Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = palladium membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4829 KiB  
Article
Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers
by Mun Jeong Choi, Dae Hyeob Yoon, Yoo Sei Park, Hyoryung Nam and Geon Hwee Kim
Appl. Sci. 2025, 15(14), 8023; https://doi.org/10.3390/app15148023 - 18 Jul 2025
Viewed by 287
Abstract
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved [...] Read more.
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved or complex surfaces, low mechanical compliance, and susceptibility to oxidation-induced degradation. To overcome these challenges, we applied a protein-assisted electroless copper (Cu) plating strategy to electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber substrates to fabricate flexible, conductive planar heating membranes. For interfacial functionalization, a protein-based engineering approach using bovine serum albumin (BSA) was employed to facilitate palladium ion coordination and seed formation. The resulting membrane exhibited a dense, continuous Cu coating, low sheet resistance, excellent durability under mechanical deformation, and stable heating performance at low voltages. These results demonstrate that the BSA-assisted strategy can be effectively extended to complex three-dimensional fibrous membranes, supporting its scalability and practical potential for next-generation conformal and wearable planar heaters. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

54 pages, 10398 KiB  
Article
Reduced-Order Modeling (ROM) of a Segmented Plug-Flow Reactor (PFR) for Hydrogen Separation in Integrated Gasification Combined Cycles (IGCC)
by Osama A. Marzouk
Processes 2025, 13(5), 1455; https://doi.org/10.3390/pr13051455 - 9 May 2025
Cited by 2 | Viewed by 1058
Abstract
In an integrated gasification combined cycle (IGCC), a gasification process produces a gas stream from a solid fuel, such as coal or biomass. This gas (syngas or synthesis gas) resulting from the gasification process contains carbon monoxide, molecular hydrogen, and carbon dioxide (other [...] Read more.
In an integrated gasification combined cycle (IGCC), a gasification process produces a gas stream from a solid fuel, such as coal or biomass. This gas (syngas or synthesis gas) resulting from the gasification process contains carbon monoxide, molecular hydrogen, and carbon dioxide (other gaseous components may also be present depending on the gasified solid fuel and the gasifying agent). Separating hydrogen from this syngas stream has advantages. One of the methods to separate hydrogen from syngas is selective permeation through a palladium-based metal membrane. This separation process is complicated as it depends nonlinearly on various variables. Thus, it is desirable to develop a simplified reduced-order model (ROM) that can rapidly estimate the separation performance under various operational conditions, as a preliminary stage of computer-aided engineering (CAE) in chemical processes and sustainable industrial operations. To fill this gap, we present here a proposed reduced-order model (ROM) procedure for a one-dimensional steady plug-flow reactor (PFR) and use it to investigate the performance of a membrane reactor (MR), for hydrogen separation from syngas that may be produced in an integrated gasification combined cycle (IGCC). In the proposed model, syngas (a feed stream) enters the membrane reactor from one side into a retentate zone, while nitrogen (a sweep stream) enters the membrane reactor from the opposite side into a neighbor permeate zone. The two zones are separated by permeable palladium membrane surfaces that are selectively permeable to hydrogen. After analyzing the hydrogen permeation profile in a base case (300 °C uniform temperature, 40 atm absolute retentate pressure, and 20 atm absolute permeate pressure), the temperature of the module, the retentate-side pressure, and the permeate-side pressure are varied individually and their influence on the permeation performance is investigated. In all the simulation cases, fixed targets of 95% hydrogen recovery and 40% mole-fraction of hydrogen at the permeate exit are demanded. The module length is allowed to change in order to satisfy these targets. Other dependent permeation-performance variables that are investigated include the logarithmic mean pressure-square-root difference, the hydrogen apparent permeance, and the efficiency factor of the hydrogen permeation. The contributions of our study are linked to the fields of membrane applications, hydrogen production, gasification, analytical modeling, and numerical analysis. In addition to the proposed reduced-order model for hydrogen separation, we present various linear and nonlinear regression models derived from the obtained results. This work gives general insights into hydrogen permeation via palladium membranes in a hydrogen membrane reactor (MR). For example, the temperature is the most effective factor to improve the permeation performance. Increasing the absolute retentate pressure from the base value of 40 atm to 120 atm results in a proportional gain in the permeated hydrogen mass flux, with about 0.05 kg/m2.h gained per 1 atm increase in the retentate pressure, while decreasing the absolute permeate pressure from the base value of 20 bar to 0.2 bar causes the hydrogen mass flux to increase exponentially from 1.15 kg/m2.h. to 5.11 kg/m2.h. This study is linked with the United Nations Sustainable Development Goal (SDG) numbers 7, 9, 11, and 13. Full article
Show Figures

Figure 1

24 pages, 10263 KiB  
Article
Non-Renewable and Renewable Exergy Costs of Water Electrolysis in Hydrogen Production
by Alessandro Lima, Jorge Torrubia, Alicia Valero and Antonio Valero
Energies 2025, 18(6), 1398; https://doi.org/10.3390/en18061398 - 12 Mar 2025
Cited by 2 | Viewed by 1026
Abstract
Hydrogen production via water electrolysis and renewable electricity is expected to play a pivotal role as an energy carrier in the energy transition. This fuel emerges as the most environmentally sustainable energy vector for non-electric applications and is devoid of CO2 emissions. [...] Read more.
Hydrogen production via water electrolysis and renewable electricity is expected to play a pivotal role as an energy carrier in the energy transition. This fuel emerges as the most environmentally sustainable energy vector for non-electric applications and is devoid of CO2 emissions. However, an electrolyzer’s infrastructure relies on scarce and energy-intensive metals such as platinum, palladium, iridium (PGM), silicon, rare earth elements, and silver. Under this context, this paper explores the exergy cost, i.e., the exergy destroyed to obtain one kW of hydrogen. We disaggregated it into non-renewable and renewable contributions to assess its renewability. We analyzed four types of electrolyzers, alkaline water electrolysis (AWE), proton exchange membrane (PEM), solid oxide electrolysis cells (SOEC), and anion exchange membrane (AEM), in several exergy cost electricity scenarios based on different technologies, namely hydro (HYD), wind (WIND), and solar photovoltaic (PV), as well as the different International Energy Agency projections up to 2050. Electricity sources account for the largest share of the exergy cost. Between 2025 and 2050, for each kW of hydrogen generated, between 1.38 and 1.22 kW will be required for the SOEC-hydro combination, while between 2.9 and 1.4 kW will be required for the PV-PEM combination. A Grassmann diagram describes how non-renewable and renewable exergy costs are split up between all processes. Although the hybridization between renewables and the electricity grid allows for stable hydrogen production, there are higher non-renewable exergy costs from fossil fuel contributions to the grid. This paper highlights the importance of non-renewable exergy cost in infrastructure, which is required for hydrogen production via electrolysis and the necessity for cleaner production methods and material recycling to increase the renewability of this crucial fuel in the energy transition. Full article
Show Figures

Figure 1

52 pages, 8036 KiB  
Review
Palladium Membrane Applications in Hydrogen Energy and Hydrogen-Related Processes
by Dmitry A. Alentiev, Maxim V. Bermeshev, Alexey V. Volkov, Inna V. Petrova and Andrey B. Yaroslavtsev
Polymers 2025, 17(6), 743; https://doi.org/10.3390/polym17060743 - 12 Mar 2025
Cited by 1 | Viewed by 2978
Abstract
In recent years, increased attention has been paid to environmental issues and, in connection with this, to the development of hydrogen energy. In turn, this requires the large-scale production of ultra pure hydrogen. Currently, most hydrogen is obtained by converting natural gas and [...] Read more.
In recent years, increased attention has been paid to environmental issues and, in connection with this, to the development of hydrogen energy. In turn, this requires the large-scale production of ultra pure hydrogen. Currently, most hydrogen is obtained by converting natural gas and coal. In this regard, the issue of the deep purification of hydrogen for use in fuel cells is very relevant. The deep purification of hydrogen is also necessary for some other areas, including microelectronics. Only palladium membranes can provide the required degree of purification. In addition, the use of membrane catalysis is very relevant for the widely demanded processes of hydrogenation and dehydrogenation, for which reactors with palladium membranes are used. This process is also successfully used for the single-stage production of high-purity hydrogen. Polymeric palladium-containing membranes are also used to purify hydrogen and to remove various pollutants from water, including organochlorine products, nitrates, and a number of other substances. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

10 pages, 2749 KiB  
Article
Titanium Nitride as an Intermetallic Diffusion Barrier for Hydrogen Permeation in Palladium–Vanadium Composite Membranes
by Cameron M. Burst, Chao Li, Douglas Way and Colin A. Wolden
Membranes 2025, 15(3), 68; https://doi.org/10.3390/membranes15030068 - 21 Feb 2025
Viewed by 1686
Abstract
Hydrogen purification is a critical industrial process, and there are ongoing efforts to develop low-cost alternatives to palladium foil membranes. Titanium nitride (TiN) is studied as an interdiffusion barrier to enable hydrogen permeation in composite palladium–vanadium membranes. TiN was deposited via reactive sputtering, [...] Read more.
Hydrogen purification is a critical industrial process, and there are ongoing efforts to develop low-cost alternatives to palladium foil membranes. Titanium nitride (TiN) is studied as an interdiffusion barrier to enable hydrogen permeation in composite palladium–vanadium membranes. TiN was deposited via reactive sputtering, and films with the desired (200) orientation were obtained in the metallic regime at 400 °C under a 200 V bias to the substrate. The permeability of thin-film TiN was determined with palladium-based sandwich structures. TiN layers up to 10 nm resulted in a minimal decrease in flux (~20%) relative to a freestanding PdCu foil, which was attributed to the interfacial resistance. At greater thicknesses, the TiN layer was rate-limiting, and it was found that the effective permeability of the sputtered TiN thin films was ~6 × 10−12 mol s−1 m−1 Pa−0.5. Composite Pd|TiN|V|TiN|Pd membranes exhibited permeability values up to three times greater than pure palladium, exhibiting stability at 450 °C for over 100 h, with the lack of intermetallic diffusion and alloy formation being confirmed with XRD. The membranes were unstable at 500 °C, which was attributed to the instability of the thin Pd layer and loss of catalytic activity. Full article
(This article belongs to the Special Issue A Commemorative Special Issue in Honor of Dr. Moises Carreon)
Show Figures

Figure 1

26 pages, 3664 KiB  
Article
Membrane-Based Hydrogen Production: A Techno-Economic Evaluation of Cost and Feasibility
by Dk Nur Hayati Amali Pg Haji Omar Ali, Hazwani Suhaimi and Pg Emeroylariffion Abas
Hydrogen 2025, 6(1), 9; https://doi.org/10.3390/hydrogen6010009 - 8 Feb 2025
Cited by 1 | Viewed by 1677
Abstract
As the global shift toward a low-carbon economy accelerates, hydrogen is emerging as a crucial energy source. Among conventional methods for hydrogen production, steam methane reforming (SMR), commonly paired with pressure swing adsorption (PSA) for hydrogen purification, stands out due to its established [...] Read more.
As the global shift toward a low-carbon economy accelerates, hydrogen is emerging as a crucial energy source. Among conventional methods for hydrogen production, steam methane reforming (SMR), commonly paired with pressure swing adsorption (PSA) for hydrogen purification, stands out due to its established infrastructure and technological maturity. This comprehensive techno-economic analysis focuses on membrane-based hydrogen production, evaluating four configurations, namely SMR, SMR with PSA, SMR with a palladium membrane, and SMR with a ceramic–carbonate membrane coupled with a carbon capture system (CCS). The life cycle cost (LCC) of each configuration was assessed by analyzing key factors, including production rate, hydrogen pricing, equipment costs, and maintenance expenses. Sensitivity analysis was also conducted to identify major cost drivers influencing the LCC, providing insights into the economic and operational feasibility of each configuration. The analysis reveals that SMR with PSA has the lowest LCC and is significantly more cost-efficient than configurations involving the palladium and ceramic–carbonate membranes. SMR with a ceramic–carbonate membrane coupled with CCS also demonstrates the most sensitive to energy variations due to its extensive infrastructure and energy requirement. Sensitivity analysis confirms that SMR with PSA consistently provides the greatest cost efficiency under varying conditions. These findings underscore the critical balance between cost efficiency and environmental considerations in adopting membrane-based hydrogen production technologies. Full article
Show Figures

Figure 1

13 pages, 6895 KiB  
Article
Catalytic Activity of Pt/Pd Mono- and Bimetallic Catalysts in Electrochemical Hydrogen Pump/Compressor
by Nevelin Borisov, Borislava Mladenova, Galin Borisov and Evelina Slavcheva
Inorganics 2025, 13(2), 48; https://doi.org/10.3390/inorganics13020048 - 7 Feb 2025
Cited by 1 | Viewed by 859
Abstract
In this study, mono- and bimetallic platinum (Pt), palladium (Pd) and Pt-Pd nanoparticles were synthesized using the wet sol–gel method, employing a carbon-based XC72R as catalytic carrier. The overall metal content was set at 40 wt.% at varying Pt:Pd ratios. Characterization of the [...] Read more.
In this study, mono- and bimetallic platinum (Pt), palladium (Pd) and Pt-Pd nanoparticles were synthesized using the wet sol–gel method, employing a carbon-based XC72R as catalytic carrier. The overall metal content was set at 40 wt.% at varying Pt:Pd ratios. Characterization of the morphology and surface structure was conducted through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) and X-ray diffraction (XRD) analyses. The electrochemical performance and catalytic activity against the hydrogen evolution reaction (HER) were assessed in a three-electrode cell for screening purposes, as well as in a prototype cell of an electrochemical hydrogen pump/compressor (EHP/C) where the catalysts served as cathodes, while the anode was Pt/XC72 40% wt. with 0.38 mgPt·cm−2 within a membrane electrode assembly (MEA) with a 180 µm thick Nafion 117 proton-conductive membrane. The results obtained indicated superior catalytic activity of the bimetallic catalysts in comparison to the pure metal samples. Further electrochemical tests in an EHP/C cell at varying differential pressures in the range of 0–3 bar revealed stable behavior and high current density, reaching approximately 0.7 A cm−2 at 60 °C. The accelerated durability tests performed demonstrated excellent stability of the synthesized composite catalysts. These findings underscore the potential of Pt-Pd nanoparticles as efficient catalysts with sustainable performance for electrochemical hydrogen pumping/compressing applications. Full article
Show Figures

Figure 1

16 pages, 2581 KiB  
Article
Impact of a Palladium(II)-tris(2-carboxyethyl)phosphine Complex on Normal Cells: Toxicity and Membrane Interaction
by Hanna Pruchnik, Katarzyna Solarska-Ściuk, Anita Dudek and Aleksandra Włoch
Molecules 2025, 30(3), 476; https://doi.org/10.3390/molecules30030476 - 22 Jan 2025
Viewed by 875
Abstract
Palladium(II) complexes with tris(2-carboxyethyl)phosphine (PdTCEP) show promise for biomedical applications due to their distinct chemical characteristics. This study explored the toxicity of PdTCEP towards normal human cells and examined its interactions with model cell membranes. Two cell types were used to evaluate cytotoxicity: [...] Read more.
Palladium(II) complexes with tris(2-carboxyethyl)phosphine (PdTCEP) show promise for biomedical applications due to their distinct chemical characteristics. This study explored the toxicity of PdTCEP towards normal human cells and examined its interactions with model cell membranes. Two cell types were used to evaluate cytotoxicity: human microvascular endothelial cells (HMEC-1) and red blood cells (RBCs). In HMEC-1 cells, PdTCEP reduced survival to about 80% at 15 µM, with the most significant drop—down to 40%—occurring at 40 µM. The production of reactive oxygen species (ROS) increased in a manner dependent on both dose and time, especially after 72 h of incubation. Despite these effects, PdTCEP caused only minor hemolysis in RBCs, with hemolysis levels staying below 10% even at higher concentrations. Fluorescence anisotropy measurements showed that PdTCEP minimally affects the hydrophobic core of the lipid bilayer, with slight changes observed at concentrations above 40 µM. Generalized polarization (GP) analysis indicated a slight decrease in lipid polar head packing with increasing PdTCEP concentration. Complementary FTIR analysis supported these findings by providing detailed insights into PdTCEP-membrane interactions. This research underscores PdTCEP’s selective cytotoxicity and structural effects on membranes, suggesting its promise for more in-depth biological and pharmacological studies. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Figure 1

13 pages, 1005 KiB  
Article
Multiparametric Study of Water–Gas Shift and Hydrogen Separation Performance in Membrane Reactors Fed with Biomass-Derived Syngas
by Nadia Cerone, Luca Contuzzi, Giuseppe Domenico Zito, Carmine Florio, Laura Fabbiano and Francesco Zimbardi
Hydrogen 2025, 6(1), 6; https://doi.org/10.3390/hydrogen6010006 - 22 Jan 2025
Viewed by 3928
Abstract
A multiparametric study was conducted on a hydrogen (H2) production rig designed to process 0.25 Nm3·h−1 of syngas. The rig consists of two Pd-Ag membrane permeator units and two Pd-Ag membrane reactor units for the water–gas shift (WGS) [...] Read more.
A multiparametric study was conducted on a hydrogen (H2) production rig designed to process 0.25 Nm3·h−1 of syngas. The rig consists of two Pd-Ag membrane permeator units and two Pd-Ag membrane reactor units for the water–gas shift (WGS) reaction, enabling a detailed and comprehensive analysis of its performance. The aim was to find the optimal conditions to maximize hydrogen production by WGS and its separation in a pure stream by varying the temperature, pressure, and steam-to-CO ratio (S/CO). Two syngas mixtures obtained from an updraft gasifier using different gasification agents (air–steam and oxy–steam) were used to investigate the effect of gas composition. The performance of the rig was investigated under nine combinations of temperature, pressure, and S/CO in the respective ranges of 300–350 °C, 2–8 bar, and 1.1–2 mol·mol−1, as planned with the help of design of experiment (DOE) software. The three parameters positively affected performance, both in terms of capacity to separate a pure stream of H2, reported as moles permeated per unit of surface area and time, and in producing new H2 from WGS, reported as moles of H2 produced per volume of catalyst unit and time. The highest yields were obtained using syngas from oxy–steam gasification, which had the highest H2 concentration and was free of N2. Full article
Show Figures

Figure 1

14 pages, 1571 KiB  
Article
Exploring Principal Component Analysis for Enhanced Insights into Physical and Operational Characteristics of Palladium-Based Membrane Composites: Advancing Hydrogen (H2) Energy Potential to Revolutionize the Energy Sector
by Khaled Younes, Walid Al-Shaar, Majdi Hochlaf, Maroua Fattouche, Salah Belaidi and Christina El Sawda
Processes 2025, 13(1), 192; https://doi.org/10.3390/pr13010192 - 11 Jan 2025
Viewed by 1075
Abstract
In this study, we used Principal Component Analysis (PCA) to evaluate the physical and operational properties of palladium (Pd)-based membrane composites, focusing on variables like temperature, differential pressure (ΔP), thickness, hydrogen (H2) permeability, and H2 flux. The analysis revealed that [...] Read more.
In this study, we used Principal Component Analysis (PCA) to evaluate the physical and operational properties of palladium (Pd)-based membrane composites, focusing on variables like temperature, differential pressure (ΔP), thickness, hydrogen (H2) permeability, and H2 flux. The analysis revealed that the first two principal components explained 53.16% of the total variance, indicating moderate explanatory power. Interdependencies were observed among temperature, thickness, H2 flux, and H2 permeability, while ΔP functioned independently. This study found similarities among membranes, such as eco-friendly chitosan-based membranes, which performed comparably to conventional options like Pd–PSS and Pd–Cu/αAl2O3. Overall, PCA proved to be an invaluable tool for uncovering hidden patterns, optimizing experimental processes, and deepening the understanding of Pd-based membranes. The findings underscore PCA’s potential to enhance material performance and promote sustainable alternatives, with practical benefits for advancing hydrogen separation technologies. This study illustrates how data-driven approaches can refine material analysis and drive innovation in membrane design. Full article
Show Figures

Figure 1

49 pages, 7682 KiB  
Review
Advances in Palladium-Based Membrane Research: High-Throughput Techniques and Machine Learning Perspectives
by Eric Kolor, Muhammad Usman, Sasipa Boonyubol, Koichi Mikami and Jeffrey S. Cross
Processes 2024, 12(12), 2855; https://doi.org/10.3390/pr12122855 - 12 Dec 2024
Cited by 2 | Viewed by 3616
Abstract
The separation of high-purity hydrogen from mixed gasses using dense metallic alloy membranes is essential for advancing a hydrogen-based economy. Palladium-based membranes exhibit outstanding catalytic activity and theoretically infinite hydrogen selectivity, but their high cost and limited performance in contaminant-rich environments restrict their [...] Read more.
The separation of high-purity hydrogen from mixed gasses using dense metallic alloy membranes is essential for advancing a hydrogen-based economy. Palladium-based membranes exhibit outstanding catalytic activity and theoretically infinite hydrogen selectivity, but their high cost and limited performance in contaminant-rich environments restrict their widespread use. This study addresses these limitations by exploring strategies to develop cost-effective, high-performance alternatives. Key challenges include the vast compositional design space, lack of systematic design principles, and the slow pace of traditional material development. This review emphasizes the potential of high-throughput and combinatorial techniques, such as composition-spread alloy films and the statistical design of experiments (DoE), combined with machine learning and materials informatics, to accelerate the discovery, optimization, and characterization of palladium-based membranes. These approaches reduce development time and costs while improving efficiency. Focusing on critical properties such as surface catalytic activity, resistance to chemical and physical stresses, and the incorporation of low-cost base metals, this study introduces domain-specific descriptors to address data scarcity and improve material screening. By integrating computational and experimental methods, future research can identify hidden material correlations and expedite the rational design of next-generation hydrogen separation membranes. Full article
Show Figures

Figure 1

18 pages, 6242 KiB  
Article
New Approaches to the Creation of Highly Efficient Pd-Ag and Pd-Cu Membranes and Modeling of Their Hydrogen Permeability
by Iliya Petriev, Polina Pushankina and Michail Drobotenko
Int. J. Mol. Sci. 2024, 25(23), 12564; https://doi.org/10.3390/ijms252312564 - 22 Nov 2024
Viewed by 1312
Abstract
Thin-film membranes of Pd-Ag and Pd-Cu alloys capable of releasing hydrogen in a wide temperature range have been developed. The surface activation of the membranes with a nanostructured coating made it possible to intensify hydrogen transport through Pd-containing membranes at low temperatures. This [...] Read more.
Thin-film membranes of Pd-Ag and Pd-Cu alloys capable of releasing hydrogen in a wide temperature range have been developed. The surface activation of the membranes with a nanostructured coating made it possible to intensify hydrogen transport through Pd-containing membranes at low temperatures. This effect was achieved by accelerating limiting surface processes by increasing the active area of the membrane. Surface-activated membranes demonstrated the highest values of hydrogen flux over the entire temperature range, which reached up to 49.4 mmol s−1 m−2 for Pd-Ag membranes and up to 32.9 mmol s−1 m−2 for Pd-Cu membranes. Membranes modified with filiform nanoparticles demonstrated a hydrogen flux up to 12 times higher than that of membranes with a smooth surface. Based on the results obtained, a theoretical model of hydrogen transport through metal membranes was developed, taking into account the effect of the state of the membrane surface on hydrogen transport at low temperatures. This model makes it possible to predict hydrogen flows in the entire temperature range much more accurately compared to other existing models. The selectivity and stability of the developed membranes over a long period of operation have been confirmed. The study of the effect of the surface activation of Pd-based membranes on the intensification of hydrogen permeability has shown the success of the method developed, which in turn opens up wide opportunities for creating low-temperature, highly efficient membrane hydrogen filters based on palladium and other devices based on them. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems 5.0)
Show Figures

Figure 1

12 pages, 1155 KiB  
Article
Discovery and Analysis of Key Core Technology Topics in Proton Exchange Membrane Fuel Cells Through the BERTopic Model
by Yurong Gou and Qimei Chen
Energies 2024, 17(21), 5418; https://doi.org/10.3390/en17215418 - 30 Oct 2024
Cited by 1 | Viewed by 1211
Abstract
As a core component of clean energy technology, proton exchange membrane fuel cells (PEMFC) play a crucial role in promoting the evolution of energy structures and realizing sustainable development, representing an environmentally friendly energy conversion strategy. This paper identifies the key core technology [...] Read more.
As a core component of clean energy technology, proton exchange membrane fuel cells (PEMFC) play a crucial role in promoting the evolution of energy structures and realizing sustainable development, representing an environmentally friendly energy conversion strategy. This paper identifies the key core technology themes in the field of the proton exchange membrane fuel cells by constructing patent and paper datasets in the field, applying the BERTopic model for theme identification, and calculating the key core technology scores of each theme using the importance, innovativeness, and high competitiveness barriers to identify the key core technology themes in the field, so as to provide guidance and references for the relevant research and practice. The results of the study show that patent documents and academic papers show obvious differentiation in technical themes: the key core technologies identified in patent texts include ‘battery separator materials’, ‘rubber sealing materials’, and ‘porous carbon fibre materials’. The key core technologies identified in the academic paper of the thesis include ‘palladium-based electrocatalys’, ‘graphene oxide composite film’, and ‘platinum-graphene oxide catalyst’. Full article
(This article belongs to the Special Issue Optimization of Efficient Clean Combustion Technology)
Show Figures

Figure 1

17 pages, 3430 KiB  
Systematic Review
Liquid Organic Hydrogen Carrier Concepts and Catalysts for Hydrogenation and Dehydrogenation Reactions
by Gerardo Cabrera, Malka Mora, Juan P. Gil-Burgos, Renso Visbal, Fiderman Machuca-Martínez and Edgar Mosquera-Vargas
Molecules 2024, 29(20), 4938; https://doi.org/10.3390/molecules29204938 - 18 Oct 2024
Cited by 6 | Viewed by 4335
Abstract
Background: The issue of renewable energy (RE) source intermittency, such as wind and solar, along with the geographically uneven distribution of the global RE potential, makes it imperative to establish an energy transport medium to balance the energy demand and supply areas. A [...] Read more.
Background: The issue of renewable energy (RE) source intermittency, such as wind and solar, along with the geographically uneven distribution of the global RE potential, makes it imperative to establish an energy transport medium to balance the energy demand and supply areas. A promising energy vector to address this situation is hydrogen, which is considered a clean energy carrier for various mobile and portable applications. Unfortunately, at standard pressure and temperature, its energy content per volume is very low (0.01 kJ/L). This necessitates alternative storage technologies to achieve reasonable capacities and enable economically viable long-distance transportation. Among the hydrogen storage technologies using chemical methods, liquid organic hydrogen carrier (LOHC) systems are considered a promising solution. They can be easily managed under ambient conditions, the H2 storage/release processes are carbon-free, and the carrier liquid is reusable. However, the evolution of the proposals from the carrier liquid type and catalyst elemental composition point of view is scarcely studied, considering that both are critical in the performance of the system (operational parameters, kinetic of the reactions, gravimetric hydrogen content, and others) and impact in the final cost of the technology deployed. The latter is due to the use of the Pt group elements (PGEs) in the catalyst that, for example, have a high demand in the hydrogen production sector, particularly for polymer electrolyte membrane (PEM) water electrolysis. With that in mind, our objective was to examine the evolution and the focus of the research in recent years related to proposals of LOHCs and catalysts for hydrogenation and dehydrogenation reactions in LOHC systems which can be useful in defining routes/strategies for new participants interested in becoming involved in the development of this technology. Data sources: For this systematic review, we searched the SCOPUS database and forward and backward citations for studies published in the database between January 2011 and December 2022. Eligibility criteria: The criteria include articles which assessed or studied the effect of the type of catalyst, type of organic liquid, reactor design(s)/configuration(s), and modification of the reactor operational parameters, among others, over the performance of the LOHC system (de/hydrogenation reaction(s)). Data extraction and analysis: The relevant data from each reviewed study were collected and organized into a pre-designed table on an Excel spreadsheet, categorized by reference, year, carrier organic liquid, reaction (hydrogenation and/or dehydrogenation), investigated catalyst, and primary catalyst element. For processing the data obtained from the selected scientific publications, the data analysis software Orbit Intellixir was employed. Results: For the study, 233 studies were included. For the liquid carrier side, benzyltoluene and carbazole dominate the research strategies. Meanwhile, platinum (Pt) and palladium (Pd) are the most employed catalysts for dehydrogenation reactions, while ruthenium (Ru) is preferred for hydrogenation reactions. Conclusions: From the investigated liquid carrier, those based on benzyltoluene and carbazole together account for over 50% of the total scientific publications. Proposals based on indole, biphenyl, cyclohexane, and cyclohexyl could be considered to be emerging within the time considered in this review, and, therefore, should be monitored for their evolution. A great activity was detected in the development of catalysts oriented toward the dehydrogenation reaction, because this reaction requires high temperatures and presents slow H2 release kinetics, conditioning the success of the implementation of the technology. Finally, from the perspective of the catalyst composition (monometallic and/or bimetallic), it was identified that, for the dehydrogenation reaction, the most used elements are platinum (Pt) and palladium (Pd), while, for the hydrogenation reaction, ruthenium (Ru) widely leads its use in the different catalyst designs. Therefore, the near-term initiatives driving progress in this field are expected to focus on the development of new or improved catalysts for the dehydrogenation reaction of organic liquids based on benzyltoluene and carbazole. Full article
Show Figures

Figure 1

17 pages, 5287 KiB  
Article
Exploring the Potential of Bimetallic PtPd/C Cathode Catalysts to Enhance the Performance of PEM Fuel Cells
by Vladimir Guterman, Anastasia Alekseenko, Sergey Belenov, Vladislav Menshikov, Elizaveta Moguchikh, Irina Novomlinskaya, Kirill Paperzh and Ilya Pankov
Nanomaterials 2024, 14(20), 1672; https://doi.org/10.3390/nano14201672 - 18 Oct 2024
Cited by 3 | Viewed by 1871
Abstract
Bimetallic platinum-containing catalysts are deemed promising for electrolyzers and proton-exchange membrane fuel cells (PEMFCs). A significant number of laboratory studies and commercial offers are related to PtNi/C and PtCo/C electrocatalysts. The behavior of PtPd/C catalysts has been studied much less, although palladium itself [...] Read more.
Bimetallic platinum-containing catalysts are deemed promising for electrolyzers and proton-exchange membrane fuel cells (PEMFCs). A significant number of laboratory studies and commercial offers are related to PtNi/C and PtCo/C electrocatalysts. The behavior of PtPd/C catalysts has been studied much less, although palladium itself is the metal closest to platinum in its properties. Using a series of characterization methods, this paper presents a comparative study of structural characteristics of the commercial PtPd/C catalysts containing 38% wt. of precious metals and the well-known HiSpec4000 Pt/C catalyst. The electrochemical behavior of the catalysts was studied both in a three-electrode electrochemical cell and in the membrane electrode assemblies (MEAs) of hydrogen–air PEMFCs. Both PtPd/C samples demonstrated higher values of the electrochemically active surface area, as well as greater specific and mass activity in the oxygen reduction reaction in comparison with conventional Pt/C, while not being inferior to the latter in durability. The MEA based on the best of the PtPd/C catalysts also exhibited higher performance in single tests and long-term durability testing. The results of this study conducted indicate the prospects of using bimetallic PtPd/C materials for cathode catalysts in PEMFCs. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

Back to TopTop