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Simple Summary: Trehalase plays a vital role in carbohydrate metabolism in insects. However, less
attention has been paid to its role in the interaction between parasitoid wasps and their hosts. Here,
we found that two trehalase genes, SlTre1 and SlTre2, were highly expressed in the third instar larvae
of Spodoptera litura after they were parasitized by Meterous pulchricornis. Furthermore, we silenced
SlTre1 and SlTre2 in parasitized S. litura larvae, and after that, the activity of trehalase and the content
of glucose of the host larvae were decreased significantly. In addition, after knocking down SlTre1
or SlTre2 in parasitized S. litura larvae, the fitness of parasitoid offspring was negatively affected.
The results obtained here suggested that parasitoid wasps can induce the upregulation of trehalase
in their host larvae and support the development of their offsprings. The present study provides
a theoretical base for functional research on trehalase genes in the coevolution between parasitoid
wasps and their hosts.

Abstract: Trehalase is an essential hydrolase of trehalose in insects. However, whether and how
trehalase performs in the association of parasitoid wasps and their hosts still remains unknown.
Here, the exact function of trehalase of the general cutworm Spodoptera litura after it was parasitized
by its predominant endoparasitoid Meterous pulchricornis was elucidated. Two trehalase genes
(SlTre1, SlTre2) were identified, and they were highly expressed five days after parasitization by
M. pulchricornis. Then, we successfully silenced SlTre1 and SlTre2 in parasitized third instar S. litura
larvae. The content of glucose, which is the hydrolysate of trehalose, was significantly decreased after
silencing SlTres in parasitized S. litura larvae, and the activities of trehalase were also notably reduced.
In addition, the cocoon weight, the emergence rate, proportion of normal adults, and the body size of
parasitoid offsprings were significantly decreased in SlTre1- or SlTre2-silenced groups compared to
the controls. These results implied that parasitization by parasitoids regulated the trehalase of host
larvae to create a suitable nutritional environment for the parasitoid offspring. The present study
broadens the knowledge of trehalase in the interaction between parasitoids and their hosts and is of
benefit to biological control of S. litura acting by parasitoid wasps.

Keywords: Spodoptera litura; Meterous pulchricornis; trehalase; parasitoid offspring fitness

1. Introduction

Trehalose is a non-reducing disaccharide and is ubiquitous in organisms. In insects,
trehalose forms the major hemolymph sugar and is synthesized in the fat body by tre-
halose 6-phosphate synthase (TPS; EC 2.4.1.15) and trehalose 6-phosphate phosphatase
(TPP; EC 3.1.3.12) [1,2]. Trehalose is usually hydrolyzed by trehalase (Tre; EC 3.2.1.28)
to refuel the energy requirement for various physiological activities or behaviors, and
it is the only reported hydrolase of trehalose in all organisms at present [2]. There are
two distinct forms of trehalase existing in insects, Tre1 as the soluble form and Tre2 as the
membrane-bound form [2].
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Insect trehalose is converted into glucose by trehalase, and this stringent control
directly releases energy to maintain flight, growth, metamorphosis, and reproduction in
insects [2]. For instance, the inhibitor trehazolin can inhibit Tre-2 in the flight muscles of
Locusta migratoria and lead to serious hypoglycemia. This shortage of sugar supply can be
compensated by feeding the locust glucose, suggesting the key role of trehalase in meeting
the energy requirements during insect flight [3]. Silencing trehalase genes, LsTre-1 and
LsTre-2, not only causes lethal effects but also ceases normal growth and development in
the small brown plant hopper Laodelphax striatellus [4]. Chen et al. [5] found that knocking
down Tre-1 and Tre-2 in the larvae and pupae of Spodoptera exigua produced more severe
abnormal phenotypes, such as abnormal abdomen, misshapen-wings, and half-eclosion. A
close linkage between Tre-2 and oogenesis in the silkworm Bombyx mori was demonstrated,
and it was hypothesized that membrane-bound trehalase is essential in sugar accumulation
in the embryonic stages [6].

Recent studies also revealed that trehalase is responsible for abiotic stressor tolerance in
insects. As a non-reducing sugar, trehalase stabilizes cellular membranes and protects proteins
by replacing water molecules and facilitating cytosolar vitrification [1]. Plenty of studies have
demonstrated that trehalase plays essential roles in desiccation tolerance in insect species
such as Polypedilum vanderplanki, Belgica Antarctica, and Drosophila melanogaster [7–9]. Another
conspicuous role of trehalase is the contribution to insecticide tolerance in insects. It is accepted
that trehalase could reduce the toxicity of insecticides by regulating the energy supply reaction
and protecting proteins and cytoplasms [10–12]. For example, in the deltamethrin-resistant
strain of Culex pipiens, the expression of the trehalase gene Tre1 was significantly upregulated,
and after silencing Tre1, the mortality of the deltamethrin-resistant mosquitos was increased,
suggesting the crucial role of trehalase in deltamethrin resistance in C. pipiens [13].

Apart from the role of abiotic stressor tolerance of trehalase, its roles in response
to biotic stress still receive less attention. Parasitoid wasps are natural enemies of insect
pests. They lay their eggs into or onto their host insects, and after hatching, the para-
sitoid larvae feed on the hosts and eventually kill them [14]. In order to create a safe and
suitable environment for their offspring, maternal wasps inject various so-called parasiti-
zation factors, such as venom and polydnavirus into the cavities of hosts to overcome the
hosts’ immune response [15–17]. In addition, host nutrition metabolism manipulation is
deemed to be another mission for parasitoid wasps [15]. Specifically, the endoparasitoids
(lay their eggs into the host body and the infants develop within the host cavity) should
more precisely manipulate the nutrition dynamics of hosts to balance the development
between hosts and themselves [14]. Previous studies demonstrated that parasitization by
endoparasitoids could slow down the development of hosts by suppressing the activity
of enzymes in sugar or lipid metabolism [14]; however, the detailed molecular mecha-
nism is not fully understood. The impact of parasitization on host trehalase also receives
less attention.

The general cutworm Spodoptera litura (Lepidoptera: Noctuidae) is one of the most
destructive pests of soybean, cotton, and vegetable crops [18]. Meterous pulchricornis
(Hymenoptera: Braconidae) is a predominant endoparasitoid of S. litura larvae [19]. Pre-
vious studies have revealed the characterizations of two trehalase genes in S. litura [19]
and their roles in response to the trehalase inhibitor Validamycin [20]; however, the effect
of parasitization by parasitic wasps on trehalase of S. litura has not been studied until
now. In the present study, we identified two trehalase genes from a previously constructed
S. litura transcriptome database and explored their functions in response to parasitization
by M. pulchricornis. The results obtained here shed light on the understanding of the role of
trehalase in the interaction between parasitoid wasps and their hosts and provide novel
targets for the integrated management of S. litura.
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2. Materials and Methods
2.1. Insect Rearing and Parasitization

S. litura larvae were obtained from mulberry fields at the campus of Jiangsu University
of Science and Technology, Zhenjiang city, Jiangsu province, China, reared in the insectary
[26 ± 2 ◦C, 60–80% relative humidity, and photoperiod of 14:10 (L:D) h], and fed with
artificial diets [21]. The endoparasitoid wasp M. pulchricornis was originated from the
parasitized S. litura larvae in the mulberry field and was maintained using third instar
S. litura larvae as host insects [21]. The adult wasps were reared in glass tubes (2.2 cm
diameter × 8 cm height), and 100 µL 10% (w/w) honey solution was supplied via cotton
lines every day.

For the parasitization assay, 15–20 third instar S. litura larvae were exposed to one
female M. pulchricornis in a transparent plastic box (6 cm diameter × 3 cm height) with a
circular mulberry leaf at the bottom of the box. After release of the female wasp into the
transparent plastic box, the behavior of parasitization was observed and recorded by the
observers directly. The female wasp exhibits a featured parasitization behavior in which it
stung the ovipositor into the host body for several seconds [21], and once the behavior of
parasitization was observed, we collected the S. litura larvae and reared them individually
in petri dishes (6 cm diameter) and marked them as parasitized hosts.

2.2. Identification of SlTre Genes and Bioinformatics Analysis

The sequences of SlTre were identified from the previously constructed S. litura tran-
scriptome database (BioProject Acc. in NCBI: PRJNA810583) (accessed on 15 January
2022). The Open Reading Frame (ORF) Finder (https://www.ncbi.nlm.nih.gov/orffinder/)
(accessed on 15 January 2022) was used to predict the ORFs of putative SlTre1 and SlTre2
genes. ExPASy (https://web.expasy.org/compute_pi/) (accessed on 15 January 2022) was
used to predict the theoretical isoelectric point (pI) and molecular weight (MW) of SlTre1
and SlTre2. DNAMAN 8.0 (Lynnon Corporation, Quebec City, QC, Canada) was used to
perform multiple alignment and homology analysis of various protein sequences. Phyloge-
netic analysis was conducted using Molecular Evolutionary Genetic Analysis 6.0 (MEGA
6.0) (Mega Limited, Auckland, New Zealand) with the neighbor-joining method and 1000
bootstrap replications. SlitTre homologous protein sequences from Spodoptera litura (Sl),
Tribolium castaneum (Tc), Bombyx mori (Bm), Aphis glycines (Ag), Spodoptera exigua (Se),
Helicoverpa armigera (Ha), Aedes aegypti (Aa), Apis mellifera (Am), Drosophila melanogaster
(Dm), Locusta migratoria manilensis (Lm), Nilaparvata lugens (Nl), Omphisa fuscidentalis
(Of), Cnaphalocrocis medinalis (Cm), Glyphodes pyloalis (Gp), Spodoptera frugiperda (Sf), and
Anopheles gambiae (Ag) were downloaded from GenBank (http://www.ncbi.nlm.nih.gov/)
(accessed on 15 January 2022). GenBank accession numbers of sequences used were listed in
Table S1. The interactive tree of life (iTOL) (https://itol.embl.de/) (accessed on 15 January
2022) was used to generate and annotate the circular phylogenetic tree.

2.3. Sample Collection, RNA Isolation and qRT-PCR Analysis

S. litura larvae samples were collected at 0 (at parasitism), 1, 3, and 5 days after
parasitization by M. pulchricornis. Healthy third instar S. litura larvae were collected at the
same time points and used as controls. Total RNA was extracted from the whole body of
third instar S. litura larvae using TRIzol reagent kit (Invitrogen, Life Technologies, Grand
Island, NY, USA) following the instructions of the manufacturer. RNA concentrations
were determined using a 2100 Bioanalyzer (Agilent Technologies, California, CA, USA)
to evaluate absorbance at 260 nm, and the purity of RNA was determined by the OD
260/280 ratio. The integrity of RNA was identified using 1.5% agarose gel electrophoresis.
According to the manufacturer’s instructions, 1 µg total RNA was used to synthesize the
first-strand cDNA using the PrimeScript® RT reagent Kit (Takara, Dalian, China), followed
by reverse transcription. All primers were designed using the Primer-BLAST on-line
programme (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) (accessed on 15 January
2022) (Table S2). The qRT-PCR reaction was conducted by using QuantStudio™ 6 Flex
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(Thermo Fisher Scientific, Waltham, MA, USA), and the total volume was 20 µL, including
10 µL 2 × iQTM SYBR® Green I buffer, 1 µL 10 µM of each of the forward and reverse
primers, 2 µL cDNA template, and 6 µL ultrapure water. The qRT-PCR program was as
follows: 95 ◦C for 5 min, 35 cycles of 95 ◦C for 15 s, and 60 ◦C for 30 s. The no-template
controls (NTCs) of each primer were negative with non-detection of the Cq value. The
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene (GenBank accession: MZ393966.1)
and elongation factor-1 alpha (EF1) gene (GeneBank accession: DQ192234.1) were used as
reference genes to normalize the expression levels of mRNA. The qRT-PCR results were
analyzed by using LightCycler® 96 software (Roche, Switzerland). The relative expression
levels were calculated by using the 2−∆∆Ct method [22]. Each treatment was run in triplicate
for technical repeats, and three biological replicates were performed simultaneously.

2.4. RNA Interference of SlTres

To investigate the function of SlTres in S. litura larvae subjected to parasitization
by female M. pulchricornis, SlTre1 and SlTre2 were selected for RNA interference. The
oligonucleotide sequences of SlTre1 and SlTre2 were designed using BLOCK-iTTM RNAi
Designer (https://rnaidesigner.thermofisher.com/) (accessed on 15 January 2022) (Table S3).
dsRNA of SlTre1 and SlTre2 were synthesized by using the Transcription T7 kit (Taktableara
Biotechnology Co. Ltd., Dalian, China) in vitro based on the manufacturer’s protocol, and
the dsRNA of the green fluorescence protein gene (GFP) was set as a negative control. The
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was
used to ensure the concentration purity of synthesized dsRNA, and the quality of dsRNA
was detected using 1.5% agarose gel electrophoresis (BIO-RAD, Hercules, California, USA).
Subsequently, dsRNA was diluted to the working concentration of 1000 ng/µL and stored
at −80 ◦C until use.

One microliter of dsSlTre1 and dsSlTre2 (1000 ng) was injected into the third abdominal
segment of third instar S. litura larvae on the fifth day after parasitization by female
M. pulchricornis by using a Nanoject II micro syringe (Drummond Scientific, Broomall, PA,
USA), respectively. The parasitized S. litura larvae were collected 24 and 48 h after injection
of dsSlTre1, dsSlTre2, and dsGFP. Total RNA was extracted, and the cDNA was synthesized
by using the method mentioned above. qRT-PCR was conducted to validate the expression
levels of SlTre1 and SlTre2 after silencing and the procedure was the same as mentioned
above. Each group contained three biological replicates.

To further investigate the effect of SlTres on the development of the offspring of
M. pulchricornis egressed from the SlTres-silenced parasitized S. litura larvae, the duration
from egg to cocoon (e.g., from oviposition to cocoon formation), cocoon weight, pupation
rate, emergence rate, proportion of abnormal adults, hind tibia length, and longevity of
offspring wasps were recorded. The cocoons were weighted by using an electronic balance
(Ohaus, model AR224CN, New York, NY, USA, to an accuracy of 0.01 mg). The hind tibia
length was measured under a microscope (Nikon, SMZ800N, Tokyo, Japan, to an accuracy
of 0.001 mm) as the body size correlate. Briefly, the hind legs were dissected from individual
wasp under the microscope and put on a glass slide, and then they were photographed
and the lengths were measured by the image analysis software of the microscope (version
5.01.00, NIS-Elements D, Nikon, Maru, Chiyoda Ward, Tokyo, Japan). The method of RNAi
was the same as described above. Each treatment was tested in 30 individual parasitized
S. litura larvae, and the dsGFP injection groups were taken as the control.

2.5. Determination of Trehalose and Glucose Content

Trehalose content was determined by the anthrone-sulfuric acid colorimetric method
using the Trehalose Assay kit (Beijing Grace Biotechnology Co. Ltd., Beijing, China). In
brief, the S. litura larvae were collected and weighed by using an electronic balance (Ohaus,
model AR224CN, New York, NY, USA, to an accuracy of 0.01 mg); then, the extraction
liquid was added to the tube. Subsequently, the solution was shaken at room temperature
for 30 min, and centrifuged at 8000× g for 10 min at 25 ◦C. Then, 300 µL of supernatant

https://rnaidesigner.thermofisher.com/
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and 600 µL of reaction reagent were mixed, and incubated in boiling water (95–100 ◦C)
for 3 min. After cooling to room temperature, all of the mixed solution was used to test
trehalose content by reading absorbance at 620 nm using a spectrophotometer (Thermo1500,
Waltham, MA, USA). Each sample contained three biological replicates.

The content of glucose was determined using the Glucose Assay kit (Beijing Grace
Biotechnology Co., Ltd., Beijing, China) with the glucose oxidase–peroxidase method.
Firstly, 0.1 g of weighted insects was homogenized in 1 mL of distilled H2O on ice and
centrifuged at 12,000× g for 10 min at 25 ◦C. Then, 10 µL of supernatant was thoroughly
mixed with 190 µL of reaction reagent solution and incubated at 37 ◦C for 30 min. Mean-
while, ddH2O and 1 mg/mL glucose solution were used as the control and standard,
respectively. The mixed solution was calculated by measuring the absorbance at 520 nm
using a spectrophotometer (Thermo1500, Waltham, MA, USA). Each sample contained
three biological replicates. All glucose and trehalose contents were measured in terms of
content per capita (total content divided by body weight).

2.6. Trehalase Activity Assay

The trehalase activity assay was determined according to the protocol described by
Yang et al. [23] with some modification. Briefly, the third instar parasitized S. litura larvae
were collected 24 and 48 h after dsRNA injection and placed in 1.5 mL Eppendorf tubes,
and 1 mL phosphate-buffered saline (PBS: 130 mM NaCl; 7 mM Na2HPO4·2H2O; 3 mM
NaH2PO4·2H2O; pH 7.0) was added. Subsequently, the sample was homogenized on ice
then centrifuged at 1000× g for 20 min at 4 ◦C. Then, approximately 200 µL supernatant
and 600 µL reaction regent were mixed, boiled at 95–100 ◦C for 5 min, and centrifuged at
12,000× g for 10 min at 4 ◦C. Then, the supernatant was boiled at 95–100 ◦C for 5 min
and centrifuged at 12,000× g for 10 min at 4 ◦C. After that, the trehalase activity was
measured by reading the absorbance of the supernatant at 520 nm using a Spectropho-
tometer (Thermo1500, Waltham, MA, USA) and the Trehalase Assay kit (Beijing Grace
Biotechnology Co., Ltd., Beijing, China). Each group contained three biological replicates.

2.7. Statistical Analysis

One-way analysis of variance (ANOVA) was used to compare the differences of
relative expression levels, the content of glucose and trehalose, activity of trehalase, and
the fitness of parasitoid offspring. Chi-square test was used to compare the differences of
duration from egg to cocoon. All data were analyzed using R version 4.0.0 (R Development
Core Team, Vienna, Austria).

3. Results
3.1. Identification and Characterizations of Trehalase Genes in S. litura

Two trehalase genes, SlTre1 (LOC111362615) and SlTre2 (LOC111362037), were identi-
fied from our previously constructed S. litura transcriptome database (BioProject Acc. in
NCBI: PRJNA810583). The sequences of SlTre1 contained a complete ORF of 1758 bp, which
encoded 585 amino acid residues, with a predicted mass of approximately 67.07 kDa and
an isoelectric point of 4.84. The sequences of SlTre2 contained a complete ORF of 1938 bp,
which encoded 645 amino acid residues, with a predicted mass of approximately 73.86 kDa
and an isoelectric point of 5.97. Multiple alignment of amino acid sequences showed the
presence of a glycine-rich region (GGGGEY) and two signature motifs or “tag structures”
(PGGRFIEFYYWDSY and QWDFPNVWPP) among selected insect trehalase. Five other
conserved sequences, DSKTFVDMK, IPNGGRV/IYY, RSQPPF/LL, GPRPESYREDI, and
AAESGMDFSSRWFV, have also been marked (Figure 1). Phylogenetic analysis of Tres re-
vealed that SlTre1 was grouped into a single subbranch and adjacent to SeTre1in Spodoptera
exigua. SlTre2 was clustered within a subbranch together with SeTre2 in S. exigua (Figure 2).
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Tribolium castaneum (Tc), Bombyx mori (Bm), Aphis glycines (Ag), Spodoptera exigua (Se), Helicoverpa
armigera (Ha), Aedes aegypti (Aa), Apis mellifera (Am), Drosophila melanogaster (Dm), Locusta migratoria
manilensis (Lm), Nilaparvata lugens (Nl), Omphisa fuscidentalis (Of), Cnaphalocrocis medinalis (Cm),
Glyphodes pyloalis (Gp), Spodoptera frugiperda (Sf), Anopheles gambiae (Ag), Spodoptera litura (Sl).

3.2. Expression Patterns of SlTre1 and SlTre2

Parasitization had an effect on the expression of SlTres in S. litura larvae after they
were parasitized by M. pulchricornis females. Both SlTre1 and SlTre2 were upregulated
significantly five days after parasitization (Figure 3, Table S4). In addition, SlTre1 was
upregulated one day after parasitization but downregulated three days after parasitization
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(Figure 3A). The expression level of SlTre2 was decreased one day and three days after
parasitization (Figure 3B). At parasitism (0 day after parasitization), the expression of both
SlTre1 and SlTre2 was not significantly different from the control groups (Figure 3).
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3.3. Analysis of the Function of SlTres Using RNAi

Based on the results that SlTre1 and SlTre2 were upregulated significantly five days
after parasitization obtained in Section 3.2, the subsequent functional validations were
all conducted in the third instar S. litura larvae five days post-parasitization. Both SlTre1
and SlTre2 were successfully silenced in third instar parasitized S. litura larvae, with ex-
pression levels significantly decreased 24 and 48 h after dsRNA injection, compared to
dsGFP injection groups (Figure 4A,B, Table S4). In order to test the effect of SlTres on
trehalose metabolism in parasitized S. litura larvae, the content of trehalose and glucose
in the bodies of parasitized S. litura larvae was determined. The results showed that
24 and 48 h after silencing SlTre1 or SlTre2, the content of glucose, which is the hydrolysis
product of trehalose, was significantly decreased compared to the control
(Figure 5A,B, Table S4). Interestingly, the content of trehalose was only decreased sig-
nificantly 24 h after silencing Sltre1 (Figure 5C, Table S4); however, this reduction was not
observed in dsSlTre2-injection groups (Figure 5D, Table S4) nor in the cohorts of 48 h after
silencing SlTre1 (Figure 5C). Furthermore, the activities of trehalase were notably reduced
both in SlTre1- or SlTre2- silenced S. litura larvae, regardless of the elapsed duration after
dsRNA injection (Figure 6A,B, Table S4).

In order to evaluate the effect of trehalase on parasitoid offsprings, the fitness param-
eters were examined. There was no significant difference in the pupation rate between
dsSlTre1 or dsSlTre2 injection groups with control groups (Figure 7A,B, Table S4). Both
dsSlTre1 and dsSlTre2 injection groups egressed a total of 28 offspring cocoons, and this num-
ber was equal with that in dsGFP injection groups. Despite this, as illustrated in Figure 7C,
more cocoon formation was observed in control groups than in dsSlTre1 injection groups at
the observation time points of 96 h and 108 h, indicating that the offspring wasps took a
longer time to reach the cocoon stage in the dsSlTre1 injection group than in the control.
Therefore, the duration from eggs to cocoons was significantly prolonged in the dsSlTre1
injection groups (Figure 7C); however, this delay was not observed in the dsSlTre2 injec-
tion groups (Figure 7D). In addition, the cocoons egressed from the dsSlTre1 and dsSlTre2
injection groups were smaller than those from the dsGFP injection groups (Figure 7E,F),
and the weight of the cocoons egressed from the dsSlTre1 and dsSlTre2 injection groups
were lighter than those from the dsGFP injection groups (Figure 7G,H, Table S4). When the
immature parasitoids molted into the adult stage, there was no significant difference in
the emergence rate between the dsSlTre1 and dsGFP injection groups (Figure 8A, Table S4),
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but the emergence rate was lower in the dsSlTre2 injection groups than that in the dsGFP
injection groups (Figure 8B, Table S4). Meanwhile, more abnormal adults were observed
both in the SlTre1- and SlTre2-silenced groups (Figure 8 C–G, Table S4). The adult body
size, which was determined by the hind tibia length of offspring wasps egressed from
silencing SlTre1 and SlTre2 host larvae, was remarkably smaller than in the control groups
(Figure 9A,B, Table S4). Furthermore, the longevity of offspring adults was prolonged in
the SlTre1-silenced groups (Figure 9C, Table S4); however, there was no significant differ-
ence in the longevity of offspring adults between the dsSlTre2 and dsGFP injection groups
(Figure 9D, Table S4).
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parasitic wasp offspring egressed from parasitized S. litura larvae after they were knocking down
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Figure 8. The emergence rate, proportion, and morphology of abnormal adults of parasitic wasp
offspring egressed from parasitized S. litura larvae after silencing SlTre1 or SlTre2. Effect of silencing
SlTre1 or SlTre2 on emergence rate (A,B), the proportion of abnormal adults (C,D), and morphology
of abnormal adults of parasitic wasp offspring egressed (E–G) from parasitized S. litura larvae.
Significant differences were compared using ANOVA. Significant differences are indicated by asterisks
(* p < 0.05; ns: no significant differences); Scale bars in (E–G): 2 mm.
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Figure 9. Effect of silencing SlTre1 or SlTre2 on the hind tibia length (A,B) and longevity (C,D) of
parasitic wasp offspring egressed from parasitized S. litura larvae. Significant differences were
compared using ANOVA. Significant differences are indicated by asterisks (* p < 0.05; ** p < 0.01; ns:
no significant differences, Table S4).

4. Discussion

Trehalase is an important sugar metabolism enzyme in organisms, and it is the only
reported hydrolase of trehalose in all organisms so far [2]. Since insect trehalase has
two distinct forms, there are usually two genes encoding trehalase identified in insects [1,2].
In the present study, two trehalase genes, SlTre1 and SlTre2, were identified from our
previously constructed transcriptome dataset, and this number was consistent with the
general rule. Multiple sequence alignment of trehalase amino acid sequences showed
the presence of some of the general conserved signature motifs or structural domains,
suggesting trehalase in S. litura may possess basic enzymatic properties. Phylogenetic
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analysis of trehalase amino acid sequences also showed the higher homology in noctuidae,
in which trehalases were clustered into the same subbranches with trehalase in S. exigua.

Although the characterization and enzymatic properties of trehalase in S. litura has
been reported in previous studies [19,20], the detailed function and molecular mechanism
of trehalase in S. litura when they suffered from the infection of exogenous organisms,
such as microbes or parasitoid wasps, has not been described yet. It is well-accepted
that parasitoid wasps can induce great changes on the inner physiological states and
alter the nutritional metabolism in their host insects [15]. When referring to this nutri-
tional interaction between parasitoids and their hosts, the majority of previous studies
focus on the variation in specific nutrition content. For instance, the content of triglyc-
erides and glycogen in the host’s body fat is greatly decreased after parasitization by
Campoletis sonorensis, but trehalose titers in hemolymph is increased [24]. Furthermore,
this nutrition dynamic strictly depends on the developmental strategies of parasitoids [25].
Despite this, the molecular mechanism regulating this biochemical alternation still receives
less attention.

With the aid of transcriptome sequencing technology, plenty of metabolism-related
genes were identified from the host insect after they were parasitized by parasitic wasps.

For instance, a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed
that the sugar metabolism pathways were significantly enriched in the upregulated differ-
entially expressed genes (DEGs) that were obtained by transcriptome sequencing in the
midgut of D. melanogaster 24 h and 48 h post L. parasitization by Leptopilina boulardi [26].
Based on the transcriptomic analysis, Chen et al. [27] found that carbohydrate-metabolism-
related Kyoto Encyclopedia of Genes and Genomes (KEGG) groups were enriched in
Ostrinia furnacalis larvae parasitized by Macrocentrus cingulum, and trehalase genes were
upregulated 48 h after parasitization. Similarly, in the present study, qRT-PCR validation
revealed a typically significant increment in the expression levels of both SlTre1 and SlTre2
5 d after parasitization, suggesting trehalase was significantly induced at this time point
after parasitization. The reason of setting the fifth day after parasitization as the end
time point of qRT-PCR validation was as follows. Generally, the female M. pulchricornis
adults lay their eggs into the host bodies (at parasitism, 0d), and the eggs hatch 1~2d
after parasitization. In most cases, the hatched larvae grow and develop until the eighth
to tenth day after parasitization [28], and then they will egress from the host bodies and
spin a cocoon to enter the pupal stage. However, in some scenarios, it is noticed that the
development of offspring larvae is not quite uniform, and some could egress from the body
and enter the pupal stage from the sixth or seventh day after parasitization [28]. Once
the parasitoid larvae egressed from the host, the inner physiology of host larvae changed
sharply, and they would be dead soon. Therefore, we selected the fifth day as the end
time point. In addition, other studies demonstrated that trehalase can be induced in other
insect species when confronted by stressors. For example, both high temperature and
starvation can induce the expression of BlTres in bumblebee, Bombus lantschouensis [29]. By
contrast, trehalase genes were upregulated after cold storage in Harmonia axyridis adults [30].
Zhao et al. [31] revealed that after various concentrations of trehalase inhibitor Validamycin
A treatment, the expressions of NlTRE1-1, NlTRE1-2, and NlTRE2 in rice brown planthop-
per Nilaparvata lugens were all upregulated, and they speculated that TRE genes attempt
to synthesize more trehalase protein when the trehalase activities have been inhibited by
Validamycin. Obviously, parasitization may be the key explanation for the upregualtion of
trehalase expression pattern. Therefore, it is predicted that the expression of trehalase can
be manipulated in response to both biotic and abiotic stressors.

Because of the uniqueness of trehalase in the hydrolysis of trehalose, we aimed
to further explorer the exact role of trehalase in mediating the trehalose metabolism in
S. litura larvae when they were parasitized by M. pulchricornis females. We successfully
silenced both SlTre1 and SlTre2 by RNAi, and correspondingly, the trehalase activity was
significantly decreased. Furthermore, the content of glucose, which is the hydrolysate of
trehalose catalyzed by trehalase, was significantly decreased both in dsSlTre1- and dsSlTre2-
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injected host larvae. It should be noticed that glucose content levels in two dsGFP injection
groups differed in Figure 5A,B. For this difference, there may be followed explanations.
Firstly, the measurement of glucose content is determined as the content per capita (total
glucose content divided by body weight of S. litura larva). It should be pointed out that the
body weight of S. litura larvae varied significantly within the same instar (third instar used
here), although their body size seems similar (similar body length or width). Thus, once
calculating the content per capita, the result may differ greatly. Secondly, the difference
between individuals and random error cannot be fully avoided in the process of glucose
content measurement. In spite of this, the present results indicate the significant differences
of glucose content between dsTres and dsGFP injection groups, suggesting that silencing
SlTre genes significantly affected the glucose content in terms of content per capita. It can be
speculated that although parasitization lays a strong modification on the host physiology
including sugar metabolism [32–34], the trehalase still has consequences on the trehalose
hydrolysis process. Interestingly, it is noticed that the content of trehalose was only de-
creased 24 h after knocking down SlTre1. Since trehalose metabolism is a bidirectional
process consisting of synthesis and hydrolysis [23,35], it is reasonable that in the present
parasitization association, after knocking down SlTre2, the trehalose-synthesis-related TPS
or TPP [2] can be activated and more trehalose can be synthesized to compensate the deficit
and ultimately meet the trehalose demand for the parasitoid offspring within the host
larvae. Meanwhile, the trehalose compensation may also be attributed to the demand
of host larvae. Further study is required to verify this feedback regulation hypothesis.
Furthermore, the content of glucose and trehalose were determined at 24 h and 48 h after
silencing, it is reasonably speculated that the sugar dynamics would be variable at other
time points after dsRNA injection, although 24 and 48 h were successful silencing time
points. Therefore, more measurement can be conducted to reveal further dynamics of
glucose and trehalose content affecting by silencing SlTres.

Another important finding of the present study is that some key fitness traits of
parasitoid offspring was strongly negatively affected after knocking down SlTres in host
larvae. For instance, the emergence rates in dsSlTre2-injection, the proportion of abnormal
adults, hind tibia length, and the cocoon weight in two dsSlTres-injection groups were all
negatively affected. It is well established that host quality plays a strong impact on the
fitness of the developing wasp offspring both in endo- and ecto-parasitoids [16,36]. For
endoparasitoids, the wasp offspring usually develop for several days within the host, and
different development stages require varied nutrition demands [37,38]. Particularly, after
the immature parasitoids molt into the later stage during parasitization, they will consume
more nutrition from host resources, and once the production or delivery of nutrition is
impaired, the fitness of the wasp offspring will slow down the development [39]; even if
they can successfully egress from the host and enter the next stage of their life cycle, more
abnormal or smaller adults can be expected [40,41]. Therefore, the present results confirmed
that trehalase is a vital regulatory nutrition factor in mediating trehalose metabolism in
the association of parasitoids and their hosts and facilitating the development of the
parasitoid offsprings.

5. Conclusions

In summary, the present study revealed that parasitization by M. pulchricornis can
shape the expression pattern of two trehalase genes in S. litura. When trehalase was inhibited
by silencing SlTres, the metabolism of trehalose in parasitized S. litura larvae would be
affected and ultimately reduce the key fitness of parasitoid offspring. The results obtained
here promote the understanding of the molecular mechanism in the nutritional interaction
between parasitoid wasps with their host insects. More importantly, when referring the
biological control practice acting by parasitoids, we can increase the expression of trehalase
genes or change the dynamics of trehalose in host larvae to promote the breeding of
parasitoid wasps or elevate the parasitization efficiency. In future studies, it is encouraged
to reveal the details and further mechanisms of host trehalase regulation by parasitoids.
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