Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = parasitoid fitness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1132 KiB  
Article
Effects of Temperature and Humidity on the Fitness of Aphid Parasitoid, Binodoxys communis
by Shike Xia, Ningwei Ma, Peiling Wang and Yanhui Lu
Insects 2025, 16(3), 264; https://doi.org/10.3390/insects16030264 - 3 Mar 2025
Viewed by 892
Abstract
Binodoxys communis is a dominant endoparasitoid of aphids in cotton fields, yet empirical evidence on how temperature and humidity regulate its growth, development, and reproduction remains limited. To address this gap, we assessed the effects of both constant and fluctuating temperature, as well [...] Read more.
Binodoxys communis is a dominant endoparasitoid of aphids in cotton fields, yet empirical evidence on how temperature and humidity regulate its growth, development, and reproduction remains limited. To address this gap, we assessed the effects of both constant and fluctuating temperature, as well as various combinations of temperature and humidity, on the longevity, parasitism, and fecundity of this parasitoid. Our results revealed that adult longevity of B. communis was longer at 20 °C and 25 °C while significantly shortened at a high temperature (35 °C). Similarly, the parasitism rate, female ratio, emergence duration, and offspring longevity of the parasitoid were all superior at 20 °C and 25 °C compared to 15 °C and 35 °C. Moreover, the longevity of both male (6.96 ± 0.10 d) and female (6.88 ± 0.07 d) parasitoids was significantly extended at 25 °C and 60% RH. Temperature had a marked impact on the parasitic capability of parasitoids, with the number of Aphis gossypii parasitized daily by B. communis being significantly higher at 25 °C than at 15 °C and 35 °C. Nevertheless, humidity and the interaction between humidity and temperature had no significant influence on parasitic capacity. The parasitism of B. communis followed the Holling-II model, with the highest daily maximum parasitism observed at 25 °C. In conclusion, our study showed that 25 °C positively enhanced the fitness of B. communis, providing a valuable reference for indoor population expansion and field release of B. communis, potentially enhancing its effectiveness as a biological control agent against aphids. Full article
(This article belongs to the Special Issue Protecting Field Crops from Economically Damaging Aphid Infestation)
Show Figures

Figure 1

11 pages, 1420 KiB  
Article
An Evaluation of the Effects of Delayed Parasitism on Daily and Lifetime Fecundity of Aphidius ervi Haliday
by Vincenzo Trotta, Paolo Fanti, Roberto Rosamilia and Donatella Battaglia
Insects 2025, 16(1), 3; https://doi.org/10.3390/insects16010003 - 24 Dec 2024
Viewed by 830
Abstract
The study of parasitoid reproductive behaviour is crucial to understanding how parasitoids influence host population dynamics, and the strategies used by parasitoids to maximize their reproductive success. Studying how the parasitoid optimizes its reproductive resources is important as it provides information to improve [...] Read more.
The study of parasitoid reproductive behaviour is crucial to understanding how parasitoids influence host population dynamics, and the strategies used by parasitoids to maximize their reproductive success. Studying how the parasitoid optimizes its reproductive resources is important as it provides information to improve the efficiency of a biological control programme. Many studies have been carried out on Aphidius ervi to assess the foraging behaviour of the parasitoid, but how the age of the parasitoid affects its foraging behaviour is still poorly understood. In the present study, the influence of the time elapsed between adult parasitoid emergence and the first oviposition in A. ervi was evaluated. Correlations between the parasitoid size and other fitness components were also investigated. Our results show how the parasitoid senescence is associated with the loss of reproductive capacity, as the late field release of parasitoids reduces their total parasitism. We also observed a parasitization rhythm independent of the parasitoid age. Possible explanations for the observed phenomena are discussed. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

13 pages, 1903 KiB  
Article
An Effective Fluorescent Marker for Tracking the Dispersal of Small Insects with Field Evidence of Mark–Release–Recapture of Trissolcus japonicus
by Ryan L. Paul, James R. Hagler, Eric G. Janasov, Nicholas S. McDonald, Saliha Voyvot and Jana C. Lee
Insects 2024, 15(7), 487; https://doi.org/10.3390/insects15070487 - 29 Jun 2024
Cited by 5 | Viewed by 2281
Abstract
Understanding insect dispersal helps us predict the spread of insect pests and their natural enemies. Dispersal can be studied by marking, releasing, and recapturing insects, known as mark–release–recapture (MRR). MRR techniques should be convenient, economical, and persistent. Currently, there are limited options for [...] Read more.
Understanding insect dispersal helps us predict the spread of insect pests and their natural enemies. Dispersal can be studied by marking, releasing, and recapturing insects, known as mark–release–recapture (MRR). MRR techniques should be convenient, economical, and persistent. Currently, there are limited options for marking small parasitoids that do not impact their fitness and dispersal ability. We evaluated commercially available fluorescent markers used in forensics. These fluorophores can easily be detected by ultraviolet (UV) light, requiring minimal costs and labor to process the marked specimens. This fluorophore marking technique was evaluated with the pest Drosophila suzukii and three parasitoids: Trissolcus japonicus, Pachycrepoideus vindemiae, Ganaspis brasiliensis (=G. kimorum). We evaluated the persistence of the marks on all the insects over time and examined the parasitoids for impacts on longevity, parasitism, locomotor activity, and flight take-off. The green fluorophore marker persisted for over 20 days on all four species. Marking generally did not consistently reduce the survival, parasitism rate, locomotor activity, or take-off of the parasitoids tested. Marked T. japonicus were recaptured in the field up to 100 m away from the release point and three weeks after release, indicating that this technique is a viable method for studying parasitoid dispersal. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

11 pages, 1391 KiB  
Article
Impact of Nutritional Supplements on the Fitness of the Parasitoid Binodoxys communis (Gahan)
by Wanhong Hu, Bing Liu, Shike Xia, Ningwei Ma, Peiling Wang and Yanhui Lu
Insects 2024, 15(4), 245; https://doi.org/10.3390/insects15040245 - 3 Apr 2024
Cited by 3 | Viewed by 1535
Abstract
Alterative nutritional foods consumed by adult parasitoids play an important role in their fitness and ability to control pests because of food scarcity in many crops. While adult parasitoids feed on various sugars, they vary in their nutritional value for parasitoids. We assessed [...] Read more.
Alterative nutritional foods consumed by adult parasitoids play an important role in their fitness and ability to control pests because of food scarcity in many crops. While adult parasitoids feed on various sugars, they vary in their nutritional value for parasitoids. We assessed the effects of seven sugars (fructose, glucose, sucrose, trehalose, maltose, melezitose, and sorbitol) on the longevity, parasitism ability, parasitism behavior, and flight ability of B. communis, an important parasitoid of cotton aphids. We found that access to glucose, sucrose, or fructose, increased B. communis adult longevity more than the other sugars offered. All sugars except trehalose increased the parasitism rate to more than 50% compared to the starved control (only provided with water). We then compared parasitoid behaviors of wasps fed glucose, sucrose, or fructose to that of the starved control (with access only to water) and found that those fed B. communis spent more time either examining or attacking aphids than parasitoids in the control group, which spent more time walking or resting. Also, consumption of glucose, sucrose, or fructose also significantly improved the flight ability (the total flight distance, flight time, and average flight speed) of B. communis. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

11 pages, 429 KiB  
Article
Parasitism and Suitability of Trichogramma chilonis on Large Eggs of Two Factitious Hosts: Samia cynthia ricini and Antheraea pernyi
by Yue-Hua Zhang, Ji-Zhi Xue, Talha Tariq, Tian-Hao Li, He-Ying Qian, Wen-Hui Cui, Hao Tian, Lucie S. Monticelli, Nicolas Desneux and Lian-Sheng Zang
Insects 2024, 15(1), 2; https://doi.org/10.3390/insects15010002 - 20 Dec 2023
Cited by 6 | Viewed by 4361
Abstract
Trichogramma, an effective biological control agent, demonstrates promise in environmentally sustainable pest management through its parasitic action toward insect eggs. This study evaluates the parasitism fitness and ability of T. chilonis with regard to two factitious host eggs, aiming to develop a [...] Read more.
Trichogramma, an effective biological control agent, demonstrates promise in environmentally sustainable pest management through its parasitic action toward insect eggs. This study evaluates the parasitism fitness and ability of T. chilonis with regard to two factitious host eggs, aiming to develop a cost-effective biological control program. While T. chilonis demonstrated the ability to parasitize both host eggs, the results indicate a preference for ES eggs over COS eggs. The parasitism and emergence rates of T. chilonis regarding ES eggs (parasitism: 89.3%; emergence: 82.6%) surpassed those for COS eggs (parasitism: 74.7%; emergence: 68.8%), with a notable increase in the number of emergence holes observed in the ES eggs compared to the COS eggs. Moreover, the developmental time of T. chilonis for ES eggs (10.8 days) was shorter than that for COS eggs (12.5 days), resulting in a lower number of dead wasps produced. Notably, no significant difference was observed in the female ratios between the two species. A comprehensive analysis was conducted, comparing the size and shell thickness of the two factitious hosts. The ES eggs exhibited smaller dimensions (length: 1721.5 μm; width: 1178.9 μm) in comparison to the COS eggs (length: 2908.8 μm; width: 2574.4 μm), with the ES eggshells being thinner (33.8 μm) compared to the COS eggshells (47.3 μm). The different host species had an effect on the body length of the reared parasitoids, with T. chilonis reared on COS hosts exhibiting a larger body length (female: 626.9 µm; male: 556.7 µm) than those reared on ES hosts (female: 578.8 µm; male: 438.4 µm). Conclusively, the results indicate that ES eggs present a viable alternative to COS eggs for the mass production of Trichogramma species in biological control programs. Full article
(This article belongs to the Special Issue Diapause Regulation and Biological Control of Natural Enemy Insects)
Show Figures

Figure 1

26 pages, 3721 KiB  
Article
The Viromes of Six Ecosystem Service Provider Parasitoid Wasps
by Gabriela B. Caldas-Garcia, Vinícius Castro Santos, Paula Luize Camargos Fonseca, João Paulo Pereira de Almeida, Marco Antônio Costa and Eric Roberto Guimarães Rocha Aguiar
Viruses 2023, 15(12), 2448; https://doi.org/10.3390/v15122448 - 16 Dec 2023
Cited by 8 | Viewed by 2751
Abstract
Parasitoid wasps are fundamental insects for the biological control of agricultural pests. Despite the importance of wasps as natural enemies for more sustainable and healthy agriculture, the factors that could impact their species richness, abundance, and fitness, such as viral diseases, remain almost [...] Read more.
Parasitoid wasps are fundamental insects for the biological control of agricultural pests. Despite the importance of wasps as natural enemies for more sustainable and healthy agriculture, the factors that could impact their species richness, abundance, and fitness, such as viral diseases, remain almost unexplored. Parasitoid wasps have been studied with regard to the endogenization of viral elements and the transmission of endogenous viral proteins that facilitate parasitism. However, circulating viruses are poorly characterized. Here, RNA viromes of six parasitoid wasp species are studied using public libraries of next-generation sequencing through an integrative bioinformatics pipeline. Our analyses led to the identification of 18 viruses classified into 10 families (Iflaviridae, Endornaviridae, Mitoviridae, Partitiviridae, Virgaviridae, Rhabdoviridae, Chuviridae, Orthomyxoviridae, Xinmoviridae, and Narnaviridae) and into the Bunyavirales order. Of these, 16 elements were described for the first time. We also found a known virus previously identified on a wasp prey which suggests viral transmission between the insects. Altogether, our results highlight the importance of virus surveillance in wasps as its service disruption can affect ecology, agriculture and pest management, impacting the economy and threatening human food security. Full article
(This article belongs to the Special Issue Molecular Virus-Insect Interactions)
Show Figures

Figure 1

19 pages, 3035 KiB  
Review
Host–Parasitoid Phenology, Distribution, and Biological Control under Climate Change
by Luis Carlos Ramos Aguila, Xu Li, Komivi Senyo Akutse, Bamisope Steve Bamisile, Jessica Paola Sánchez Moreano, Zhiyang Lie and Juxiu Liu
Life 2023, 13(12), 2290; https://doi.org/10.3390/life13122290 - 30 Nov 2023
Cited by 4 | Viewed by 4382
Abstract
Climate change raises a serious threat to global entomofauna—the foundation of many ecosystems—by threatening species preservation and the ecosystem services they provide. Already, changes in climate—warming—are causing (i) sharp phenological mismatches among host–parasitoid systems by reducing the window of host susceptibility, leading to [...] Read more.
Climate change raises a serious threat to global entomofauna—the foundation of many ecosystems—by threatening species preservation and the ecosystem services they provide. Already, changes in climate—warming—are causing (i) sharp phenological mismatches among host–parasitoid systems by reducing the window of host susceptibility, leading to early emergence of either the host or its associated parasitoid and affecting mismatched species’ fitness and abundance; (ii) shifting arthropods’ expansion range towards higher altitudes, and therefore migratory pest infestations are more likely; and (iii) reducing biological control effectiveness by natural enemies, leading to potential pest outbreaks. Here, we provided an overview of the warming consequences on biodiversity and functionality of agroecosystems, highlighting the vital role that phenology plays in ecology. Also, we discussed how phenological mismatches would affect biological control efficacy, since an accurate description of stage differentiation (metamorphosis) of a pest and its associated natural enemy is crucial in order to know the exact time of the host susceptibility/suitability or stage when the parasitoids are able to optimize their parasitization or performance. Campaigns regarding landscape structure/heterogeneity, reduction of pesticides, and modelling approaches are urgently needed in order to safeguard populations of natural enemies in a future warmer world. Full article
Show Figures

Figure 1

15 pages, 1732 KiB  
Article
The Susceptibility of Bemisia tabaci Mediterranean (MED) Species to Attack by a Parasitoid Wasp Changes between Two Whitefly Strains with Different Facultative Endosymbiotic Bacteria
by Massimo Giorgini, Giorgio Formisano, Rosalía García-García, Saúl Bernat-Ponce and Francisco Beitia
Insects 2023, 14(10), 808; https://doi.org/10.3390/insects14100808 - 11 Oct 2023
Cited by 3 | Viewed by 1940
Abstract
In this study, two strains of the mitochondrial lineage Q1 of Bemisia tabaci MED species, characterized by a different complement of facultative bacterial endosymbionts, were tested for their susceptibility to be attacked by the parasitoid wasp Eretmocerus mundus, a widespread natural enemy [...] Read more.
In this study, two strains of the mitochondrial lineage Q1 of Bemisia tabaci MED species, characterized by a different complement of facultative bacterial endosymbionts, were tested for their susceptibility to be attacked by the parasitoid wasp Eretmocerus mundus, a widespread natural enemy of B. tabaci. Notably, the BtHC strain infected with Hamiltonella and Cardinium was more resistant to parasitization than the BtHR strain infected with Hamiltonella and Rickettsia. The resistant phenotype consisted of fewer nymphs successfully parasitized (containing the parasitoid mature larva or pupa) and in a lower percentage of adult wasps emerging from parasitized nymphs. Interestingly, the resistance traits were not evident when E. mundus parasitism was compared between BtHC and BtHR using parasitoids originating from a colony maintained on BtHC. However, when we moved the parasitoid colony on BtHR and tested E. mundus after it was reared on BtHR for four and seven generations, we saw then that BtHC was less susceptible to parasitization than BtHR. On the other hand, we did not detect any difference in the parasitization of the BtHR strain between the three generations of E. mundus tested. Our findings showed that host strain is a factor affecting the ability of E. mundus to parasitize B. tabaci and lay the basis for further studies aimed at disentangling the role of the facultative endosymbiont Cardinium and of the genetic background in the resistance of B. tabaci MED to parasitoid attack. Furthermore, they highlight that counteradaptations to the variation of B. tabaci defence mechanisms may be rapidly selected in E. mundus to maximize the parasitoid fitness. Full article
(This article belongs to the Topic Host–Parasite Interactions)
Show Figures

Figure 1

13 pages, 5153 KiB  
Article
Arsenophonus: A Double-Edged Sword of Aphid Defense against Parasitoids
by Minoo Heidari Latibari, Gholamhossein Moravvej, Ehsan Rakhshani, Javad Karimi, Diana Carolina Arias-Penna and Buntika A. Butcher
Insects 2023, 14(9), 763; https://doi.org/10.3390/insects14090763 - 13 Sep 2023
Cited by 3 | Viewed by 2073
Abstract
It is widely accepted that endosymbiont interactions with their hosts have significant effects on the fitness of both pests and beneficial species. A particular type of endosymbiosis is that of beneficial associations. Facultative endosymbiotic bacteria are associated with elements that provide aphids with [...] Read more.
It is widely accepted that endosymbiont interactions with their hosts have significant effects on the fitness of both pests and beneficial species. A particular type of endosymbiosis is that of beneficial associations. Facultative endosymbiotic bacteria are associated with elements that provide aphids with protection from parasitoids. Arsenophonus (Enterobacterales: Morganellaceae) is one such endosymbiont bacterium, with infections being most commonly found among the Hemiptera species. Here, black cowpea aphids (BCAs), Aphis craccivora Koch (Hemiptera: Aphididae), naturally infected with Arsenophonus, were evaluated to determine the defensive role of this bacterium in BCAs against two parasitoid wasp species, Binodoxys angelicae and Lysiphlebus fabarum (both in Braconidae: Aphidiinae). Individuals of the black cowpea aphids infected with Arsenophonus were treated with a blend of ampicillin, cefotaxime, and gentamicin (Arsenophonus-reduced infection, AR) and subsequently subjected to parasitism assays. The results showed that the presence of Arsenophonus does not prevent BCAs from being parasitized by either B. angelicae or L. fabarum. Nonetheless, in BCA colonies parasitized by B. angelicae, the endosymbiont delayed both the larval maturation period and the emergence of the adult parasitoid wasps. In brief, Arsenophonus indirectly limits the effectiveness of B. angelicae parasitism by decreasing the number of emerged adult wasps. Therefore, other members of the BCA colony can survive. Arsenophonus acts as a double-edged sword, capturing the complex dynamic between A. craccivora and its parasitoids. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 1878 KiB  
Article
The Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), Influences Nilaparvata lugens Population Growth Directly, by Preying on Its Eggs, and Indirectly, by Inducing Defenses in Rice
by Chen Qiu, Jiamei Zeng, Yingying Tang, Qing Gao, Wenhan Xiao and Yonggen Lou
Int. J. Mol. Sci. 2023, 24(10), 8754; https://doi.org/10.3390/ijms24108754 - 15 May 2023
Cited by 9 | Viewed by 2518
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, has become one of the most important pests on corn in China since it invaded in 2019. Although FAW has not been reported to cause widespread damage to rice plants in China, it has been sporadically [...] Read more.
The fall armyworm (FAW), Spodoptera frugiperda, has become one of the most important pests on corn in China since it invaded in 2019. Although FAW has not been reported to cause widespread damage to rice plants in China, it has been sporadically found feeding in the field. If FAW infests rice in China, the fitness of other insect pests on rice may be influenced. However, how FAW and other insect pests on rice interact remains unknown. In this study, we found that the infestation of FAW larvae on rice plants prolonged the developmental duration of the brown planthopper (BPH, Nilaparvata lugens (Stål)) eggs and plants damaged by gravid BPH females did not induce defenses that influenced the growth of FAW larvae. Moreover, co-infestation by FAW larvae on rice plants did not influence the attractiveness of volatiles emitted from BPH-infested plants to Anagrus nilaparvatae, an egg parasitoid of rice planthoppers. FAW larvae were able to prey on BPH eggs laid on rice plants and grew faster compared to those larvae that lacked available eggs. Studies revealed that the delay in the development of BPH eggs on FAW-infested plants was probably related to the increase in levels of jasmonoyl-isoleucine, abscisic acid and the defensive compounds in the rice leaf sheaths on which BPH eggs were laid. These findings indicate that, if FAW invades rice plants in China, the population density of BPH may be decreased by intraguild predation and induced plant defenses, whereas the population density of FAW may be increased. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 4584 KiB  
Article
Adaptive Reproductive Strategies of an Ectoparasitoid Sclerodermus guani under the Stress of Its Entomopathogenic Fungus Beauveria bassiana
by Yun Wei, Li Li, Shumei Pan, Zhudong Liu, Jianting Fan and Ming Tang
Insects 2023, 14(4), 320; https://doi.org/10.3390/insects14040320 - 27 Mar 2023
Cited by 5 | Viewed by 2503
Abstract
Complex interspecific relationships between parasites and their insect hosts involve multiple factors and are affected by their ecological and evolutionary context. A parasitoid Sclerodermus guani (Hymenoptera: Bethylidae) and an entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae) shared the same host in nature, Monochamus alternatus [...] Read more.
Complex interspecific relationships between parasites and their insect hosts involve multiple factors and are affected by their ecological and evolutionary context. A parasitoid Sclerodermus guani (Hymenoptera: Bethylidae) and an entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae) shared the same host in nature, Monochamus alternatus (Coleoptera: Cerambycidae). They often encountered the semi-enclosed microhabitat of the host larvae or pupae. We tested the survival and reproduction of the parasitoid’s parent and its offspring fitness under different concentrations of B. bassiana suspension. The results show that S. guani parent females carrying higher concentrations of the pathogen shorten the pre-reproductive time and regulate their own fertility and their offspring’s survival and development. This minimal model of the interspecific interactions contains three dimensionless parameters, vulnerability (θ), dilution ratio (δ), and PR, which were used to evaluate the mortality effect of the parasitoid S. guani on its host M. alternatus under the stress of the entomopathogenic fungus B. bassiana. We compared the infection and lethal effect of the fungus B. bassiana with different concentrations to the parasitoid S. guani and the host larvae M. alternatus. At higher concentrations of the pathogen, the parasitoid parent females shorten the pre-reproductive time and regulate their own fertility and their offspring’s survival and development. At moderate concentrations of the pathogen, however, the ability of the parasitoid to exploit the host is more flexible and efficient, possibly reflecting the potential interspecific interactions between the two parasites which were able to coexist and communicate with their hosts in ecological contexts (with a high overlap in time and space) and cause interspecific competition and intraguild predation. Full article
(This article belongs to the Topic Host–Parasite Interactions)
Show Figures

Figure 1

17 pages, 4948 KiB  
Article
Friend or Foe: Symbiotic Bacteria in Bactrocera dorsalis–Parasitoid Associations
by Rehemah Gwokyalya, Christopher W. Weldon, Jeremy Keith Herren, Joseph Gichuhi, Edward Edmond Makhulu, Shepard Ndlela and Samira Abuelgasim Mohamed
Biology 2023, 12(2), 274; https://doi.org/10.3390/biology12020274 - 9 Feb 2023
Cited by 3 | Viewed by 3117
Abstract
Parasitoids are promising biocontrol agents of the devastating fruit fly, Bactrocera dorsalis. However, parasitoid performance is a function of several factors, including host-associated symbiotic bacteria. Providencia alcalifaciens, Citrobacter freundii, and Lactococcus lactis are among the symbiotic bacteria commonly associated with [...] Read more.
Parasitoids are promising biocontrol agents of the devastating fruit fly, Bactrocera dorsalis. However, parasitoid performance is a function of several factors, including host-associated symbiotic bacteria. Providencia alcalifaciens, Citrobacter freundii, and Lactococcus lactis are among the symbiotic bacteria commonly associated with B. dorsalis, and they influence the eco-physiological functioning of this pest. However, whether these bacteria influence the interaction between this pest and its parasitoids is unknown. This study sought to elucidate the nature of the interaction of the parasitoids, Fopius arisanus, Diachasmimorpha longicaudata, and Psyttlia cosyrae with B. dorsalis as mediated by symbiotic bacteria. Three types of fly lines were used: axenic, symbiotic, and bacteria-mono-associated (Lactococcus lactis, Providencia alcalifaciens, and Citrobacter freundii). The suitable stages of each fly line were exposed to the respective parasitoid species and reared until the emergence of adult flies/parasitoids. Thereafter, data on the emergence and parasitoid fitness traits were recorded. No wasps emerged from the fly lines exposed to P. cosyrae. The highest emergence of F. arisanus and D. longicaudata was recorded in the L. lactis fly lines. The parasitoid progeny from the L. lactis and P. alcalifaciens fly lines had the longest developmental time and the largest body size. Conversely, parasitoid fecundity was significantly lower in the L. lactis lines, whereas the P. alcalifaciens lines significantly improved fecundity. These results elucidate some effects of bacterial symbionts on host–parasitoid interactions and their potential in enhancing parasitoid-oriented management strategies against B. dorsalis. Full article
Show Figures

Figure 1

10 pages, 757 KiB  
Article
Plants for Fitness Enhancement of a Coffee Leaf Miner Parasitoid
by Carolina Calderón-Arroyo, Pedro H. B. Togni, Gabriel M. Pantoja, Angela S. Saenz and Madelaine Venzon
Agriculture 2023, 13(2), 244; https://doi.org/10.3390/agriculture13020244 - 19 Jan 2023
Cited by 5 | Viewed by 2177
Abstract
The enhancement of pest control through the conservation of natural enemies in agricultural fields is called conservation biological control. One of the strategies used on this system is to introduce or manage plants that can provide food for natural enemies. We assessed the [...] Read more.
The enhancement of pest control through the conservation of natural enemies in agricultural fields is called conservation biological control. One of the strategies used on this system is to introduce or manage plants that can provide food for natural enemies. We assessed the effect of feeding resources on the fitness of a coffee leaf miner parasitoid, Proacrias coffeae Ihering (Hymenoptera: Eulophidae), by evaluating the effect of different nectar resources on the survival of P. coffeae. To do so we used three flowering plants: Bidens pilosa, Galinsoga parviflora, and Varronia curassavica, and the leguminous shrub, Senna cernua Balb. H.S. Irwin & Barneby which produces extrafloral nectar. When feeding on the floral nectar of V. curassavica and on the extrafloral nectar of S. cernua the parasitoids increased their survival, however, no significant differences were found when feeding on B. pilosa and G. parviflora. We evaluated the effect of extrafloral nectar of S. cernua on the egg load of P. coffeae and found an increase in their egg load when exposed to the extrafloral nectar and with increasing age. Our results show the potential of V. curassavica and S. cernua as nutritional resources to enhance the fitness of the parasitoid P. coffeae, by increasing their survival. Based on the research study, it is evident that the introduction of feeding resources for P. coffeae in the coffee agroecosystem will increase their fitness as a potential biocontrol agent by enhancing their survival and reproductive potential. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

12 pages, 3029 KiB  
Article
Longevity and Parasitism Capacity of Psyttalia concolor (Hymenoptera: Braconidae) Fed on Sugar Solutions and Insect Honeydew
by Lara A. Pinheiro, José Alberto Pereira, Pilar Medina and Sónia A. P. Santos
Agronomy 2022, 12(10), 2401; https://doi.org/10.3390/agronomy12102401 - 4 Oct 2022
Cited by 2 | Viewed by 2493
Abstract
Sugars are important food sources required by adult parasitoid species to enhance their survival, fecundity and fitness. The beneficial capacity of Psyttalia concolor Szépligeti, as a biological control agent of different fruit fly pest species, is expected to increase when different sugar food [...] Read more.
Sugars are important food sources required by adult parasitoid species to enhance their survival, fecundity and fitness. The beneficial capacity of Psyttalia concolor Szépligeti, as a biological control agent of different fruit fly pest species, is expected to increase when different sugar food sources are supplied. The objective of this study was to test the effect of seven sugars (glucose, fructose, sucrose, trehalose, melibiose, melezitose and sorbitol) on the longevity and parasitism capacity of P. concolor. Moreover, we evaluated the effect of two types of honeydew excreted by hemipteran pests present in olive trees, Saissetia oleae Olivier (Coccidae) and Euphyllura olivina (Costa) (Psyllidae) on the longevity of the parasitoid. Our results show a positive effect of carbohydrate (single sugars and honeydew) consumption on parasitoid survival. Female longevity increased when fed on sorbitol and melibiose, while males benefited from feeding on glucose and fructose, suggesting that hexose-nectars would benefit males. Sucrose increased the percentage of non-emerged hosts and parasitism rate while melezitose significantly decreased these percentages, compared to the other sugars offered. P.concolor benefited more from feeding on honeydew than on sugars, and this food item can represent an important source of energy for the parasitoid. This result indicates the importance of specific nutrients for promoting the action of P. concolor against pests. Full article
Show Figures

Figure 1

14 pages, 4390 KiB  
Article
Parasitoid Wasps Can Manipulate Host Trehalase to the Benefit of Their Offspring
by Yan Song, Fengming Gu, Weihong Zhou, Ping Li, Fuan Wu and Sheng Sheng
Insects 2022, 13(9), 833; https://doi.org/10.3390/insects13090833 - 13 Sep 2022
Cited by 5 | Viewed by 2716
Abstract
Trehalase is an essential hydrolase of trehalose in insects. However, whether and how trehalase performs in the association of parasitoid wasps and their hosts still remains unknown. Here, the exact function of trehalase of the general cutworm Spodoptera litura after it was parasitized [...] Read more.
Trehalase is an essential hydrolase of trehalose in insects. However, whether and how trehalase performs in the association of parasitoid wasps and their hosts still remains unknown. Here, the exact function of trehalase of the general cutworm Spodoptera litura after it was parasitized by its predominant endoparasitoid Meterous pulchricornis was elucidated. Two trehalase genes (SlTre1, SlTre2) were identified, and they were highly expressed five days after parasitization by M. pulchricornis. Then, we successfully silenced SlTre1 and SlTre2 in parasitized third instar S. litura larvae. The content of glucose, which is the hydrolysate of trehalose, was significantly decreased after silencing SlTres in parasitized S. litura larvae, and the activities of trehalase were also notably reduced. In addition, the cocoon weight, the emergence rate, proportion of normal adults, and the body size of parasitoid offsprings were significantly decreased in SlTre1- or SlTre2-silenced groups compared to the controls. These results implied that parasitization by parasitoids regulated the trehalase of host larvae to create a suitable nutritional environment for the parasitoid offspring. The present study broadens the knowledge of trehalase in the interaction between parasitoids and their hosts and is of benefit to biological control of S. litura acting by parasitoid wasps. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

Back to TopTop