Scale-Up and Development of a Community Industrial Prototype for Red Palm Oil Production Using Advanced Microwave Technology
Abstract
:1. Introduction
2. Material and Methods
2.1. Simulation of an Industrial Microwave Prototype
2.2. Engineering Design
2.3. Assembly and Testing
2.4. Red Palm Oil Production
2.5. Red Palm Oil Quality Assessment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Simulation Results from COMSOL Multiphysics
3.2. Engineering Design and Prototype Fabrication
3.3. Prototype Testing and Performance Evaluation
3.4. Red Palm Oil Quality Analysis
3.5. Scalability and Practical Implications
4. Discussion Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, C.H.; Lee, C.J.; Tan, S.N.; Poon, D.T.S.; Chong, C.Y.E.; Pui, L.P. Red palm oil: A review on processing, health benefits and its application in food. J. Oleo Sci. 2021, 70, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Akinyeye, R.O.; Adeyeye, E.I.; Fasakin, O.; Agboola, A. Physico-chemical properties and anti-nutritional factors of palm fruit products (Elaeis guineensis Jacq.) from Ekiti State Nigeria. Electron. J. Environ. Agric. Food Chem. 2011, 10, 2190–2198. [Google Scholar]
- Purnama, K.O.; Setyaningsih, D.; Hambali, E.; Taniwiryono, D. Processing, characteristics, and potential application of red palm oil-A review. Int. J. Oil Palm. 2020, 3, 40–55. [Google Scholar] [CrossRef]
- Olivares-Tenorio, M.-L.; Cortes-Prieto, C.-M.; Londoño-Univio, N.-C.; Rojas-Díaz, D.-A.; Quintanilla-Carvajal, M.-X.; Tibaquira-Perez, L.-N.; Ricaurte-Puentes, L.-Y.; Rada-Bula, A.-I.; Romero, H.-M.; Garcia-Nuñez, J.-A. Bioactive Compounds in Palm Oil: A Comprehensive Review of Recent Advances in Physicochemical Characteristics, Health-Promoting Properties and Technologies for Extraction, Concentration, Fractionation, Encapsulation and Functional Food Applications. J. Food Compos. Anal. 2024, 132, 106306. [Google Scholar] [CrossRef]
- Mayamol, P.; Balachandran, C.; Samuel, T.; Sundaresan, A.; Arumughan, C. Process technology for the production of micronutrient rich red palm olein. J. Am. Oil Chem. Soc. 2007, 84, 587–596. [Google Scholar] [CrossRef]
- Umudee, I.; Chongcheawchamnan, M.; Kiatweerasakul, M.; Tongurai, C. Sterilization of oil palm fresh fruit using microwave technique. Int. J. Chem. Eng. Appl. 2013, 4, 111. [Google Scholar] [CrossRef]
- Wae-hayee, M.; Pakdeechot, S.; Hanifarianty, S.; Suksuwan, W. Minimizing water consumption in oil palm sterilization using direct steaming: Effects of sterilization pressure and time. J. Food Eng. 2022, 315, 110804. [Google Scholar] [CrossRef]
- Chavalparit, O. Clean Technology for the Crude Palm Oil Industry in Thailand; Wageningen University and Research: Wageningen, The Netherlands, 2006. [Google Scholar]
- Rani, H.; Sharma, S.; Bala, M. Technologies for extraction of oil from oilseeds and other plant sources in retrospect and prospects: A review. J. Food Process Eng. 2021, 44, e13851. [Google Scholar] [CrossRef]
- Zamanhuri, N.A.; Abd Rahman, N.; Bakar, N.F.A. Extraction of palm fatty acids from sterilized oil palm mesocarp by microwave technique: Optimization and kinetics. Mater. Today Proc. 2022, 63, S166–S173. [Google Scholar] [CrossRef]
- Zamanhuri, N.A.; Abd Rahman, N.; Bakar, N.F.A. Effect of microwave power and extraction time on crude palm oil quality using microwave-assisted extraction process. Int. J. Renew. Energy Dev. 2021, 10, 495–505. [Google Scholar] [CrossRef]
- Sarah, M.; Widyastuti, S.; Ningsih, D. (Eds.) Red palm oil production by microwave irradiation. In IOP Conference Series: Materials Science and Engineering, Volume 309, Proceedings of the TALENTA—Conference on Engineering, Science and Technology 2017 (TALENTA-CEST 2017), Sumatera Utara, Indonesia, 7–8 September 2017; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Chin Chow, M.; Ngan Ma, A. Processing of fresh palm fruits using microwaves. J. Microw. Power Electromagn. Energy. 2005, 40, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Boonthum, D.; Chanprateep, S.; Ruttanapun, C.; Nisoa, M. Development of high-temperature multi-magnetron microwave furnace for material processing. Songklanakarin J. Sci. Technol. 2019, 41, 494–500. [Google Scholar]
- Nisoa, M.; Plodkaew, A.; Wattanasit, K.; Polprasarn, K.; Sirisathitkul, Y. Multiphysics Modeling for Microwavable Packaging of Ready-to-Eat Baked Spinach with Cheese. Int. J. Eng. Appl. 2023, 11, 384. [Google Scholar] [CrossRef]
- Nisoa, M.; Plodkaew, A.; Sirisathitkul, Y.; Sirisathitkul, C. Multiphysics Modeling of Size and Shielding Effects on Power Absorbed by Loads in a Stationary Microwave Oven. Int. Rev. Model. Simul. 2023, 16, 216–226. [Google Scholar] [CrossRef]
- Nisoa, M.; Plodkaew, A.; Sirisathitkul, C.; Wattanasit, K.; Somjit, B.; Pacdeepin, P.; Sirisathitkul, Y. Simulation and experimentation on parameters influencing microwave-assisted extraction of bioactive compounds from Kaempferia parviflora rhizomes. Alex. Eng. J. 2023, 65, 357–366. [Google Scholar] [CrossRef]
- Frisa-Rubio, A.; Campo-Valera, M.; Mallah, M.; Murillo-Ciordia, G.; Rodríguez-Rodríguez, I. A novel combined design of vessel and resonant cavity for microwave multi-frequency heating chemical reactor using antennas as applicators. IEEE Access 2023, 11, 39448–39456. [Google Scholar] [CrossRef]
- Yang, B.; Peng, F.; Zhang, Z.; Wu, Z.; Huang, H.; Shi, Y.; Han, Z. Multi-source microwave heating temperature uniformity study based on adaptive dynamic programming. High. Temp. Mater. Process. 2023, 42, 20220303. [Google Scholar] [CrossRef]
- Patel, D.; Mohanty, A.; Panigrahi, S. A sustainable waveguide-based design strategy for improving the energy efficiency of microwave hybrid heating systems: A combined theoretical and multi-physics simulation approach. Therm. Sci. Eng. Prog. 2024, 56, 103054. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons I.: Hoboken, NJ, USA, 2012; pp. 26–30. [Google Scholar]
- Collin, R.E. Foundations for Microwave Engineering, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Balanis, C.A. Advanced Engineering Electromagnetics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Harrington, R. Time Harmonic Electromagnetic Fields; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Haus, H.A.; Melcher, J.R. Electromagnetic Fields and Energy; Prentice Hall Englewood Cliffs: Hoboken, NJ, USA, 1989. [Google Scholar]
- Zin, N.M.; Jenu, M.Z.M.; Po’ad, F.A. (Eds.) Measurements and reduction of microwave oven electromagnetic leakage. In Proceedings of the 2011 IEEE International RF & Microwave Conference, Seremban, Malaysia, 12–14 December 2011. [Google Scholar]
- Sarip, M.S.M.; Morad, N.A.; Nawi, M.A.H.M.; Aziz, M.K.T.A.; Jaapar, S.Z.I.S. β-carotene enrichment in crude palm oil using subcritical water extraction and its relationship with the solubility. Food Chem. Adv. 2023, 2, 100245. [Google Scholar] [CrossRef]
- Kresnowati, M.; Lestari, D.; Anshori, M.; Jafar, R. (Eds.) Production of carotenoids from oil palm empty fruit bunches. In IOP Conference Series: Earth and Environmental Science, Volume 460, Proceedings of the International Conference of Biomass and Bioenergy, West Java, Indonesia, 19–20 August 2019; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Choo, Y.-M.; Yap, S.-C.; Ooi, C.-K.; Ma, A.-N.; Goh, S.-H.; Ong, A.S.-H. Recovered oil from palm-pressed fiber: A good source of natural carotenoids, vitamin E, and sterols. J. Am. Oil Chem Soc. 1996, 73, 599–602. [Google Scholar] [CrossRef]
- Kamaruddin, A.H.; Zamanhuri, N.A.; Raslan, R. Extraction Yield of Palm Oil and Carotenoids Value from Microwave-Sterilized Oil Palm Mesocarp. Adv. Sci. Technol. 2023, 127, 23–34. [Google Scholar]
- Kanjanapongkul, K. Single and combined effects of ohmic and microwave heating on crude palm oil quality and stability. Agric Nat. Resour. 2021, 55, 177–186. [Google Scholar]
- Azeman, N.H.; Yusof, N.A.; Othman, A.I. Detection of free fatty acid in crude palm oil. Asian J. Chem. 2015, 27, 1569. [Google Scholar] [CrossRef]
- Japir, A.A.-W.; Salimon, J.; Derawi, D.; Bahadi, M.; Al-Shuja’a, S.; Yusop, M.R. Physicochemical characteristics of high free fatty acid crude palm oil. OCL 2017, 24, D506. [Google Scholar] [CrossRef]
- Rusdi, H.O.; Kusumaningrum, I.K.; Nareswari, T.J.; Fauziah, P.N.; Maharani, R.N.; Natasya, S. Separation and Determination of Free Fatty Acids in Corn Oil and Palm Oil by Liquid-Liquid Extraction and Acidi-Alkalimetric Titration. Walisongo J. Chem. 2024, 7, 98–106. [Google Scholar] [CrossRef]
- Prakotmak, P. Finite element modeling of heat and mass transfer in food materials during microwave heating. J. Appl. Sci. Res. 2013, 9, 6115–6121. [Google Scholar]
- Liu, S.; Ogiwara, Y.; Fukuoka, M.; Sakai, N. Investigation and modeling of temperature changes in food heated in a flatbed microwave oven. J. Food Eng. 2014, 131, 142–153. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, T.; Zhang, S. Shape effect on the temperature field during microwave heating process. J. Food Qual. 2018, 2018, 9169875. [Google Scholar] [CrossRef]
- Campañone, L.A.; Paola, C.A.; Mascheroni, R.H. Modeling and Simulation of Microwave Heating of Foods Under Different Process Schedules. Food Bioprocess Technol. 2012, 5, 738–749. [Google Scholar] [CrossRef]
- Sarah, M.; Ramadhan, M.R.; Zahra, A.; Madinah, I.; Maulina, S.; Misran, E. Sterilization of oil palm fruit utilizing continuous microwave sterilizer. Case Stud. Therm. Eng. 2023, 52, 103698. [Google Scholar] [CrossRef]
- Tapanwong, M.; Nokkaew, R.; Punsuvon, V. Effect of combination microwave and oven drying on the chemical properties of different ripeness crude palm oil. Int. J. GEOMATE 2020, 18, 27–32. [Google Scholar] [CrossRef]
- Cheng, S.; Chuah, C. Microwave pretreatment: A clean and dry method for palm oil production. Ind. Crop. Prod. 2011, 34, 967–971. [Google Scholar] [CrossRef]
Time (min) | FFA (%) | DOBI | Carotene Content |
---|---|---|---|
0 min | |||
50 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongyai, K.; Kaewpawong, S.; Srinoum, D.; Kongsawat, W.; Polprasarn, K.; Rathore, V.; Nisoa, M. Scale-Up and Development of a Community Industrial Prototype for Red Palm Oil Production Using Advanced Microwave Technology. AgriEngineering 2025, 7, 113. https://doi.org/10.3390/agriengineering7040113
Wongyai K, Kaewpawong S, Srinoum D, Kongsawat W, Polprasarn K, Rathore V, Nisoa M. Scale-Up and Development of a Community Industrial Prototype for Red Palm Oil Production Using Advanced Microwave Technology. AgriEngineering. 2025; 7(4):113. https://doi.org/10.3390/agriengineering7040113
Chicago/Turabian StyleWongyai, Kamonpan, Suttirak Kaewpawong, Dhammanoon Srinoum, Watcharin Kongsawat, Kasidapa Polprasarn, Vikas Rathore, and Mudtorlep Nisoa. 2025. "Scale-Up and Development of a Community Industrial Prototype for Red Palm Oil Production Using Advanced Microwave Technology" AgriEngineering 7, no. 4: 113. https://doi.org/10.3390/agriengineering7040113
APA StyleWongyai, K., Kaewpawong, S., Srinoum, D., Kongsawat, W., Polprasarn, K., Rathore, V., & Nisoa, M. (2025). Scale-Up and Development of a Community Industrial Prototype for Red Palm Oil Production Using Advanced Microwave Technology. AgriEngineering, 7(4), 113. https://doi.org/10.3390/agriengineering7040113