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Simple Summary: This article studies the interaction between two parasites, a parasitoid (Scleroder-
mus guani) and an entomopathogenic fungus (Beauveria bassiana) on the same host, a longicorn beetle
Monochamus alternatus. We focused on the survival and reproduction of the parasitoid’s parent and
its offspring fitness under different concentrations of B. bassiana suspension in the laboratory. The
results show that S. guani parent females carrying higher concentrations of the pathogen shorten
the pre-reproductive time and regulate their own fertility and their offspring’s survival and devel-
opment. Under the stress of the entomopathogenic fungus B. bassiana, the mortality effect of the
parasitoid S. guani to its host M. alternatus was also assessed by the interspecific relationship model,
which contained three dimensionless parameters: the ratio vulnerability, dilution ratio, and PR (the
ratio of the total number of parasitoids successfully controlling host larvae M. alternatus to the total
number of parasite events during parasitism). These findings shed light on the potential interspecific
interactions between the two parasites which were able to coexist and communicate with their hosts
in ecological contexts (with a high overlap in time and space) and cause interspecific competition and
intraguild predation.

Abstract: Complex interspecific relationships between parasites and their insect hosts involve multi-
ple factors and are affected by their ecological and evolutionary context. A parasitoid Sclerodermus
guani (Hymenoptera: Bethylidae) and an entomopathogenic fungus Beauveria bassiana (Hypocreales:
Cordycipitaceae) shared the same host in nature, Monochamus alternatus (Coleoptera: Cerambycidae).
They often encountered the semi-enclosed microhabitat of the host larvae or pupae. We tested the
survival and reproduction of the parasitoid’s parent and its offspring fitness under different con-
centrations of B. bassiana suspension. The results show that S. guani parent females carrying higher
concentrations of the pathogen shorten the pre-reproductive time and regulate their own fertility
and their offspring’s survival and development. This minimal model of the interspecific interactions
contains three dimensionless parameters, vulnerability (θ), dilution ratio (δ), and PR, which were
used to evaluate the mortality effect of the parasitoid S. guani on its host M. alternatus under the
stress of the entomopathogenic fungus B. bassiana. We compared the infection and lethal effect of
the fungus B. bassiana with different concentrations to the parasitoid S. guani and the host larvae
M. alternatus. At higher concentrations of the pathogen, the parasitoid parent females shorten the
pre-reproductive time and regulate their own fertility and their offspring’s survival and development.
At moderate concentrations of the pathogen, however, the ability of the parasitoid to exploit the host
is more flexible and efficient, possibly reflecting the potential interspecific interactions between the
two parasites which were able to coexist and communicate with their hosts in ecological contexts
(with a high overlap in time and space) and cause interspecific competition and intraguild predation.
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1. Introduction

Natural enemy application is relatively safer and more environmentally friendly for
controlling insect pests. However, the actual effect is affected by many ecological factors,
especially various biotic factors in the common environment [1]. Most longicorn beetle
larvae were able to encounter natural enemies in their pupal chamber on the trunks. There
were complicated interspecific relationships, including parasitism, predation, competition,
and even cooperation [2,3]. Interspecies relationships also determined the implementation
effect and risk assessment of biological control [4,5]. Parasitoid species may rely on shared
common resources (e.g., host species); thus, interactions among these parasitoid species
can occur frequently (Appendix A: Figure A1) [6]. Both parasitoids and entomopathogenic
fungus were often used to control the larvae and pupae of longicorn beetles and carpenter
moths in hidden habitats [7,8], and the former can spread actively up to a certain distance,
but the latter cannot. It can only spread passively through biotic and abiotic carriers or
wind and rain. Parasitic wasps, such as Sclerodermus guani (Hymenoptera: Bethylidae),
are just carriers that can travel long distances. Many studies show that S. guani female
adults carrying pathogens were explored to prevent Monochamus alternatus (Coleoptera:
Cerambycidae) [9], the vector beetle for the pinewood nematode that causes the destructive
pine wilt disease [3,7]. They indirectly block the transmission of pine wood nematode
Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae), a major quarantine pest in
the world [8,10].

S. guani is a gregarious ectoparasitoid (it oviposits on the surface of its host), good at
drilling, searching, and attacking hosts in hidden habitats [11,12]. Once a suitable host is
found, it will undergo stings paralysis, resulting in the complete death of the host. They
will breed and raise their offspring until they leave [3,13,14]. During the parasitism process,
parasitoids and Beauveria bassiana (Hypocreales: Cordycipitaceae) will meet in the host M.
alternatus’s pupal chamber [15–17]. B. bassiana is a generalist entomopathogen due to the
fact that it possesses a stereotypical pattern of pathogenicity genes towards many insect
species [18]. Thus, the spores or hyphae of the pathogens may passively spread to the next
host nest via the newly emerging adult offspring of the parasitoids. Several studies have
reported this phenomenon in other insects and pathogens, e.g., Phoridae (Diptera: Phoridae)
and Trichogramma japonicum (Hymenoptera: Trichogrammatidae).

The biological control technology of combining two natural enemies, S. guani and B.
bassiana, has been conducted in some forest areas [2,15]. These approaches have gradually
become a research hotspot in forest protection to find new and more efficient prevention
methods [6,7,16,19]. Moreover, the evolution of insecticide resistance often shares the
fundamental assumption that resistance is often associated with a fitness cost, which
is crucial for understanding the population demographics of resistant insects, thereby
managing the issue of resistance [20]. The broad spectrum of B. bassiana spores can infect
various insects, including its hosts and their parasitic enemy insects [21]. To a large
extent, the survival and reproduction of a parasitic wasp will be adversely affected by itself,
carrying pathogenic spores of B. bassiana [17]. However, the notion of whether the evolution
of insecticide resistance links to interspecific competition is currently poorly understood,
especially in terms of the interaction between parasitoids, hosts, and pathogens.

Broad-spectrum pathogens are parasitic to the host and its parasitoids and develop
faster. Once they kill and parasitize, the pathogen blocks its transmission carrier, and it is
hard to leave the hidden semi-closed nest space [22–24]. Therefore, finding the mobility ride
carrier, especially for those concealed biotypes, requires flexible trade-offs or coordination
with the host. This study hypothesized that when S. guani carries the B. bassiana parasite
host larvae of M. alternatus, the parasitoids will inhibit the growth process and develop
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pathogens by improving its parental reproduction and offspring survival. Under the
stress of pathogens, the parasitoids will regulate their reproductive strategy and progeny
developmental rate. The current experiments are based on earlier studies on the interactions
between S. guani, M. alternatus, and B. bassiana. Three concentration gradients of B. bassiana
(104, 105, and 106 conidia mL−1) were used to examine the reproductive efficiency of
parasitoids, as well as the survival, development, and transmission of their offspring. The
present study aimed to evaluate the potential of the combined use of S. guani and B. bassiana
to control M. alternatus. The first involves interactions between S. guani and B. bassiana, i.e.,
(a) the pathogenicity of B. bassiana to S. guani and (b) the pathogenic infection of immature
offspring. The second involves interactions between S. guani, B. bassiana, and M. alternatus.
The third utilizes the interspecific relationship model to evaluate interactions between
parasitoids, hosts, and pathogens.

2. Materials and Methods
2.1. Insect Rearing

The experiments were conducted at the Pest Control and Resource Utilization Labo-
ratory of Guizhou Normal University, Guiyang, China. The parasitoids of S. guani were
provided by the Institute of Zoology, Chinese Academy of Sciences, and were raised by
the Pest Control and Resource Utilization Laboratory of Guizhou Normal University for
48 successive generations [breeding was conducted parasitoid to host unit weight (1: 0.1 g),
and placed in an incubator (25 ◦C, RH 65%, and 12 L:12 D), until the offspring emerged,
and it was then transferred to a −8 ◦C refrigerator to refrigerate], and stable experimen-
tal populations were obtained. The larvae of M. alternatus were purchased in Kaili City,
Guizhou Province (107.981◦ E, 26.566◦ N), and the larvae of M. alternatusa placed in a
single-head single tube was installed in a test tube with sawdust (Sterilization and drying)
and refrigerated at 4–5 ◦C. Before the experiment, the 3–4 instar larvae of M. alternatus were
first washed with clean water and then disinfected with 10% alcohol. Finally, they were
washed with distilled water and soaked with filter paper to absorb excess water from the
surface of the larvae.

2.2. B. bassiana Suspensions

The strain of B. bassiana (GZUIFR-AS1) was provided by the Institute of Fungus
Resources, Guizhou University. B. bassiana was seeded on PDA (Φ 90 mm) plates in a 25 ◦C
dark for 14 days [25]. The conidia were harvested with a sterile spatula, suspended in
sterile distilled water supplemented with 0.05% Tween 80 solution, and mixed well with a
vortex mixer. To count the conidia directly, 10 µL was removed from the suspension with
a pipette and repeated 3 times to obtain the mean. The final concentration was adjusted
to 1 × 104, 1 × 105, and 1 × 106 conidia mL−1 after dilution with sterile 0.05% Tween 80
solution, and sterile water was used as the control. Germination in conidial suspensions
was assessed prior to experiments and was always kept above 95%.

2.3. Interactions between S. guani and B. bassiana
2.3.1. The Pathogenicity of B. bassiana to S. guani

For the initial pathogen load of S. guani adult females, female adult parasitoids of S.
guani were placed in a 120 mm Petri dish, and each female adult parasitoid was dripped
with 0.1 mL of spore suspension of different concentrations (104, 105, and 106 conidia
mL−1), and allowed to fully crawl until the body was covered with the B. bassiana and
then naturally air-dried. After setting 3 replicates per concentration, 60 test parasitoids per
replicate were placed in an incubator (25 ◦C, RH = 65%, photoperiod 12 L:12 D) for 5 min,
1 d, 2 d, 3 d, 4 d, 5 d, and 6 d, and 20 vigorous test parasitoids were randomly selected and
eluted with 0.05% Tween 80 solution. The effective number of B. bassiana carried by each
female adult parasitoid was then calculated by the blood cell counting board (XB-K-25)
and converted to the spore-carrying amount per parasitoid, and the process was repeated
3 times for each concentration.
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For infestation, the dipping method was used, and the parent female adult parasitoids
were infected in B. bassiana suspensions at 104, 105, and 106 conidia mL−1 for 5 s. The
filter paper absorbed the excess fungal fluid and transferred it into a clean and sterile Petri
dish (Φ 90 mm). Five replicates were performed at each concentration, one female adult
parasitoid was repeated for each replicate, and the infection of female adult parasitoid and
the growth of hyphae were recorded every 24 h.

Based on the fertility of parental female adult parasitoids, the healthy larvae of M.
alternatus larvae weighing 0.35–0.45 g were selected, sterilized, air-dried, weighed, and then
placed in a clean glass test tube (Φ 75 mm). The parasitoids were placed in an incubator at
25 ◦C, and the ratio of test parasitoids to host unit weight (1: 0.1 g) was adopted to paralyze
the host. Then, 30 replicates per concentration was set, and sterile water was used as the
control. The activity ability and physiological state of the female parasitoids were observed
and recorded every 24 h, and the adult female parasitoid survival rates (%), the lethality of
the S. guani to M. alternatus pre-oviposition (d), oviposition duration (d), the longevity of
S. guani (d), and the number of eggs laid (eggs/clutch; clutch is defined as the number of
eggs released during a single spawning event) of each group of female parasitoids were
recorded until death.

2.3.2. The Pathogenicity of B. bassiana Infects the Immature Offspring

Immature offspring were divided into 6 time periods: the egg of S.guani (ES), early
instar larva (EIL), late instar larva (LIL), mature larva (ML), spinning mature larva (SML),
and pupa cocoon (PC) [14]. The egg of S. guani (ES), early instar larva (EIL), late instar
larva (LIL), mature larva (ML), spinning mature larva (SML), and pupa cocoon (PC) of
parasitoids were separated from the host surface with a fine bristle brush and placed in a
Petri dish. The spore suspension of the 3 concentration gradients was prepared according
to Section 2.2, and the dipping method was used. The eggs, early larvae, late larvae, and
mature larvae were infected in 3 suspensions of B. bassiana at different concentrations of 5 s.
The filter paper absorbed excess spore suspension. The larvae were placed into a sterile dish
(Φ 90 mm). Each concentration was performed in 5 replicates, with one parasitoid of an
egg or a larva per replicate. Photographs were taken with a Stereo Microscope (OLYMPUS
SZX7, made in Japan) every 24 h to record the infection of B. bassiana in eggs or larvae. The
conditions for cultivation are the same as those of the M. alternatus larvae.

2.4. Interactions between S. guani, B. bassiana, and M. alternatus
2.4.1. The Pathogenicity of B. bassiana to M. alternatus

The treatment of 3–4 instar larvae of M. alternatus with different concentrations of B.
bassiana suspension (104, 105, and 106 conidia mL−1) was usde by the dipping method.
The larvae of M. alternatus were placed separately into the spore suspension of different
concentrations for 5 s, quickly taken out and placed in a 10 mL finger-shaped tube, fed
with sterilized and dried sawdust, and controlled with 3–4 instar larvae of M. alternatus
soaked with 0.05% Tween 80 solution [26]. The treated larvae were incubated at a constant
temperature of 25 ◦C in an incubator, with 20 replicates per concentration. The mortality of
the larvae was noted and recorded at 24 h intervals. Dead larvae were kept at 25 ◦C for
15 days to evaluate the pathogenicity in M. alternatus.

2.4.2. The Model

Mesterton-Gibbons and Hardy [27] developed a model which can be applied to mam-
malian predators that attempt to capture and subdue large and dangerous prey. Moreover,
this model can be applied to female parasitoids that attack and, if successful, paralyze
aggressive hosts, providing the only feeding resource for their offspring. These mammals
or parasitoids risk death and aggression when interacting with large prey. Parasitoids
actively search for, locate, and use the host and the environment. Once a suitable host
is located, sting paralysis entirely kills the host, but parasitoids also risk dying or being
attacked as they control their host. So, how do parasitoids cope with reducing this risk?
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2.4.3. The Mortality Effect of S. guani on the Host under B. bassiana Stress

We used biological factors to investigate the risks faced by parasitoids and the time
required to subdue the host under different concentrations of B. bassiana stress, which
determines whether the parent can provide fully adequate food for the offspring, and sterile
water was used as the control. In the research system of “parasitoids-host-pathogens”, a
new model is proposed to evaluate the LE (lethal effect: the effect on survival) [28] and PE
(parasitic effect: the average number of parasitic pests per natural enemy) [29] of S. guani
on hosts under pathogenic fungal stress using D, S, B, t, θ, δ, and PR. Parasitoids overcome
their hosts in one of two ways: the parasitoids either kill the host or the parasitoids are
bitten to death by the host. Parasitoids’ fitness in the first instance is 1 and their fitness in
the second instance is 0:

θ =
S + t

S
(1)

PR =
S

2S + t
(2)

δ =
S + 3(S + t)

4(S + t)
(3)

D(d): the pre-oviposition of female adult parasitoids;
S(d): the female adult parasitoids completely paralyze the host at the time;
B(d): the time when the female adult parasitoid delivers a fatal blow to the host;
t(d): the female adult parasitoids die after the host of the duration of egg laying;
θ: the ratio of the time it takes for the female adult parasitoids to completely paralyze the
host during the pre-oviposition of female adult parasitoids;
PR: the parasitic probability of S. guani after paralyzing host M. alternatus larvae;
δ: the antagonistic effect of S. guani and B. bassiana (the greater the antagonism, the worse
the parasitoid, the weaker the lethal host effect).

2.5. Date Analysis

We used SPSS 26.0 statistical software for data analysis and archiannelid percentage
data transformation before analysis. The Kolmogorov–Smirnov test was then used to
determine whether the data follow a normal distribution. The data were subjected to
analyses of variance and the means were compared using TukeyÕs test, with significance
determined at p < 0.05. Photoshop CS6 and Origin 2021 were used to make drawings.

3. Results
3.1. The Pathogenicity of B. bassiana to S. guani

The daily variation in the spore-carrying capacity of female adult parasitoids to various
concentration suspensions showed that there were significant differences in the initial spore-
carrying capacity of female adult parasitoids to various concentration suspensions at three
concentrations: 0 d (F2,1 = 349.077, p < 0.01), 1 d (F2,1 = 10.842, p < 0.05), 2 d (F2,1 = 25.992,
p < 0.01), 3 d (F2,1 = 26.726, p < 0.01), 4 d (F2,1 = 18.816, p < 0.01), 5 d (F2,1 = 59.546,
p < 0.01), and 6 d (F2,1 = 29.701, p < 0.01), and the initial carrying capacities from large to
small were 106 > 105 > 104 conidia mL−1 (Figure 1). The overall trend shows that the higher
the concentration of B.bassiana carried by female adult parasitoids, the higher the amount
of spore shedding.
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Figure 1. Initial pathogen load of the female adults of S. guani under different concentrations
of B. bassiana spore suspensions. Different letters above the bars indicate significant differences
(mean ± SE, n = 3 in each treatment).

Before inoculation, the body surface of the parasitoid was black. On the 1st day after
inoculation, the parasitoid crawled normally; on the 3rd day after inoculation, with the
increase in concentration, the vitality of the parasitoid became weaker and weaker until it
died. On the 5th day after inoculation, the parasitoid died and hyphae first grew from the
mouthparts and appendages of parasitoids at various concentrations. On the 7th day after
inoculation, the hyphae growth rate was 106 > 105 > 104 conidia mL−1. On the 9th day after
inoculation, at 105 and 106 conidia mL−1, a large number of hyphae grew from the larvae
body, while at 104 conidia mL−1, only the hyphae around the mouthparts germinated.
On the 11th day after inoculation, the parasitoid was completely wrapped by the hyphae
and produced spores at 106 conidia mL−1, while the parasitoid was half-wrapped by the
hyphae at 105 conidia mL−1. At this time, the hyphae were only beginning to grow in large
numbers at 104 conidia mL−1 (Figure 2).
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Figure 2. Infestation of pathogens against parental female adults of S. guani under different concen-
trations of B. bassiana spore suspensions (red arrow indicates the dead larvae) (a–f: growth of hyphae
on the body surface of S. guani at 104 conidia mL−1 B. bassiana suspension; g–l: growth of hyphae on
the body surface of S. guani at 105 conidia mL−1 B. bassiana suspension; m–r: growth of hyphae on
the body surface of S. guani at 106 conidia mL−1 B. bassiana suspension).
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The survival rate of S. guani (F3,116 = 3.509, p < 0.05) and lethality of S. guani in their
hosts (F3,116 = 16.012, p < 0.01) treated with different concentrations were lower than those
of the control (Figure 3). As the concentration increased, the survival rate of S. guani and
lethality of S. guani in their hosts were 104 conidia mL−1 (32.72% ± 3.735; 93.33% ± 4.63),
105 conidia mL−1 (30.95% ± 4.03%; 86.67% ± 6.31), and 106 conidia mL−1 (16.94% ± 3.05;
76.67% ± 7.85). Compared with the control, the survival rate of S. guani decreased by
19.39%, 21.16%, and 35.17%, respectively, while the lethality of S. guani to their hosts
decreased by 3.34%, 10%, and 20%, respectively.
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Figure 3. The survival rate of S. guani and lethality of S. guani to M. alternatus at different concentra-
tions of B. bassiana spore suspension. Different letters above the bars indicate significant differences
(mean ± SE, n = 30 in each treatment, p < 0.05).

Under different concentrations of treatment, the pre-oviposition (F3,116 = 97.669,
p < 0.01) was less than the control and the oviposition duration (F3,116 = 44.422, p < 0.01)
was higher than the control. Pre-oviposition and oviposition duration of S. guani was
significantly different. Although the longevity of S. guani (F3,116 = 3.509, p < 0.05) in var-
ious treatment was lower than the control, the longevity was statistically different only
when it was treated with B. bassiana at 106 conidia mL−1 (F3,116 = 3.509, p < 0.05). As
the concentration increased, the pre-oviposition, oviposition duration, and longevity of
S. guani at various concentrations were: 104 conidia mL−1 (5.93 ± 0.09 d; 3.63 ± 0.09 d;
25.83 ± 0.75 d), 105 conidia mL−1 (5.17 ± 0.11 d; 3.77 ± 0.09 d; 24.12 ± 0.85 d), and 106

conidia mL−1 (5.00 ± 0.18 d; 4.00 ± 0.19 d; 23.41 ± 0.68 d) (Figure 4). Compared with
the control, the pre-oviposition of S. guani was shortened by 0.74 d, 1.50 d, and 1.67 d,
respectively, and the oviposition duration of S. guani was prolonged by 0.63 d, 0.77 d, and
1.00 d, respectively. The longevity of S. guani was shortened by 0.57 d, 2.22 d, and 2.93 d,
respectively (Figure 4).
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Figure 4. Performance of S. guani under different concentrations of B. bassiana spore suspensions:
pre-oviposition, Oviposition duration, and Longevity of S. guani under different concentrations of B.
bassiana spore suspension. Different letters above the bars indicate significant differences (Mean ±
SE, n = 30 in each treatment, p < 0.05).

Under different concentrations, only 104 conidia mL−1 (170.27 ± 9.149) eggs/clutch
and 105 conidia mL−1 (177.5 ± 11.167) eggs/clutch of S. guani were significantly different
from those of the control (133.37 ± 6.765) eggs/clutch (p < 0.05). Compared with the control,
the number of eggs laid at 104 and 105 conidia mL−1 increased by 36.9 and 44.13 grain,
respectively; however, the egg laid of 106 conidia mL−1 (136.20 ± 9.863) eggs/clutch was
similar to that of the control, with no significant difference (p > 0.05) (Figure 5).
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3.2. Pathogens Infect Immature Offspring

The infection of immature offspring of S. guani at each developmental stage is shown
in Figure 6. Under different concentrations, the death rate of immature offspring of S. guani
was 106 > 105 > 104 conidia mL−1.
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Figure 6. Infestation of pathogens against offspring of S. guani under different concentrations of B.
bassiana spore suspensions. The red circle indicates that the larva has died. ES: egg of S. guani; LIL:
late instar larval; ML: mature larval.

After inoculation with different concentrations of B. bassiana suspension, the devel-
opment rate of the offspring larvae increased, the survival rate decreased, and the body
weight per female and male ratio of the offspring of S. guani increased. Compared with
the control, the development rate of ES (F3,116 = 1, p > 0.05) (Figure 7A) was not affected by
the concentration of spore suspension, while the development rates of EIL (F3,116 = 10.116,
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p < 0.01) (Figure 7B), LIL (F3,116 = 20.022, p < 0.01) (Figure 7C), ML (F3,116 = 13.622, p < 0.01)
(Figure 7D), SML (F3,116 = 19.526, p < 0.01) (Figure 7E), and PC (F3,116 = 17.577, p < 0.01)
(Figure 7F) were all accelerated. Compared with the control, the average developmental du-
ration of the larvae of offspring 104, 105, and 106 conidia mL−1 (F3,116 = 8.432, p < 0.01) was
shortened by 2.43 d, 3.68 d, and 6.50 d, respectively. Compared with control, the survival
rates of larvae in different insect states decreased for ES (F3,116 = 8.362, p < 0.01) (Figure 7A),
EIL (F3,116 = 8.454, p < 0.01) (Figure 7B), LIL (F3,116 = 13.907, p < 0.01) (Figure 7C), ML
(F3,116 = 13.095, p < 0.01) (Figure 7D), SML (F3,116 = 15.288, p < 0.01) (Figure 7E), and PC
(F3,116 = 22.324, p < 0.01) (Figure 7F). The average survival rate of the offspring larvae of
104, 105, and 106 conidia mL−1 decreased by 4.39%, 15.90%, and 27.28%, respectively. As
the concentration increased, the sex ratio (F3,116 = 7.112, p < 0.01) and the body weight per
female (F3,116 = 10.158, p < 0.01) of the offspring parasitoids increased. Compared with the
control, the male sex ratio of parasitoids from the offspring of 104, 105, and 106 conidia
mL−1 increased by 2.68%, 4.36%, and 6.64%, respectively (Figure 7H). The body weight per
female increased by 0.50, 1.32, and 1.50 mg, respectively (Figure 7H).
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Figure 7. The performance of immature offspring of S. guani under different concentrations of B.
bassiana spore suspensions. The mean development rate and survival rate of immature offspring of S.
guani. (A) ES: egg of S. guani; (B) EIL: early instar larval; (C) LIL: late instar larval; (D) ML: mature
larval; (E) SML: spanning mature larval; (F) PC: pupa cocoon; (G) whole generation and survival
of the offspring of S. guani; (H) sex ratio and body weight per female of the offspring of S. guani.
Different letters above the bars indicate significant differences (mean ± SE, n = 30 in each treatment,
p < 0.05).

3.3. Pathogens Infect M. alternatus

After inoculation with different concentrations (104, 105, and 106 conidia mL−1) of
B. bassiana spore suspension, on the 1st day, the larvae typically twitched and displayed
strong vitality. On the 3rd day after inoculation, the larvae moved slowly. On the 5th day
after inoculation, the color of larval epidermis changed to purple and gradually deepened
to brown at 106 conidia mL−1. On the 7th day after inoculation, the larva began to grow
hyphae on its surface at 106 conidia mL−1, and the larvae died at 104 and 105 conidia mL−1.
On the 9th day after inoculation, the body of the zombie insect was wrapped in hyphae
at 106 conidia mL−1, and a small amount of hyphae appeared in the body of the zombie
insect at 104 and 105 conidia mL−1. On the 11th day after inoculation, the zombie insect
was completely wrapped by the hyphae at 104, 105, and 106 conidia mL−1 (Figure 8).
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Figure 8. The infection of M. alternatus larvae under different concentrations of B. bassiana spore
suspensions (the red arrow indicates the growth of B. bassiana hyphae on the surface of M. alternatus
larvae) (a–f: growth of hyphae on the body surface of M. alternatus larvae at the control; g–l: growth
of hyphae on the body surface of M. alternatus larvae at 104 conidia mL−1 B. bassiana suspension;
m–r: growth of hyphae on the body surface of M. alternatus larvae at 105 conidia mL−1 B. bassiana
suspension; s–x: growth of hyphae on the body surface of M. alternatus larvae at 106 conidia mL−1 B.
bassiana suspension).

3.4. Mortality Effect of S. guani on the Host under B. bassiana Stress

Given the concentration threshold in this experiment (104–106 conidia mL−1), accord-
ing to the linear regression equations y1 = 0.57809 − 0.12269x (r2 = 0.95299) and y2 = 1.04308
− 0.0867x (r2 = 0.99837) which show that the value of θ decreased, PR and δ increased as the
concentration increased (Table 1). This indicates that the antagonism between B. bassiana
and S. guani increases. It takes less time for S. guani to kill and paralyze their hosts, but
uniform hosts are less efficient. S. guani will shorten the duration of the host’s paralysis
and a deadly period when confronted with B. bassiana, and will prevent their growth for
the better use of resources provided by the host in the face of a large host prey (Figure 9).

Table 1. LE and PE of S. guani on the larvae of M. alternatus under different concentrations of B.
bassiana spore suspensions.

Concentrations
(conidia mL−1)

Parameters LE PE

D(d) S(d) t(d) θ PR δ % %

Control 6.67 3.67 3.00 1.8174 0.3549 0.8876 90.00 83.33
1 × 104 5.93 3.44 2.49 1.7238 0.3671 0.8950 93.33 86.67
1 × 105 5.17 3.20 1.97 1.6156 0.3771 0.9047 93.33 93.33
1 × 106 5.00 3.10 1.90 1.6112 0.3892 0.9052 100.00 96.67

LE (lethal effect): the effect on survival; PE (parasitic effect): the average number of parasitic pests per natural
enemy; D: the pre-oviposition of female adult parasitoids; S: the female adult parasitoids completely paralyze the
host at the time; t: the female adult parasitoids die after the host due to the duration of egg laying; θ: the ratio of
the time it takes for the female adult parasitoids to completely paralyze the host during pre-oviposition of the
female adult parasitoids; PR: the parasitic probability of S. guani after paralyzing host M. alternatus larvae; δ: the
antagonistic effect of S. guani and B. bassiana;δ: the antagonistic effect of S. guani and B. bassiana (the greater the
antagonism, the worse the parasitoid, the weaker the lethal host effect).
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4. Discussion

The exposure interval between the host and the parasitoids is an important variable in
the interaction efficiency of applying a particular entomopathogenic fungus, which could
create neutral, positive, or negative relationships [18]. To resist microbial invasion, various
animal species have thus evolved diverse means to prevent and combat the detrimental
effects of microbial competitors and pathogens on their offspring [30]. Our work shows
that S. guani parent females carrying higher concentrations of the pathogen shorten pre-
oviposition and regulate their own fertility and their offspring’s survival and development.
At moderate concentrations of the pathogen, however, the ability of the parasitoids to
exploit the host is more flexible and efficient, possibly reflecting the potential interspe-
cific interactions between the two parasites which were able to coexist and communicate
with their hosts in ecological contexts (with a high overlap in time and space) and cause
interspecific competition and intraguild predation.

The survival rate and reproductive efficiency of the parental female adults of S. guani
were significantly reduced, and the host lethality was low, but the development time was
short of the offspring of S. guani at 106 conidia mL−1. Females had long longevity, high
reproductive efficiency, a high survival rate, host lethality of offspring parasitoids, and
long offspring development time at 104 conidia mL−1. Although eggs laid were maximum,
female adult longevity, reproductive effects, offspring survival, and host lethality were
notably lower at the optimum concentration than at 104 conidia mL−1. S. guani reduced eggs
laid, resulting in different offspring densities and affecting offspring weight at 106 conidia
mL−1. This is because those female parasitoids need to invest and nurture in reproduction
and breeding, tending to ensure better survival among offspring [31]. Cultivating a stable
number of female offspring is conducive to the reproduction and development of the whole
population [3,7]. The quality of individual host mortality rates is lower than that of parental
female offspring because of B. bassiana mortality and the after-effect of parasitoids. This is
because female parents are willing to take precautions to avoid the risk of infection as their
offspring have low activity levels, and their infection increases the chance of death [32].
However, after carrying B. bassiana, the parent of S. guani should also avoid the passive
influence of the pathogen on its offspring. Parents may shorten the pre-oviposition, extend
the oviposition duration, and shorten the average development duration of the offspring to
cope with the infection of the spore suspension.

Multiple natural enemies often coexist and communicate with their hosts in ecological
contexts (with a high overlap in time and space) and cause interspecific competition and
intraguild predation (IGP) [32,33]. For parasitoids, the host serves as a vital source of food
for their offspring, and the pupal chamber of the host serves as a suitable shelter. When
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the parasitoids sting and paralyze the host, it will be actively attacked and hurt by the
host [3,6,33], leading to behavioral aggression, chemical and physical defense, and increased
risk intensity with host size and developmental progress [34,35]. Parasitoids need to
identify these imminent risks and balance the contradiction between mortality risk, resource
utilization efficiency, and the maximum possibility of population reproduction [27,36]. Liu
used 1–2 parasitoids to the host M. alternatus to assess resistance and survival based on the
risk of death, parasitic success, and the “parasitoid-host-pathogen” interaction described [3].
The lethal effect of parasitoids on the host was determined by PR, vulnerability (θ), and the
dilution ratio (δ). Under the treatment of 104, 105, and 106 conidia mL−1, the lethal effect
of parasitoids on hosts decreased with the increase in θ, and the time of subduing hosts
was shortened with the increase in θ. These results show that under certain stress of the
pathogenic fungus, the parasitoids will encounter competition, infection, and death threats.
Parasitoids thus accelerated the process of capturing the host to reduce the minimum
impact of pathogenic fungus on itself.

When insect pathogenic fungus and natural enemies (predatory and parasitic natural
enemies) coexist in the same ecosystem, they will interact at the trophic level, which
will happen to IGP [37]. Paralyzing the host is a vital stage for parasitoids in effective
parasitism and reproduction, but they risk dying because of the host’s defenses [3]. In
the semi-enclosed pupal chamber, B. bassiana competed with S. guani in parasitism and
reproduction. By infecting the host, B. bassiana could indirectly affect the survival and
reproduction of parasitoids [17]. Furthermore, the entomopathogen can compromise the
quality of the host (nutritional or physiological alterations) [18]. So, the rapid growth of B.
bassiana affects the state of the host, thus affecting the parasitoid’s survival, oviposition,
growth, and development [12,15]. In this case, parasitoids may actively take care to avoid
the adverse effects of B. bassiana. The study found that the offspring without parental
care were more susceptible to B. bassiana infection than those with parental care [30]. This
experiment confirmed that stress under 105 conidia mL−1 was beneficial to the parasitoid.
The parasitoid used its initiative to inhibit the growth and reproduction of B. bassiana,
ensuring its population reproduction. Interspecific relationships within cohorts are complex
and diverse. Different species have various tactics that are not always fatal but could be
more adaptable and versatile to preserve the interactions between the three species. In
conclusion, and from the perspective of integrated pest management (IPM), our results
show the negative interactions between the co-application of S.guani and B. bassiana due
to the adverse effects provided by the entomopathogen on the survival and development
of the parasitoids. However, our research also indicates that the application of these two
biological control agents could potentially be used in combination to control M. alternatus,
wherein this use requires effective time management to avoid antagonistic interactions.

In the experiment, we found an interesting phenomenon whereby, under the 106

conidia mL−1, the parasitoids died on day 5 after inoculation and could not complete the
whole growth and development. However, at 104 conidia mL−1, this had little effect on
parasitoids. Parasitoids can survive under 105 conidia mL−1, although some individuals
can also grow hypha and cause death, and most of the individuals survive. This may
be because parents inhibit the growth of B. bassiana because of parental care [16]. Some
insects release chemical information to inhibit organisms in the community that is not
conducive to parasitoid development [38,39], while some of the individual bodies can
grow hyphae. We inferred that in response to pathogenic fungal stress, the parent adult
females of S. guani reduce their fertility and also indirectly affect the offspring’s survival
and development. We have also verified through some experiments that the parent carrying
a specific concentration will transmit the B. bassiana to his offspring [40]. The offspring
can also carry the pathogenic fungus after emerging [40]. Therefore, we speculate that
the parasitoids compete for speed between the two, first by inhibiting the growth and
development of the entomopathogenic microorganisms and then shortening the time to
subdue the host. Second, we question whether there is a parasite that preempts the growth
rate, but B. bassiana growth is retarded rather than completely disappearing, such that
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the parasitoid’s offspring can be transferred to the subsequent infection cycle following
emergence. Through this study, we can better explain the relationship between various
organisms in the cogroup.
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Figure A3. Exploded view of the model-the mortality effect of S. guani on the host under B. bassiana
stress’s supplementary mate.

D: the pre-oviposition of female adult parasitoids;
S: the female adult parasitoids completely paralyze the host at the time;
B: the time when the female adult parasitoid delivers a fatal blow to the host;
t: the female adult parasitoids die after the host due to the duration of egg laying;
θ: the ratio of the time it takes for the female adult parasitoids to completely paralyze

the host during pre-oviposition of the female adult parasitoids;
PR: the parasitic probability of S. guani after paralyzing host M. alternatus larvae;
δ: the antagonistic effect of S. guani and B. bassiana.
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