IoT, big data analytics, AI, and cyber-physical systems, which support real-time monitoring and adaptive planning. In alignment with the Industry 5.0 paradigm, this technological integration is paired with social and environmental sustainability goals. The study also emphasizes public–private collaboration in designing access policies and promoting alternative fuel vehicle adoption, supported by specific incentives. These coordinated efforts contribute to achieving the objectives of the 2030 Agenda, fostering a cleaner, more efficient, and inclusive urban logistics ecosystem. Full article
Show Figures

Figure 1

22 pages, 2194 KiB  
Article
Environmental and Social Benefits of Urban Parking Space Shortages Mitigation Management Model: A System Dynamics and Nudge Approach
by Zhen Chen, Zhengyang Xu, Kang Tian and Shuwei Jia
Sustainability 2025, 17(14), 6414; https://doi.org/10.3390/su17146414 - 13 Jul 2025
Viewed by 386
Abstract
With the growth of the urban population and economic level, the issue of urban parking space shortages (UPSSs) has assumed growing prominence. This persistent issue not only exacerbates traffic congestion but also contributes to environmental pollution, highlighting the need for system-oriented mitigation strategies. [...] Read more.
With the growth of the urban population and economic level, the issue of urban parking space shortages (UPSSs) has assumed growing prominence. This persistent issue not only exacerbates traffic congestion but also contributes to environmental pollution, highlighting the need for system-oriented mitigation strategies. First, an algorithm for mitigating UPSSs based on nudge theory was constructed, in order to determine how the nudge strategies work. Second, nudge tools, including gain disclosure, salience, and outcome notification, were integrated to construct a mitigation model for UPSSs, which synthesizes nudge theory, the model of self-regulatory processes involved in behavioral change, and system dynamics (NT-SPBC-SD theory). Finally, four scenarios of natural development, guide adjustment, balanced regulation, and enhanced change were simulated. The findings of this study are as follows: (1) The UPSS mitigation had multiple overlapping effects and critical point effects, and the nudge strategy gradually decayed or even rebounded over time. (2) Under the enhanced change scenario, the degree of UPSSs, the amount of illegal parking, and CO2 emissions from civil vehicles decreased by 21.2%, 6.93%, and 14.54%, respectively. (3) After quantitative comparisons, the balanced regulation scenario with lower implementation costs instead demonstrated superior overall performance. The results support subsequent research and guide the enhancement of urban parking management policies to advance urban sustainability. Full article
Show Figures

Figure 1

19 pages, 9752 KiB  
Article
Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains
by Imon Abedin, Tanoy Mukherjee, Shantanu Kundu, Sanjib Baruah, Pralip Kumar Narzary, Joynal Abedin and Hilloljyoti Singha
Earth 2025, 6(3), 78; https://doi.org/10.3390/earth6030078 - 12 Jul 2025
Viewed by 308
Abstract
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from [...] Read more.
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from its designation as a national park in 2000 through 2024. The satellite imagery was used to classify LULC types and track landscape changes over time. In 2000, grasslands were the dominant land cover (28.78%), followed by semi-evergreen forests (25.58%). By 2013, shrubland became the most prominent class (81.31 km2), and degraded forest expanded to 75.56 km2. During this period, substantial areas of grassland (29.94 km2), degraded forest (10.87 km2), semi-evergreen forest (12.33 km2), and bareland (10.50 km2) were converted to shrubland. In 2024, degraded forest further increased, covering 80.52 km2 (23.47%). This change resulted since numerous areas of shrubland (11.46 km2) and semi-evergreen forest (27.48 km2) were converted into degraded forest. Furthermore, significant shifts were observed in grassland, shrubland, and degraded forest, indicating a substantial and consistent decline in grassland. These changes are largely attributed to recurring Brahmaputra River floods and increasing anthropogenic pressures. This study recommends a targeted Grassland Recovery Project, control of invasive species, improved surveillance, increased staffing, and the relocation of forest villages to reduce human impact and support community-based conservation efforts. Hence, protecting the landscape through informed LULC-based management can help maintain critical habitat patches, mitigate anthropogenic degradation, and enhance the survival prospects of native floral and faunal assemblages in DSNP. Full article
Show Figures

Figure 1

22 pages, 766 KiB  
Article
Predicting GPS Use Among Visitors in Capçaleres del Ter i del Freser Natural Park (Catalonia, Spain)
by Sara Hamza-Mayora, Estela Inés Farías-Torbidoni and Demir Barić
Tour. Hosp. 2025, 6(3), 137; https://doi.org/10.3390/tourhosp6030137 - 12 Jul 2025
Viewed by 326
Abstract
The increasing use of Global Positioning System (GPS) tools reshapes nature-based recreational practices. While previous research has examined the role of GPS technologies in outdoor recreation, limited attention has been given to the specific factors driving GPS use in nature-based settings such as [...] Read more.
The increasing use of Global Positioning System (GPS) tools reshapes nature-based recreational practices. While previous research has examined the role of GPS technologies in outdoor recreation, limited attention has been given to the specific factors driving GPS use in nature-based settings such as natural parks. This case study examines the sociodemographic, behavioural, motivational and experiential factors influencing GPS use among visitors to the Capçaleres del Ter i del Freser Natural Park (Catalonia, Spain). A structured visitor survey (n = 999) was conducted over a one-year period and a hierarchical binary logistic regression model was applied to evaluate the explanatory contribution of four sequential variable blocks. The results showed that the behavioural factors (i.e., physical activity intensity) emerged as the strongest predictor of GPS use. Additionally, the final model demonstrated that visitors who were younger, engaged in higher-intensity physical activities, motivated by health-related goals, undertook longer routes, and reported more positive experiences were significantly more likely to use GPS tools during their visit. These findings highlight the need to adapt communication strategies to diverse visitor profiles and leverage volunteered geographic information (VGI) for improved visitor monitoring, flow management, and adaptive conservation planning. Full article
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Sustainable IoT-Enabled Parking Management: A Multiagent Simulation Framework for Smart Urban Mobility
by Ibrahim Mutambik
Sustainability 2025, 17(14), 6382; https://doi.org/10.3390/su17146382 - 11 Jul 2025
Cited by 1 | Viewed by 401
Abstract
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic [...] Read more.
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic goals of smart city planning, this study presents a sustainability-driven, multiagent simulation-based framework to model, analyze, and optimize smart parking dynamics in congested urban settings. The system architecture integrates ground-level IoT sensors installed in parking spaces, enabling real-time occupancy detection and communication with a centralized system using low-power wide-area communication protocols (LPWAN). This study introduces an intelligent parking guidance mechanism that dynamically directs drivers to the nearest available slots based on location, historical traffic flow, and predicted availability. To manage real-time data flow, the framework incorporates message queuing telemetry transport (MQTT) protocols and edge processing units for low-latency updates. A predictive algorithm, combining spatial data, usage patterns, and time-series forecasting, supports decision-making for future slot allocation and dynamic pricing policies. Field simulations, calibrated with sensor data in a representative high-density urban district, assess system performance under peak and off-peak conditions. A comparative evaluation against traditional first-come-first-served and static parking systems highlights significant gains: average parking search time is reduced by 42%, vehicular congestion near parking zones declines by 35%, and emissions from circling vehicles drop by 27%. The system also improves user satisfaction by enabling mobile app-based reservation and payment options. These findings contribute to broader sustainability goals by supporting efficient land use, reducing environmental impacts, and enhancing urban livability—key dimensions emphasized in sustainable smart city strategies. The proposed framework offers a scalable, interdisciplinary solution for urban planners and policymakers striving to design inclusive, resilient, and environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

22 pages, 6546 KiB  
Article
Remote Sensing-Based Assessment of Evapotranspiration Patterns in a UNESCO World Heritage Site Under Increasing Water Competition
by Maria C. Moyano, Monica Garcia, Luis Juana, Laura Recuero, Lucia Tornos, Joshua B. Fisher, Néstor Fernández and Alicia Palacios-Orueta
Remote Sens. 2025, 17(14), 2339; https://doi.org/10.3390/rs17142339 - 8 Jul 2025
Viewed by 364
Abstract
In water-scarce regions, natural ecosystems and agriculture increasingly compete for limited water resources, intensifying stress during periods of drought. To assess these competing demands, we applied a modified PT-JPL model that incorporates the thermal inertial approach as a substitute for relative humidity ( [...] Read more.
In water-scarce regions, natural ecosystems and agriculture increasingly compete for limited water resources, intensifying stress during periods of drought. To assess these competing demands, we applied a modified PT-JPL model that incorporates the thermal inertial approach as a substitute for relative humidity (RH) in estimating soil evaporation—a method that significantly outperforms the original PT-JPL formulation in Mediterranean semi-arid irrigated areas. This remote sensing framework enabled us to quantify spatial and temporal variations in water use across both natural and agricultural systems within the UNESCO World Heritage site of Doñana. Our analysis revealed an increasing evapotranspiration (ET) trend in intensified agricultural areas and rice fields surrounding the National Park (R = 0.3), contrasted by a strong negative ET trend in wetlands (R < −0.5). These opposing patterns suggest a growing diversion of water toward irrigation at the expense of natural ecosystems. The impact was especially marked during droughts, such as the 2011–2016 period, when precipitation declined by 16%. In wetlands, ET was significantly correlated with precipitation (R > 0.4), highlighting their vulnerability to reduced water inputs. These findings offer crucial insights to support sustainable water management strategies that balance agricultural productivity with the preservation of ecologically valuable systems under mounting climatic and anthropogenic pressures typical of semi-arid Mediterranean environments. Full article
Show Figures

Figure 1

14 pages, 931 KiB  
Article
Using Systems Thinking to Manage Tourist-Based Nutrient Pollution in Belizean Cayes
by Daniel A. Delgado, Martha M. McAlister, W. Alex Webb, Christine Prouty, Sarina J. Ergas and Maya A. Trotz
Systems 2025, 13(7), 544; https://doi.org/10.3390/systems13070544 - 4 Jul 2025
Viewed by 186
Abstract
Tourism offers many economic benefits but can have long-lasting ecological effects when improperly managed. Tourism can cause overwhelming pressure on wastewater treatment systems, as in Belize, where some of the over 400 small islands (cayes) that were once temporary sites for fishermen have [...] Read more.
Tourism offers many economic benefits but can have long-lasting ecological effects when improperly managed. Tourism can cause overwhelming pressure on wastewater treatment systems, as in Belize, where some of the over 400 small islands (cayes) that were once temporary sites for fishermen have become popular tourist destinations. An overabundance of nitrogen, in part as a result of incomplete wastewater treatment, threatens human health and ecosystem services. The tourism industry is a complex and dynamic industry with many sectors and stakeholders with conflicting goals. In this study, a systems thinking approach was adopted to study the dynamic interactions between stakeholders and the environment at Laughing Bird Caye National Park in Belize. The project centered on nutrient discharges from the caye’s onsite wastewater treatment system. An archetype analysis approach was applied to frame potential solutions to nutrient pollution and understand potential behaviors over time. “Out of control” and “Underachievement” were identified as system archetypes; “Shifting the Burden” and ‘‘Limits to Success’’ were used to model specific cases. Based on these results, upgrading of the wastewater treatment system should be performed concurrently with investments in the user experience of the toilets, education on the vulnerability of the treatment system and ecosystem, and controls on the number of daily tourists. Full article
Show Figures

Figure 1

21 pages, 4019 KiB  
Article
Sustainable Consumption in Urban Transport: A Case Study of a Selected European Union City
by Paweł Dobrzański and Magdalena Dobrzańska
Sustainability 2025, 17(13), 6149; https://doi.org/10.3390/su17136149 - 4 Jul 2025
Viewed by 337
Abstract
Sustainable urban development takes place in cities that encourage residents to adopt sustainable consumption behaviors. Cities are transforming towards achieving sustainable urban consumption, meeting the needs of communities without compromising the wealth of future generations. A key element of urban development is sustainable [...] Read more.
Sustainable urban development takes place in cities that encourage residents to adopt sustainable consumption behaviors. Cities are transforming towards achieving sustainable urban consumption, meeting the needs of communities without compromising the wealth of future generations. A key element of urban development is sustainable urban mobility, which helps improve residents’ quality of life and protect the environment. The development of sustainable mobility is possible thanks to, among others, investment in infrastructure that improves travel. One element of this infrastructure that plays an important role in sustainable mobility is parking lots. They have a significant impact on the quality of life in the city, and searching for available parking spaces is a serious problem in modern urban mobility. This article includes an analysis of parking data obtained from the Intelligent Paid Parking System in the context of sustainable urban consumption. Three streets in the city of Rzeszów were analyzed. For the period under study, the factors determined included parking space utilization indicators, whose average value for the streets analyzed was in the range of 57–59%, and a turnover indicator, whose average value was in the range of 4.8–6.0. These indicators assessed the degree to which city residents are involved in ideas related to sustainable development, as well as their habits in relation to sustainable consumption. Full article
(This article belongs to the Special Issue Sustainable Consumption in the Digital Economy)
Show Figures

Figure 1

36 pages, 3756 KiB  
Article
The IoT/IoE Integrated Security & Safety System of Pompeii Archeological Park
by Alberto Bruni and Fabio Garzia
Appl. Sci. 2025, 15(13), 7359; https://doi.org/10.3390/app15137359 - 30 Jun 2025
Viewed by 356
Abstract
Pompeii is widely known for its tragic past. In 79 A.D., a massive eruption of Mount Vesuvius buried the city and its inhabitants under volcanic ash. Lost for centuries, it was rediscovered in 1748 when the Bourbon monarchs initiated excavations, marking the beginning [...] Read more.
Pompeii is widely known for its tragic past. In 79 A.D., a massive eruption of Mount Vesuvius buried the city and its inhabitants under volcanic ash. Lost for centuries, it was rediscovered in 1748 when the Bourbon monarchs initiated excavations, marking the beginning of systematic digs. Since then, Pompeii has gained worldwide recognition for its archeological wonders. Despite centuries of looting and damage, it remains a breathtaking site. With millions of visitors annually, the Pompeii Archeological Park is the one most visited site in Italy. Managing such a vast and complex heritage site requires significant effort to ensure both visitor safety and the preservation of its fragile structures. Accessibility is also crucial, particularly for individuals with disabilities and staff responsible for site management. To address these challenges, integrated systems and advanced technologies like the Internet of Things/Everything (IoT/IoE) can provide innovative solutions. These technologies connect people, smart devices (such as mobile terminals, sensors, and wearables), and data to optimize security, safety, and site management. This paper presents a security/safety IoT/IoE-based system for security, safety, management, and visitor services at the Pompeii Archeological Park. Full article
(This article belongs to the Special Issue Advanced Technologies Applied to Cultural Heritage)
Show Figures

Figure 1

20 pages, 6761 KiB  
Article
The Homology of Atmospheric Pollutants and Carbon Emissions in Industrial Parks: A Case Study in North China
by Zhitao Li, Tianxiang Chen, Fei Fang, Tianzhi Wang, Mingzhe Zhang and Fiallos Manuel
Processes 2025, 13(7), 2070; https://doi.org/10.3390/pr13072070 - 30 Jun 2025
Viewed by 317
Abstract
Industrial parks are well-known as a critical intervention point for global carbon emission reductions due to the high carbon emissions emitted. Conducting carbon accounting research in these parks can provide more precise foundational data for carbon reduction initiatives, promoting low-carbon industrial park development. [...] Read more.
Industrial parks are well-known as a critical intervention point for global carbon emission reductions due to the high carbon emissions emitted. Conducting carbon accounting research in these parks can provide more precise foundational data for carbon reduction initiatives, promoting low-carbon industrial park development. However, industrial parks, positioned as non-independent accounting units between provincial and industry levels, face severe challenges due to ambiguous boundaries, complex accounting entities, and data selection difficulties that significantly impact the carbon accounting accuracy. This study employed the IPCC emission factor method for industrial parks, taking its management structure as the accounting boundary. Additionally, we constructed a carbon accounting method and representation system by considering the carbon emission flow path and integrating the correlation between pollutant and carbon emissions. By categorizing carbon emissions into five groups, this study obtained emissions from fuel combustion (E1), industrial processes (E2), purchased/sold electricity (E3), purchased/sold heat (E4), and carbon-sequestering products (E5). Between 2016 and 2021, the industrial park’s carbon emissions fell from 15.0783 to 6.7152 million tons, while the intensity dropped from 4.86 to 1.91 tons of carbon dioxide (CO2) per CNY 10,000. The park achieved dual control targets for the total carbon emissions and intensity, with E2 being the main reduction source (70% of total). Meanwhile, total atmospheric pollutants decreased from 9466.19 to 1736.70 tons, with C25 and C26 industries contributing over 99%. In particular, C26 achieved significant reductions in nitrogen oxides (NOx) and sulfur dioxide (SO2), aiding pollution mitigation. A strong positive correlation was found between pollutants and carbon emissions, especially in C26, SO2 (0.77), and NOx (0.89), suggesting NOx as a more suitable carbon emission indicator during chemical production. These findings offer a theoretical framework for using pollutant monitoring to characterize carbon emissions and support decision-making for sustainable industrial development. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

19 pages, 3174 KiB  
Article
Comprehensive Assessment and Mitigation of Indoor Air Quality in a Commercial Retail Building in Saudi Arabia
by Wael S. Al-Rashed and Abderrahim Lakhouit
Sustainability 2025, 17(13), 5862; https://doi.org/10.3390/su17135862 - 25 Jun 2025
Viewed by 578
Abstract
The acceleration of industrialization and urbanization worldwide has dramatically improved living standards but has also introduced serious environmental and public health challenges. One of the most critical challenges is air pollution, particularly indoors, where individuals typically spend over 90% of their time. Ensuring [...] Read more.
The acceleration of industrialization and urbanization worldwide has dramatically improved living standards but has also introduced serious environmental and public health challenges. One of the most critical challenges is air pollution, particularly indoors, where individuals typically spend over 90% of their time. Ensuring good Indoor Air Quality (IAQ) is essential, especially in heavily frequented public spaces such as shopping malls. This study focuses on assessing IAQ in a large shopping mall located in Tabuk, Saudi Arabia, covering retail zones as well as an attached underground parking area. Monitoring is conducted over a continuous two-month period using calibrated instruments placed at representative locations to capture variations in pollutant levels. The investigation targets key contaminants, including carbon monoxide (CO), carbon dioxide (CO2), fine particulate matter (PM2.5), total volatile organic compounds (TVOCs), and formaldehyde (HCHO). The data are analyzed and compared against international and national guidelines, including World Health Organization (WHO) standards and Saudi environmental regulations. The results show that concentrations of CO, CO2, and PM2.5 in the shopping mall are generally within acceptable limits, with values ranging from approximately 7 to 15 ppm, suggesting that ventilation systems are effective in most areas. However, the study identifies high levels of TVOCs and HCHO, particularly in zones characterized by poor ventilation and high human occupancy. Peak concentrations reach 1.48 mg/m3 for TVOCs and 1.43 mg/m3 for HCHO, exceeding recommended exposure thresholds. These findings emphasize the urgent need for enhancing ventilation designs, prioritizing the use of low-emission materials, and establishing continuous air quality monitoring protocols within commercial buildings. Improving IAQ is not only crucial for protecting public health but also for enhancing occupant comfort, satisfaction, and overall building sustainability. This study offers practical recommendations to policymakers, building managers, and designers striving to create healthier indoor environments in rapidly expanding urban centers. Full article
Show Figures

Figure 1

Back to TopTop