Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = palm oil free

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 475 KiB  
Proceeding Paper
Quality Analysis of Crude Palm Oil Using Free Fatty Acid Content Parameters with Failure Mode and Effect Analysis
by Nismah Panjaitan, Muhammad Zaky Faris, Juni Arta Lubis and Niken Kristin Silitonga
Eng. Proc. 2025, 84(1), 98; https://doi.org/10.3390/engproc2025084098 - 18 Jun 2025
Viewed by 592
Abstract
Competition in the industry forces palm oil producers to keep raising the caliber of their output. One of the businesses involved in the Crude Palm Oil sector is PT. XYZ. The quality of the CPO that PT. XYZ produces is a top priority. [...] Read more.
Competition in the industry forces palm oil producers to keep raising the caliber of their output. One of the businesses involved in the Crude Palm Oil sector is PT. XYZ. The quality of the CPO that PT. XYZ produces is a top priority. To ascertain the quality of the oil produced, crude palm oil (CPO) quality supervision is always conducted. At PT. XYZ, supervision is carried out to ascertain the degree of machine efficiency in addition to determining the oil quality. Additionally, this demonstrates PT. XYZ’s dedication to preserving the caliber of the oil produced. PT. XYZ consistently strives to produce oil that satisfies established criteria. A number of characteristics, including moisture content, loss content, and the value of FFA parameters, typically affect the quality of palm oil. The reduction in CPO quality caused by a rise in Free Fatty Acid (FFA) levels is a frequent problem in CPO mills, according to testing results on FFA levels in CPO from June to July 2024 because CPO storage is one of the key elements in assessing CPO quality and protecting it from impurities that can lower palm oil quality. A cause-and-effect diagram and Failure Mode and Effect Analysis are the methods used to examine the rise in FFA levels. Full article
Show Figures

Figure 1

17 pages, 1498 KiB  
Article
Efficient Free Fatty Acid Reduction in Palm Oil Mill Effluent (POME) for Biodiesel Production: Challenges and Optimization Strategies
by Indunil Chamara, Helitha Nilmalgoda and Eranga Wimalasiri
Challenges 2025, 16(2), 28; https://doi.org/10.3390/challe16020028 - 12 Jun 2025
Viewed by 1245
Abstract
The increasing demand for fossil fuels has led the oil industry to explore biodiesel as a renewable alternative, which is crucial for advancing planetary health. Biodiesel offers environmental benefits and shares similar properties with petroleum diesel, making it a promising substitute. However, Palm [...] Read more.
The increasing demand for fossil fuels has led the oil industry to explore biodiesel as a renewable alternative, which is crucial for advancing planetary health. Biodiesel offers environmental benefits and shares similar properties with petroleum diesel, making it a promising substitute. However, Palm Oil Mill Effluent (POME), containing sludge palm oil (SPO), presents challenges due to its high free fatty acid (FFA) content. This study proposes novel optimization strategies to reduce FFAs in SPO and improve biodiesel yield. A combination of base neutralization, esterification, and transesterification processes was employed. Neutralization with sodium hydroxide (NaOH) at concentrations ranging from 0.1% to 0.5% w/w was followed by esterification using sulfuric acid (H2SO4) with varying methanol-to-oil ratios. The optimal FFA reduction of 2.26% was achieved at a 6:1 methanol ratio. Transesterification with a 7:1 methanol-to-oil ratio yielded the highest biodiesel output of 71.25%. The biodiesel met ASTM standards, with a calorific value of 40.01 MJ/kg, a flash point of 180.5 °C, and a density of 0.86 g/cm3. Economic analysis estimates an annual net profit of USD 244,901,600, demonstrating that this approach provides a financially viable solution while advancing planetary health by reducing dependency on fossil fuels, mitigating climate change, and supporting sustainable fuel production. Full article
Show Figures

Figure 1

14 pages, 8555 KiB  
Article
Experimental Liquid Densities of Red Palm Oil at Pressures up to 150 MPa from (312 to 352) K and Dynamic Viscosities at 0.1 MPa from (293 to 353) K
by Jia Lin Lee, Gun Hean Chong, Yuya Hiraga, Yoshiyuki Sato, Masaki Ota and Richard Lee Smith
Liquids 2025, 5(2), 13; https://doi.org/10.3390/liquids5020013 - 13 May 2025
Viewed by 814
Abstract
Density and viscosity are fundamental properties necessary for processing of red palm oil (RPO). The main fatty acid constituents of RPO were determined to be palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). Rheology measurements [...] Read more.
Density and viscosity are fundamental properties necessary for processing of red palm oil (RPO). The main fatty acid constituents of RPO were determined to be palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). Rheology measurements confirmed that RPO behaved as a Newtonian fluid. Viscosities and atmospheric densities of RPO were measured at 0.1 MPa and (293 K to 413) K and correlated with the Rodenbush model (0.05% deviation). Dynamic viscosities of RPO were correlated with the Vogel–Fulcher–Tammann model (0.06% deviation) and Doolittle free volume model (0.04% deviation). High-pressure densities of RPO were measured at (10 to 150) MPa and (312 to 352) K. The Tait equation could correlate the high-pressure densities of RPO to within 0.021% deviation and was used to estimate the thermal expansion as 5.1 × 10−4 K−1 (at 312 K, 150 MPa) to 4.8 × 10−4 K−1 (at 352 K, 150 MPa) and isothermal compressibility as 7.3 × 10−4 MPa−1 (at 352 K, 0.1 MPa) to 3.5 × 10−4 MPa−1 (at 352 K, 150 MPa). Parameters for the perturbed-chain statistical associating fluid theory equation of state were determined and gave an average of 0.143% deviation in density. The data and equations developed should be useful in high-pressure food processing as well as in applications considering vegetable oils as heat transfer fluids or as lubricants. Full article
Show Figures

Figure 1

13 pages, 2013 KiB  
Article
Improving Stability of Biodiesel from 20% Free Fatty Acid Palm Oil with Tert-butylhydroquinone at Various Concentrations for 52 Weeks of Storage
by Tunyaboon Laemthong, Sarun Triwittayayont, Netipon Sakulshah, Chanin Khomlaem, Nutchapon Chiarasumran, Anusith Thanapimmetha, Maythee Saisriyoot, Wei-Cheng Wang, Ya-Yu Chiang and Penjit Srinophakun
Processes 2025, 13(4), 1237; https://doi.org/10.3390/pr13041237 - 19 Apr 2025
Cited by 1 | Viewed by 1408
Abstract
Overcoming the oxidation stability of biodiesel has been a significant challenge, especially after an extended storage period. To test a major factor affecting biodiesel quality, eight different conditions consisting of water at a concentration of 500 ppm and tert-butylhydroquinone (TBHQ) concentrations of 500, [...] Read more.
Overcoming the oxidation stability of biodiesel has been a significant challenge, especially after an extended storage period. To test a major factor affecting biodiesel quality, eight different conditions consisting of water at a concentration of 500 ppm and tert-butylhydroquinone (TBHQ) concentrations of 500, 1000, and 2000 ppm, in combination, were added to palm biodiesel, with no-water-added treatment as the control. Samples were kept in dark storage and air-limited at room temperature for 52 weeks with an initial carbon residue of 0.05 wt%. Every sample was periodically taken for property examination, which included the percentage of fatty acid methyl ester (FAME), iodine value (IV), kinematic viscosity (KV), acid value (AV), and oxidation stability. The properties of the samples with 500 ppm of water-added biodiesel exhibited the most significant degradation, even though oxidation stability (starting from 43.37 h) remained higher than 10.00 h after 32 weeks. The IV dropped 48.43% from 49.92 to 25.56 g I2/100 g. The KV increased 6.14% from 4.56 to 4.84 cSt. The AV rose from 0.45 to 1.09 mg KOH/g. Biodiesel with 2000 ppm TBHQ added was stable for 22 weeks, with all properties under standard values. However, biodiesel in the same condition but with water contamination, its stability was reduced to 16 weeks. Full article
(This article belongs to the Special Issue Trends in Biochemical Processing Techniques)
Show Figures

Figure 1

21 pages, 4838 KiB  
Article
Scale-Up and Development of a Community Industrial Prototype for Red Palm Oil Production Using Advanced Microwave Technology
by Kamonpan Wongyai, Suttirak Kaewpawong, Dhammanoon Srinoum, Watcharin Kongsawat, Kasidapa Polprasarn, Vikas Rathore and Mudtorlep Nisoa
AgriEngineering 2025, 7(4), 113; https://doi.org/10.3390/agriengineering7040113 - 9 Apr 2025
Viewed by 670
Abstract
This study presents the development and evaluation of a microwave-assisted prototype for scalable red palm oil production. The prototype, equipped with industrial magnetrons delivering a combined power of 2 kW, is designed to process up to 6 kg of oil palm fruit per [...] Read more.
This study presents the development and evaluation of a microwave-assisted prototype for scalable red palm oil production. The prototype, equipped with industrial magnetrons delivering a combined power of 2 kW, is designed to process up to 6 kg of oil palm fruit per batch. The design, optimized using COMSOL Multiphysics simulations, focused on waveguide configurations and cavity dimensions to ensure uniform energy distribution and minimize hotspots. Performance testing validated the system’s capability to deliver consistent heating across six trays and produce high-quality red palm oil. Results demonstrated a significant reduction in free fatty acid (FFA) content from 20.4% to 2.1% while retaining carotene content within the industrial standard range (558.2 ppm). The Deterioration of Bleachability Index (DOBI) showed a slight reduction but remained within acceptable limits, underscoring the prototype’s ability to maintain oil clarity and processability. Microwave heating effectively inactivated lipase enzymes, reducing FFA and enhancing oil stability, as confirmed by previous studies. The chemical-free process preserved essential nutrients, aligning with sustainability goals. This innovative system provides a scalable, energy-efficient solution for community and industrial applications, offering improved product quality with minimal environmental impact. Future work will focus on optimizing the system further and exploring its applications in broader agricultural processing contexts. Full article
Show Figures

Figure 1

18 pages, 3255 KiB  
Article
Heterogeneous Acid Catalytic Filaments for Three-Dimensional Printing: Their Preparation, Characterization, and Reduction of Free Fatty Acids in Crude Palm Oil
by Jarernporn Thawornprasert, Kritsakon Pongraktham and Krit Somnuk
Catalysts 2025, 15(4), 356; https://doi.org/10.3390/catal15040356 - 5 Apr 2025
Viewed by 1222
Abstract
This study focuses on the fabrication and application of heterogeneous acid catalytic filaments for free fatty acid (FFA) reduction in crude palm oil (CPO) via esterification. Amberlyst-15 catalyst was blended with acrylonitrile butadiene styrene (ABS) using a single-screw filament extruder to produce Amberlyst-15/ABS [...] Read more.
This study focuses on the fabrication and application of heterogeneous acid catalytic filaments for free fatty acid (FFA) reduction in crude palm oil (CPO) via esterification. Amberlyst-15 catalyst was blended with acrylonitrile butadiene styrene (ABS) using a single-screw filament extruder to produce Amberlyst-15/ABS catalytic filaments. A 5 wt.% concentration of fine Amberlyst-15 particles was considered optimal for blending with ABS, making them a suitable acid catalyst for FFA reduction. The mechanical properties, thermal behavior, and morphology of the Amberlyst-15/ABS catalytic filaments were assessed. The esterification process was optimized by varying three independent variables: the methanol-to-oil molar ratio, catalytic filament loading, and reaction time. The results revealed that under the recommended conditions—26.7:1 methanol-to-oil molar ratio, 78.5 wt.% catalytic filament loading, and a reaction time of 20.2 h at 500 rpm and 60 °C—the FFA content in CPO was reduced from 10.05 to 0.83 wt.%. Additionally, the reusability of the catalytic filaments was evaluated under the recommended conditions of the esterification process. The results demonstrated that the filaments remained effective for at least two cycles, achieving FFA levels below 2 wt.%, thereby confirming their stability and catalytic efficiency. The methodology employed in this study for the preparation and characterization of Amberlyst-15/ABS catalytic filaments offers a promising approach for fabricating acid catalytic materials via 3D printing, especially for heterogeneous catalysis in esterification reactions. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Graphical abstract

15 pages, 2361 KiB  
Article
From Waste to Value: Banana-Peel-Derived Adsorbents for Efficient Removal of Polar Compounds from Used Palm Oil
by Duangdao Channei, Panatda Jannoey, Punyanuch Thammaacheep, Wilawan Khanitchaidecha and Auppatham Nakaruk
Appl. Sci. 2025, 15(4), 2205; https://doi.org/10.3390/app15042205 - 19 Feb 2025
Viewed by 2196
Abstract
The banana chip industry generates significant quantities of waste, including banana peels and used palm oil, which present both environmental and economic challenges. This study explored converting banana peel waste into porous adsorbents via chemical and thermal activation using sulfuric acid (S-BP) and [...] Read more.
The banana chip industry generates significant quantities of waste, including banana peels and used palm oil, which present both environmental and economic challenges. This study explored converting banana peel waste into porous adsorbents via chemical and thermal activation using sulfuric acid (S-BP) and 5% w/v acetic acid (A-BP) as activating agents. Characterization using field emission scanning electron microscopy (FESEM) and Brunauer–Emmett–Teller (BET) analysis revealed notable morphological distinctions and enhanced porosity. The BET surface areas of S-BP and A-BP were 338.959 m2/g and 201.722 m2/g, respectively, significantly higher than that of calcined banana peel (C-BP) at 3.202 m2/g. Despite the higher surface area of S-BP, A-BP, prepared under milder acetic acid conditions, was further investigated for adsorption studies. A-BP effectively reduced the free fatty acids (FFAs) in used palm oil from 3.108% to 1.69% within 30 min. Adsorption isotherms favored the Freundlich model (R2 = 0.9115), indicating multilayer adsorption behavior. The adsorption energy derived from the Dubinin–Radushkevich (D–R) model was determined to be 2.61 J/mol, indicating that the adsorption process primarily occurs through physisorption. This study highlights a sustainable approach to waste management and resource recovery, promoting circular economy principles in the banana chip industry. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends)
Show Figures

Figure 1

12 pages, 2175 KiB  
Proceeding Paper
Thermal Stability of Blending Soybean Oil with Coconut Oil During Continuous Deep Frying of Banana Chips
by Sopheaktra Yi, Sela Kong, Manit Say and Reasmey Tan
Biol. Life Sci. Forum 2024, 40(1), 33; https://doi.org/10.3390/blsf2024040033 - 17 Feb 2025
Viewed by 1002
Abstract
Soybean oil is susceptible to thermal deterioration, especially during the deep-frying process due to its high polyunsaturated fatty acids. Soybean oil has been employed to enhance the nutritional profile and thermal stability by simply blending it with other oils, including palm olein, camelia, [...] Read more.
Soybean oil is susceptible to thermal deterioration, especially during the deep-frying process due to its high polyunsaturated fatty acids. Soybean oil has been employed to enhance the nutritional profile and thermal stability by simply blending it with other oils, including palm olein, camelia, sesame, and cashew nut oil. In particular, coconut oil is more resistant to oxidation than those oils, so adding it to soybean oil that is prone to oxidation can make the mixture more stable. Therefore, this study aims to investigate the thermal stability of soybean oil by blending it with coconut oil and evaluating the blend’s physicochemical changes during the continuous deep frying of banana chips. Refined soybean oil was blended with refined coconut oil at different ratios (% v/v), including 100:0 (A), 80:20 (B), 70:30 (C), and 60:40 (D). All the mixtures were used for continuous deep frying at a constant temperature of 180 °C. The banana chips were fried for 1 min at 5 min intervals over a total of nine batches. The findings show that changes in the physicochemical properties of the frying oils were significantly affected by the soybean oil to coconut oil ratios and the frying duration, which were analyzed using a two-way analysis of variance (p < 0.05). The alteration in free fatty acids and peroxide values were found to be the lowest in treatment C, followed by D < B < A, by using a two-way analysis of variance (p < 0.05). Conversely, the highest total oxidation value was found in treatment A, followed by B > C > D. The lightness of the oil reached the highest value in the last frying cycle in treatments B and C, followed by D and A, while the color of the fried banana chips achieved the maximum value in treatment D, followed by C < B < A. In addition, the lipid content in the fried banana chips was observed to be the lowest in treatments D and C compared to B and A. This study indicated that blending highly unsaturated soybean oil with coconut oil could enhance its thermal stability. Consequentially, a 70:30 (% v/v) ratio of soybean oil with coconut oil exhibited good thermal stability during continuous deep frying. This study provides insights into an alternative blending technique for soybean and coconut oils to improve the thermal stability of frying oil during continuous deep frying. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
Show Figures

Figure 1

15 pages, 2648 KiB  
Article
Methodology for the Evaluation of Varietal Resistance to Haplaxius crudus, Vector of the Causal Agent of Lethal Wilt in Oil Palm in Colombia
by Ivette Johana Beltrán-Aldana, Gladys Alejandra Romero-Guerrero, Eloina Mesa-Fuquen and Anuar Morales-Rodriguez
Insects 2025, 16(2), 197; https://doi.org/10.3390/insects16020197 - 11 Feb 2025
Viewed by 976
Abstract
Lethal Wilt is a limiting disease for oil palm cultivation in the eastern and central zones of Colombia. In the eastern zone, it caused the eradication of approximately 8700 ha of oil palm between 2010 and 2022, with economic losses of more than [...] Read more.
Lethal Wilt is a limiting disease for oil palm cultivation in the eastern and central zones of Colombia. In the eastern zone, it caused the eradication of approximately 8700 ha of oil palm between 2010 and 2022, with economic losses of more than 185 million dollars. Studies conducted by Cenipalma reported that the pathogen causing this disease is Candidatus Liberibacter, which is possibly transmitted by Haplaxius crudus (Van Duzee). The adults feed on the foliage of the palms and move between them, spreading the pathogen in the plantation. A strategy to contribute to the management of LW is establishing cultivars resistant to the insect vector; however, no resistant cultivars or sources of resistance have been identified in the country’s commercial cultivars or germplasm collections. Therefore, this work aimed to design and validate a methodology to characterize the oil palm genotypes Elaeis guineensis and Elaeis oleifera and interspecific OxG hybrids against adults of H. crudus, evaluating resistance through antixenosis and antibiosis to identify genotypes with possible sources of resistance. An arena with leaflets of the different genotypes in free-choice tests was used to assess antixenosis. For antibiosis, entomological sleeves were installed on the palm leaves, which were infested with adults of H. crudus from a breeding unit. The results of antixenosis and antibiosis in both the first phase (design) and the second phase (validation) indicated greater preference and survival for the genotypes of E. guineensis and lower preference and survival for the interspecific hybrids and E. oleifera. In the genotype E. guineensis, the average mortality was reached after 30 days, while in E. oleifera and the hybrids, it occurred between the third and fourth days. The results of this research provide a reproducible methodology for the evaluation of oil palm germplasms against H. crudus and sucking insects for the selection of sources of resistance for incorporation into breeding programs. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 291 KiB  
Article
Nutritional Potential and Low Heavy Metals Content of Oryctes monoceros (Olivier, 1789) and Rhynchophorus phoenicis (Fabricius, 1801) Adults, Two Coleopteran Species Consumed in Togo
by Fègbawè Badanaro, Narcis Barsan, Mamatchi Mélila, Kamilou Ouro-Sama, Koami Améyran, Florin-Marian Nedeff, Oana Irimia and Valentin Nedeff
Appl. Sci. 2025, 15(3), 1317; https://doi.org/10.3390/app15031317 - 27 Jan 2025
Viewed by 874
Abstract
Oryctes monoceros (Olivier, 1789) (Scarabaeidae) and Rhynchophorus phoenicis (Fabricius, 1801) (Curculionidae) are two insects generally known as formidable pests of oil palms and coconuts trees. Although little known, different developmental stages of these insects are consumed. The aim of this study is to [...] Read more.
Oryctes monoceros (Olivier, 1789) (Scarabaeidae) and Rhynchophorus phoenicis (Fabricius, 1801) (Curculionidae) are two insects generally known as formidable pests of oil palms and coconuts trees. Although little known, different developmental stages of these insects are consumed. The aim of this study is to determine the composition of these adult Coleopteran species in order to promote their consumption as a strategy for enhancing food security. Chemical analyses were carried out on adults of both species. Samples of O. monoceros and R. phoenicis were collected in three localities in Togo. The ash, protein, vitamin, and lipid contents were determined according to the AOAC reference methods. The fiber contents were obtained by the method of Weende. The minerals and heavy metals were analyzed by atomic absorption spectrophotometry and colorimetry. Fatty acid composition was determined by gas chromatography. The results showed the average protein content ranges from 44.32 ± 0.83 to 45.89 ± 0.83%. The lipid level is between 15.06 ± 0.28% and 14.64 ± 0.54. Their lipids contain unsaturated fatty acids, notably oleic (40.84 ± 0.112 vs. 40.84 ± 0.11%), linoleic (4.49 ± 0.00 vs. 5.07 ± 0.02%), and α-linolenic (5.07 ± 0.02 vs. 6.35 ± 0.01%) acid. They are excellent sources of minerals and vitamins. They are also free of heavy metals. These species could, therefore, contribute to the nutritional balance of consumers. They deserve to be better promoted for human consumption, as they could make a significant contribution to the fight against malnutrition and constitute a novel food source. Full article
14 pages, 2056 KiB  
Article
Experimental Study on Thermal Properties and Fire Risk According to Acid Value Change in Palm Oil
by Myung Il Kim, Jong-Bae Baek and Mi Jeong Lee
Fire 2025, 8(1), 25; https://doi.org/10.3390/fire8010025 - 12 Jan 2025
Cited by 1 | Viewed by 1759
Abstract
(1) Background: this study investigates the impact of acid value changes on the thermal degradation and fire risks of palm oil. It emphasizes the need for systematic risk management in food manufacturing and preparation processes to address safety challenges associated with high-temperature operations. [...] Read more.
(1) Background: this study investigates the impact of acid value changes on the thermal degradation and fire risks of palm oil. It emphasizes the need for systematic risk management in food manufacturing and preparation processes to address safety challenges associated with high-temperature operations. (2) Methods: the study employed fire reproduction experiments, fire risk characterization tests, and thermal analyses, including differential scanning calorimetry and thermogravimetric analysis. (3) Result: higher acid values in palm oil significantly reduce smoke points, ignition points, and thermal stability, primarily due to increased free fatty acids and oxidative by-products. These effects are more pronounced in oxidative environments, highlighting the importance of controlling acid value to mitigate fire and thermal risks. (4) Conclusions: this study concludes that increased acid value in palm oil significantly reduces its thermal stability and elevates fire risks due to accelerated oxidation and thermal decomposition. It emphasizes the importance of monitoring acid value and implementing temperature control measures to enhance safety in food manufacturing and cooking processes. Full article
Show Figures

Figure 1

18 pages, 3083 KiB  
Article
Crystallized Pickering Emulsions from Plant Oil as a Local Alternative to Palm Oil
by Cyrill Husmann, Tamara Schmid, Chiara Waser, Ivo Kaelin, Lukas Hollenstein and Nadina Müller
Foods 2025, 14(1), 104; https://doi.org/10.3390/foods14010104 - 2 Jan 2025
Cited by 2 | Viewed by 1209
Abstract
Palm and palm kernel oils are preferred ingredients in industrial food processing for baked goods and chocolate-based desserts due to their unique properties, such as their distinctive melting behaviors. However, ongoing concerns about the social and environmental sustainability of palm oil production, coupled [...] Read more.
Palm and palm kernel oils are preferred ingredients in industrial food processing for baked goods and chocolate-based desserts due to their unique properties, such as their distinctive melting behaviors. However, ongoing concerns about the social and environmental sustainability of palm oil production, coupled with consumer demands for palm oil-free products, have prompted the industry to seek alternatives which avoid the use of other tropical or hydrogenated fats. This project investigated replacing palm oils with chemically unhardened Swiss sunflower or rapeseed oils. Target applications were cookies and chocolate fillings. These oils were physically modified through emulsification, stabilized with finely ground oil press cake particles and crystallized waxes. Findings indicated that the emulsification of the oils increased viscosity and that the addition of wax was beneficial for long-term stability; however, the extent of this effect depended on the combination of oil and wax types. Furthermore, wax pre-crystallization and low shear during crystallization significantly improved emulsion stability. Despite these improvements, the resulting emulsions did not achieve sufficient stability and exhibited lower viscosity than palm oil. Future experiments should explore higher wax concentrations (1% or more) and develop analytical methods to better understand the wax composition and its role in oleogel formation. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

30 pages, 1247 KiB  
Review
Vegetable Oils and Their Use for Frying: A Review of Their Compositional Differences and Degradation
by Susana Abrante-Pascual, Barbara Nieva-Echevarría and Encarnacion Goicoechea-Oses
Foods 2024, 13(24), 4186; https://doi.org/10.3390/foods13244186 - 23 Dec 2024
Cited by 16 | Viewed by 9674
Abstract
This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean [...] Read more.
This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean oil, cottonseed oil, palm oil, palm kernel oil and coconut oil) and their degradation during this process. It is well known that during this culinary technique, oil’s major and minor components degrade throughout different reactions, mainly thermoxidation, polymerization and, to a lesser extent, hydrolysis. If severe high temperatures are employed, isomerization to trans fatty acyl chains and cyclization are also possible. The factors conditioning frying medium degradation are addressed, including oil composition (unsaturation degree, fatty acyl chain length and “free” fatty acid content, and presence of beneficial and detrimental minor components), together with frying conditions and food characteristics. Likewise, this review also tackles how the frying oil and other processing conditions may impact on fried food quality (oil absorption, texture, flavor and color). Finally, potential health implications of fried food consumption are briefly reviewed. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

16 pages, 399 KiB  
Article
Effect of Cassava Bioethanol By-Products and Crude Palm Oil Feeding on Fatty Acid Composition of Beef Meat and Fat in Crossbred Thai Indigenous Heifers
by Chirasak Phoemchalard, Ronnachai Prommachat, Tanom Tathong and Suthipong Uriyapongson
Animals 2024, 14(23), 3478; https://doi.org/10.3390/ani14233478 - 2 Dec 2024
Viewed by 1168
Abstract
The quality and nutritional value of meat are significantly attributed to the composition of fatty acids (FAs). This investigation used gas chromatography to assess FAs in longissimus et lumborum (LL), semimembranosus (SM), and subcutaneous fat (SC) tissues of 18 heifers feeding low (15%, [...] Read more.
The quality and nutritional value of meat are significantly attributed to the composition of fatty acids (FAs). This investigation used gas chromatography to assess FAs in longissimus et lumborum (LL), semimembranosus (SM), and subcutaneous fat (SC) tissues of 18 heifers feeding low (15%, LCEP) or high (30%, HCEP) cassava bioethanol by-products (CEP) and 0 (CPO-0), 2 (CPO-2), or 4% (CPO-4) crude palm oil (CPO). The experimental diet was provided at 1.75% of body weight, along with free access to rice straw and water for 150 days. The results showed that the highest content of saturated (SFAs, 50.14, 42.76, and 68.76%, mainly C16:0), monounsaturated (MUFAs, 44.89, 49.14, and 30.41%, mainly C18:1n9c), and polyunsaturated fatty acids (PUFAs, 4.96, 8.10, and 0.84%, mainly C18:2n6c and C18:2n6t) were observed in LL, SM, and fat tissues. CPO supplementation significantly affected the FAs in LL and SM meat, with CPO-2 and CPO-4 diets leading to decreased SFAs and increased MUFAs and PUFAs compared to the CPO-0 diet. Multivariate analysis showed the most important FAs that highlight discrimination between different oil supplementation levels (CPO-0 vs. CPO-2, CPO-0 vs. CPO-4, CPO-2 vs. CPO-4) in LL (C18:2n6c, C20:3n3, C13:0), SM (C13:0, C18:0, C13:0), and SC fat (C18:2n6t, none, none) tissues. This data generates key insights into FA profiles resulting from different levels of oil supplements in cattle diets, which could influence future research on precision nutrition in beef production. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

41 pages, 38449 KiB  
Article
Metabolome and Metagenome Integration Unveiled Synthesis Pathways of Novel Antioxidant Peptides in Fermented Lignocellulosic Biomass of Palm Kernel Meal
by Hammad Qamar, Rong He, Yuanfei Li, Min Song, Dun Deng, Yiyan Cui, Miao Yu and Xianyong Ma
Antioxidants 2024, 13(10), 1253; https://doi.org/10.3390/antiox13101253 - 17 Oct 2024
Cited by 3 | Viewed by 1988
Abstract
Approximately one-third of the entire world’s food resources are deemed to be wasted. Palm kernel meal (PKM), a product that is extensively generated by the palm oil industry, exhibits a unique nutrient-rich composition. However, its recycling is seldom prioritized due to numerous factors. [...] Read more.
Approximately one-third of the entire world’s food resources are deemed to be wasted. Palm kernel meal (PKM), a product that is extensively generated by the palm oil industry, exhibits a unique nutrient-rich composition. However, its recycling is seldom prioritized due to numerous factors. To evaluate the impact of enzymatic pretreatment and Lactobacillus plantarum and Lactobacillus reuteri fermentation upon the antioxidant activity of PKM, we implemented integrated metagenomics and metabolomics approaches. The substantially enhanced (p < 0.05) property of free radicals scavenging, as well as total flavonoids and polyphenols, demonstrated that the biotreated PKM exhibited superior antioxidant capacity. Non-targeted metabolomics disclosed that the Lactobacillus fermentation resulted in substantial (p < 0.05) biosynthesis of 25 unique antioxidant biopeptides, along with the increased (p < 0.05) enrichment ratio of the isoflavonoids and secondary metabolites biosynthesis pathways. The 16sRNA sequencing and correlation analysis revealed that Limosilactobacillus reuteri, Pediococcus acidilactici, Lacticaseibacillus paracasei, Pediococcus pentosaceus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and polysaccharide lyases had significantly dominated (p < 0.05) proportions in PMEL, and these bacterial species were strongly (p < 0.05) positively interrelated with antioxidants peptides. Fermented PKM improves nutritional value by enhancing beneficial probiotics, enzymes, and antioxidants and minimizing anti-nutritional factors, rendering it an invaluable feed ingredient and gut health promoter for animals, multifunctional food elements, or as an ingredient in sustainable plant-based diets for human utilization, and functioning as a culture substrate in the food sector. Full article
(This article belongs to the Special Issue Methodologies for Improving Antioxidant Properties and Absorption)
Show Figures

Figure 1

Back to TopTop