Advances in Palladium-Based Membrane Research: High-Throughput Techniques and Machine Learning Perspectives
Abstract
:1. Introduction
2. General Overview of Main Hydrogen Separation Technologies
3. Market Outlook and Future Potential of Membrane Technologies
4. Dense Metallic Membranes
4.1. Applications of Dense Metallic Membranes
4.2. Problems with Pure Palladium Membranes
4.3. Challenges Associated with Pd–Alloy Membranes
4.4. Intricacies in Dense Membrane Alloys Development
4.4.1. Pd–Cu Series
4.4.2. Pd–Ag Series
4.4.3. Pd–Au Series
4.4.4. Pd–Rare-Earth Series
4.4.5. Refractory Metals Alloys
5. Methods in Palladium Membranes Research
5.1. Mechanism of Mass Transfer in Metallic Membranes
Equation of Diffusion, Richardson Formula, and Siverts’ Law
5.2. Experimental Determination of Flux and Permeability
5.2.1. Single Gas Permeation Test
5.2.2. Mixture Gas Tests
6. Combinatorial and High-Throughput Experimental Methods in Metallic Membrane Development
6.1. Definition
6.2. Compositional Spread Methods
6.3. Thin Film Libraries with Discrete Concentration
6.4. Composition Spread Using E-Beam
6.5. Hydrogenography
6.5.1. Principle of Hydrogenography
6.5.2. Use Case #1: Combinatorial Screening of PdyCu1−y Alloys Membranes
6.5.3. Use Case #2: High-Throughput Determination of Hydrogen Permeability in Pd–Cu Alloy Membranes
6.6. Design of Experiments
6.6.1. Use Case #1: Hybrid Statistical-Observational Screening of Appropriate Support Surface Parameters for Reproducible Electroless-Plating Deposition of Pd–Base Alloys Membranes
6.6.2. Use Case #2: Mixed Taguchi Design-Machine Learning Analyses of Hydrogen Permeation in Pd Membranes
6.7. Microreactors and Micromembrane Reactors
6.8. Microkinetics Modeling
Use Case #2: Microkinetic Modeling of Hydrogen Diffusion
6.9. Non-Relativistic Density Functional Theory and High Throughput Application
6.9.1. Computational Material Screening Using DFT
Use Case #1: High-Throughput Screening of Pd96M4 Alloy Membranes
Use Case #2: Using Grain Boundary Segregation as a Screening Criterion for Alloy Membrane Screening
6.10. Machine Learning
7. Perspective
Descriptors | Definition | Formula | Accessibility | Reference |
---|---|---|---|---|
Composition (at.%) | Alloy formula (atomic percentage) | - | Experimental/ historical data | - |
Thickness (m) | Membrane thickness () | Experimental/ historical data | in text | |
Temperature (K) | Temperature of measurement T | - | Experimental/ historical data | in text |
Pressure differential | Difference between in/out partial pressures (Pa) | Experimental/ historical data | in text | |
Pressure exponent n | H/M ratio (n ≤ 0.5 ≤ 1) | - | Experimental/ historical data | in text |
Diffusivity (m2∙s −1) | Defined according to Fick’s 1st law | with ED activation energy of diffusion, and the pre-exponential term | Experimental/historical/DFT | [244,245], in text |
Solubility S (mol∙m−3∙Pa−0.5) | Defined according to Sieverts’ law | or C = KP0.5 ES activation energy of dissolution and S0 the pre-exponential term | Experimental/historical/DFT | [122,244,246,247] |
Lattice constant (Å) | Size of alloy as derived experimentally from Miller indices or by solving the Kohn–Sham equation. Lattice parameter difference compared to pure Pd’s can also be inferred. | or calculated at 0K using DFT [214] | Experimental/historical/DFT | [248] |
Microstructure | Crystal structure | (FCC/BCC/HCP) | Experimental | - |
Adsorption energy | The energy potential of adsorption on a specific facet | Difference between the total energy of the adsorbates (H2)–metal substrate (M) complex, Eads+subs, and that of the adsorbate and substrate in isolation, Eads(g) and Esubs, respectively: Ea=Eads+subs − Eads(g) + Esubs [249] | DFT calculation on surface slab | [245,250,251] |
Absorption energies (solution energy) | Enthalpy of dissolution reaction in the bulk of the supercell | Eabs = Etot(MH) − Etot(M) − 0.5 EH2 + EZP1(H) − EZP2(H), where ZP referred to the zero point. | DFT calculation in bulk | [215] |
Binding energy | Minimum energy to separate H from the interstitial site in the alloys | DFT calculation in bulk | [123,215,252,253] | |
Cohesive energy | Critical indicator describing the stability of the membrane. It is important in the description of the performance for hydrogen separation membranes | DFT calculations | [219] | |
Activation energy | The potential energy barrier to overcome for solute H transport in the bulk | Eϕ = ED + ES Sum of activation energy of dissolution and diffusion | Experimental/historical/DFT | [255,256,257] |
d-band center | The variation in the adsorption energy from one TM surface to another correlates the upward shift in this d-band center with respect to the Fermi energy, thus can be referred to as the most prominent descriptors to predict molecule adsorption on surface | DFT calculations (d-band center theory compared to the Fermi level Ed) | [258,259] | |
Atomic radius difference (δ) | As per definition | Calculation | [237,260] | |
Mixing entropy (ΔS) | As per definition | Calculation | [237,260] | |
Mixing enthalpy (ΔH) | As per definition | Calculation | [260] | |
Electronegativity difference (Δχ) | As per definition | with | Calculation | [237,260] |
Valence electrons concentration (VEC) | The number of all valence electrons in the alloy per number of atoms | Calculation | [237,260] | |
Lattice expansion per unit effective valency electron concentration | ||||
Melting temperature (Tm) | As per definition | Calculation | [260] |
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Usman, M.; Cheng, S.; Cross, J.S. Biomass Feedstocks for Liquid Biofuels Production in Hawaii & Tropical Islands: A Review. Int. J. Renew. Energy Dev. 2022, 11, 111–132. [Google Scholar] [CrossRef]
- Usman, M.; Cheng, S.; Boonyubol, S.; Cross, J.S. From Biomass to Biocrude: Innovations in Hydrothermal Liquefaction and Upgrading. Energy Convers. Manag. 2024, 302, 118093. [Google Scholar] [CrossRef]
- Stopić, S.; Friedrich, B. Formation and Application of Hydrogen in Non-Ferrous Metallurgy. Vojnoteh. Glas. 2023, 71, 783–796. [Google Scholar] [CrossRef]
- Klell, M. Storage of Hydrogen in the Pure Form. In Handbook of Hydrogen Storage: New Materials for Future Energy Storage; Wiley-VCH: Weinheim, Germany, 2010; p. 8. ISBN 978-3-527-32273-2. [Google Scholar]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H. Hydrogen—A Sustainable Energy Carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Zhang, X.; Schwarze, M.; Schomäcker, R.; van de Krol, R.; Abdi, F.F. Life Cycle Net Energy Assessment of Sustainable H2 Production and Hydrogenation of Chemicals in a Coupled Photoelectrochemical Device. Nat. Commun. 2023, 14, 991. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P.; Poullikkas, A. A Comparative Overview of Hydrogen Production Processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- US Department of Energy. The Green Hydrogen Report: The 1995 Progress Report of the Secretary of Energy’s Hydrogen Technical Advisory Panel; National Renewable Energy Lab: Golden, CO, USA, 1995; p. DOE/GO--10095-179, 81032. [Google Scholar]
- Maiga, O.; Deville, E.; Laval, J.; Prinzhofer, A.; Diallo, A.B. Characterization of the Spontaneously Recharging Natural Hydrogen Reservoirs of Bourakebougou in Mali. Sci. Rep. 2023, 13, 11876. [Google Scholar] [CrossRef]
- Kusoglu, A. (Re)Defining Clean Hydrogen: From Colors to Emissions. Electrochem. Soc. Interface 2022, 31, 47–52. [Google Scholar] [CrossRef]
- Yu, M.; Wang, K.; Vredenburg, H. Insights into Low-Carbon Hydrogen Production Methods: Green, Blue and Aqua Hydrogen. Int. J. Hydrogen Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
- IEA. Global Hydrogen Review 2024; IEA: Paris, France, 2024. [Google Scholar]
- Sneha, L.; Yalamati, H.P.S.; Srivastava, R. Application of Hydrogen in Various Sectors. In Solar-Driven Green Hydrogen Generation and Storage; Srivastava, R., Chattopadhyay, J., Santos, D.M.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 507–524. ISBN 978-0-323-99580-1. [Google Scholar]
- Timofeev, N.; Berseneva, F.; Makarov, V. New Palladium-Based Membrane Alloys for Separation of Gas Mixtures to Generate Ultrapure Hydrogen. Int. J. Hydrogen Energy 1994, 19, 895–898. [Google Scholar] [CrossRef]
- Tosti, S.; Violante, V. Numerical Approach for a Study of the Hydrogen Isotopes Separation by Palladium Alloy Membranes. Fusion Eng. Des. 1998, 43, 93–100. [Google Scholar] [CrossRef]
- ISO 14687:2019; Hydrogen Fuel Quality—Product Specification. International Organization for Standardization (ISO): Geneva, Switzerland, 2019.
- Maxwell, D.S.; Sun, Q.; Rojas, H.; Kendrick, I.; Pavlicek, R.K.; De Castro, E.S.; Aurora, A.; Mukerjee, S. High Purity Hydrogen Separation with HT-PBI Based Electrochemical Pump Operation at 120 °C. J. Electrochem. Soc. 2023, 170, 034510. [Google Scholar] [CrossRef]
- Murugan, A.; De Huu, M.; Bacquart, T.; Van Wijk, J.; Arrhenius, K.; Te Ronde, I.; Hemfrey, D. Measurement Challenges for Hydrogen Vehicles. Int. J. Hydrogen Energy 2019, 44, 19326–19333. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, G.; Zhang, L.; Zhang, S.; Lin, L. Comparison of Hydrogen Specification in National Standards for China. E3S Web Conf. 2019, 118, 03042. [Google Scholar] [CrossRef]
- Shah, M. Linde plc Hydrogen Purification Technologies Overview 2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting. In Proceedings of the 2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting, Tonawanda, NY, USA, 12–14 January 2021. [Google Scholar]
- Sircar, S.; Golden, T.C. Pressure Swing Adsorption Technology for Hydrogen Production. In Hydrogen and Syngas Production and Purification Technologies; Liu, K., Song, C., Subramani, V., Eds.; Wiley: Hoboken, NJ, USA, 2009; pp. 414–450. ISBN 978-0-471-71975-5. [Google Scholar]
- Nordio, M.; Wassie, S.A.; Van Sint Annaland, M.; Pacheco Tanaka, D.A.; Viviente Sole, J.L.; Gallucci, F. Techno-Economic Evaluation on a Hybrid Technology for Low Hydrogen Concentration Separation and Purification from Natural Gas Grid. Int. J. Hydrogen Energy 2021, 46, 23417–23435. [Google Scholar] [CrossRef]
- Airproducts; Benson, J.; Celin, A. Recovering Hydrogen—And Profits—From Hydrogen-Rich Offgas. Chem. Eng. Prog. 2018, 114, 55–59. [Google Scholar]
- US EPA. Distributed Generation of Electricity and Its Environmental Impacts. Available online: https://www.epa.gov/energy/distributed-generation-electricity-and-its-environmental-impacts (accessed on 13 October 2024).
- Kim, D.-W.; Park, Y.J.; Moon, J.-W.; Ryi, S.-K.; Park, J.-S. The Effect of Cu Reflow on the Pd–Cu–Ni Ternary Alloy Membrane Fabrication for Infinite Hydrogen Separation. Thin Solid Films 2008, 516, 3036–3044. [Google Scholar] [CrossRef]
- Ryi, S.-K.; Park, J.-S.; Kim, S.-H.; Cho, S.-H.; Hwang, K.-R.; Kim, D.-W.; Kim, H.-G. A New Membrane Module Design with Disc Geometry for the Separation of Hydrogen Using Pd Alloy Membranes. J. Membr. Sci. 2007, 297, 217–225. [Google Scholar] [CrossRef]
- Bang, G.; Moon, D.-K.; Kang, J.-H.; Han, Y.-J.; Kim, K.-M.; Lee, C.-H. High-Purity Hydrogen Production via a Water-Gas-Shift Reaction in a Palladium-Copper Catalytic Membrane Reactor Integrated with Pressure Swing Adsorption. Chem. Eng. J. 2021, 411, 128473. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Xu, H.; Xiong, G. Integrated One-Step PEMFC-Grade Hydrogen Production From Liquid Hydrocarbons Using Pd Membrane Reactor. Ind. Eng. Chem. Res. 2007, 46, 5510–5515. [Google Scholar] [CrossRef]
- Tosti, S.; Pozio, A.; Santucci, A. Membrane Technologies for Hydrogen Separation. Energ. Ambiente E Innov. 2021, 107–111. [Google Scholar] [CrossRef]
- Conde, J.J.; Maroño, M.; Sánchez-Hervás, J.M. Pd-Based Membranes for Hydrogen Separation: Review of Alloying Elements and Their Influence on Membrane Properties. Sep. Purif. Rev. 2017, 46, 152–177. [Google Scholar] [CrossRef]
- Dolan, M.; Dave, N.; Morpeth, L.; Donelson, R.; Liang, D.; Kellam, M.; Song, S. Ni-Based Amorphous Alloy Membranes for Hydrogen Separation at 400 °C. J. Membr. Sci. 2009, 326, 549–555. [Google Scholar] [CrossRef]
- Hao, S.; Sholl, D.S. Rapid Prediction of Hydrogen Permeation through Amorphous Metal Membranes: An Efficient Computational Screening Approach. Energy Environ. Sci 2013, 6, 232–240. [Google Scholar] [CrossRef]
- Cerone, N.; Zito, G.D.; Florio, C.; Fabbiano, L.; Zimbardi, F. Recent Advancements in Pd-Based Membranes for Hydrogen Separation. Energies 2024, 17, 4095. [Google Scholar] [CrossRef]
- Jazani, O.; Elharati, M.A.; Liguori, S. Effects of Porous Supports and Binary Gases on Hydrogen Permeation in Pd–Ag–Y Alloy Membrane. J. Membr. Sci. 2025, 713, 123327. [Google Scholar] [CrossRef]
- Bhalani, D.V.; Lim, B. Hydrogen Separation Membranes: A Material Perspective. Molecules 2024, 29, 4676. [Google Scholar] [CrossRef] [PubMed]
- Kudapa, V.K.; Paliyal, P.S.; Mondal, A.; Mondal, S. A Critical Review of Fabrication Strategies, Separation Techniques, Challenges, and Future Prospects for the Hydrogen Separation Membrane. Fusion Sci. Technol. 2024, 80, 803–825. [Google Scholar] [CrossRef]
- Kang, S.G.; Coulter, K.E.; Gade, S.K.; Way, J.D.; Sholl, D.S. Identifying Metal Alloys with High Hydrogen Permeability Using High Throughput Theory and Experimental Testing. J. Phys. Chem. Lett. 2011, 2, 3040–3044. [Google Scholar] [CrossRef]
- Nicholson, K.M.; Chandrasekhar, N.; Sholl, D.S. Powered by DFT: Screening Methods That Accelerate Materials Development for Hydrogen in Metals Applications. Acc. Chem. Res. 2014, 47, 3275–3283. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Nhat, T.T.P.; Takimoto, K.; Thakur, A.; Nishimura, S.; Ohyama, J.; Miyazato, I.; Takahashi, L.; Fujima, J.; Takahashi, K.; et al. High-Throughput Experimentation and Catalyst Informatics for Oxidative Coupling of Methane. ACS Catal. 2020, 10, 921–932. [Google Scholar] [CrossRef]
- Schmack, R.; Friedrich, A.; Kondratenko, E.V.; Polte, J.; Werwatz, A.; Kraehnert, R. A Meta-Analysis of Catalytic Literature Data Reveals Property-Performance Correlations for the OCM Reaction. Nat. Commun. 2019, 10, 441. [Google Scholar] [CrossRef] [PubMed]
- Senderowitz, H.; Tropsha, A. Materials Informatics. J. Chem. Inf. Model. 2018, 58, 1313–1314. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Fernando, S. Hydrogen Membrane Separation Techniques. Ind. Eng. Chem. Res. 2006, 45, 875–881. [Google Scholar] [CrossRef]
- Ockwig, N.W.; Nenoff, T.M. Membranes for Hydrogen Separation. Chem. Rev. 2007, 107, 4078–4110. [Google Scholar] [CrossRef] [PubMed]
- Lider, A.; Kudiiarov, V.; Kurdyumov, N.; Lyu, J.; Koptsev, M.; Travitzky, N.; Hotza, D. Materials and Techniques for Hydrogen Separation from Methane-Containing Gas Mixtures. Int. J. Hydrog. Energy 2023, 48, 28390–28411. [Google Scholar] [CrossRef]
- Songolzadeh, M.; Soleimani, M.; Takht Ravanchi, M.; Songolzadeh, R. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions. Sci. World J. 2014, 2014, 828131. [Google Scholar] [CrossRef] [PubMed]
- Golmakani, A.; Fatemi, S.; Tamnanloo, J. Investigating PSA, VSA, and TSA Methods in SMR Unit of Refineries for Hydrogen Production with Fuel Cell Specification. Sep. Purif. Technol. 2017, 176, 73–91. [Google Scholar] [CrossRef]
- Rahimpour, H.R.; Nategh, M.; Rahimpour, M.R. Industrial Membranes for Hydrogen Separation. In Hydrogen Production, Separation and Purification for Energy; Basile, A., Dalena, F., Tong, J., Veziroglu, T.N., Eds.; IET Energy Engineering Series; IET: London, UK, 2017; pp. 343–361. ISBN 978-1-78561-101-8. [Google Scholar]
- Rahimpour, M.R.; Samimi, F.; Babapoor, A.; Tohidian, T.; Mohebi, S. Palladium Membranes Applications in Reaction Systems for Hydrogen Separation and Purification: A Review. Chem. Eng. Process. Process Intensif. 2017, 121, 24–49. [Google Scholar] [CrossRef]
- Yon, C.M.; Sherman, J.D. Adsorption, Gas Separation. In Kirk-Othmer Encyclopedia of Chemical Technology; Kirk-Othmer, Ed.; Wiley: Hoboken, NJ, USA, 2003; ISBN 978-0-471-48494-3. [Google Scholar]
- Ruthven, D.M.; Farooq, S.; Knaebel, K.S. Pressure Swing Adsorption; 1. Printing; VCH: New York, NY, USA, 1994; ISBN 978-0-471-18818-6. [Google Scholar]
- Luberti, M.; Ahn, H. Review of Polybed Pressure Swing Adsorption for Hydrogen Purification. Int. J. Hydrogen Energy 2022, 47, 10911–10933. [Google Scholar] [CrossRef]
- Elseviers, W.; Hassett, F.P.; Navarre, J.-L.; Whysall, M. 50 Years of PSA Technology for H2 Purification; UOP LLC: Des Plaines, IL, USA, 2015. [Google Scholar]
- Lee, K.B.; Beaver, M.G.; Caram, H.S.; Sircar, S. Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications. Ind. Eng. Chem. Res. 2008, 47, 8048–8062. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Wiessner, F.G. Basics and Industrial Applications of Pressure Swing Adsorption (PSA), the Modern Way to Separate Gas. Gas Sep. Purif. 1988, 2, 115–119. [Google Scholar] [CrossRef]
- Melaina, M.W.; Antonia, O.; Penev, M. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues; Technical Report NREL/TP-5600-51995; IGEM: Cambridge, CA, USA, 2013. [Google Scholar]
- Naquash, A.; Qyyum, M.A.; Chaniago, Y.D.; Riaz, A.; Yehia, F.; Lim, H.; Lee, M. Separation and Purification of Syngas-Derived Hydrogen: A Comparative Evaluation of Membrane- and Cryogenic-Assisted Approaches. Chemosphere 2023, 313, 137420. [Google Scholar] [CrossRef] [PubMed]
- Naquash, A.; Islam, M.; Qyyum, M.A.; Haider, J.; Chaniago, Y.D.; Lim, H.; Lee, M. Membrane and Desublimation Integrated Hydrogen Separation Followed by Liquefaction Process: An Energy, Exergy, and Economic Evaluation. Int. J. Hydrogen Energy 2024, 54, 1295–1306. [Google Scholar] [CrossRef]
- Valenti, G. Separation of Hydrogen Isotopes by Cryogenic Distillation. In Hydrogen Production, Separation and Purification for Energy; Basile, A., Dalena, F., Tong, J., Vezirolu, T.N., Eds.; Institution of Engineering and Technology: London, UK, 2017; pp. 433–456. ISBN 978-1-78561-100-1. [Google Scholar]
- Aasadnia, M.; Mehrpooya, M.; Ghorbani, B. A Novel Integrated Structure for Hydrogen Purification Using the Cryogenic Method. J. Clean. Prod. 2021, 278, 123872. [Google Scholar] [CrossRef]
- Aasadnia, M.; Mehrpooya, M. Large-Scale Liquid Hydrogen Production Methods and Approaches: A Review. Appl. Energy 2018, 212, 57–83. [Google Scholar] [CrossRef]
- Atsonios, K.; Panopoulos, K.D.; Doukelis, A.; Koumanakos, A.K.; Kakaras, E.; Peters, T.A.; van Delft, Y.C. Introduction to Palladium Membrane Technology. In Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications; Doukelis, A., Panopoulos, K., Koumanakos, A., Kakaras, E., Eds.; Woodhead Publishing Series in Energy; Elsevier: Amsterdam, The Netherlands; WP, Woodhead Publisher: Cambridge, UK, 2015; pp. 1–21. ISBN 978-1-78242-241-9. [Google Scholar]
- Yun, S.; Oyama, S.T. Correlations in Palladium Membranes for Hydrogen Separation: A Review. J. Membr. Sci. 2011, 375, 28–45. [Google Scholar] [CrossRef]
- Moral, G.; Ortiz-Imedio, R.; Ortiz, A.; Gorri, D.; Ortiz, I. Hydrogen Recovery from Coke Oven Gas. Comparative Analysis of Technical Alternatives. Ind. Eng. Chem. Res. 2022, 61, 6106–6124. [Google Scholar] [CrossRef]
- Grand View Research Gas Separation Membrane Market Size, Share Report, 2030. Available online: https://www.grandviewresearch.com/industry-analysis/gas-separation-membrane-market-report (accessed on 19 August 2024).
- Fortune Business Insights Membranes Market Size, Share, Growth: Forecast Report 2032. Available online: https://www.fortunebusinessinsights.com/membranes-market-102982 (accessed on 19 August 2024).
- Japan Pionics. Palladium Alloy Memrane Permeation Hydrogen Gas Purifier; MODEL-VP-DH; Air Water Mechatronics Inc.: Tokyo, Japan, 2023. [Google Scholar]
- Santucci, A.; Tosti, S.; Basile, A. 4—Alternatives to Palladium in Membranes for Hydrogen Separation: Nickel, Niobium and Vanadium Alloys, Ceramic Supports for Metal Alloys and Porous Glass Membranes. In Handbook of Membrane Reactors; Basile, A., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2013; Volume 1, pp. 183–217. ISBN 978-0-85709-414-8. [Google Scholar]
- Ghasemzadeh, K.; Amiri, T.Y.; Zeynali, R.; Basile, A. Membranes for Hydrogen Separation. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 91–134. ISBN 978-0-12-817110-3. [Google Scholar]
- Uemiya, S. State-of-the-Art of Supported Metal Membranes for Gas Separation. Sep. Purif. Methods 1999, 28, 51–85. [Google Scholar] [CrossRef]
- Graham, T. II. On the Occlusion of Hydrogen Gas by Metals. Proc. R. Soc. Lond. 1868, 16, 422–427. [Google Scholar] [CrossRef]
- Grashoff, G.J.; Pilkington, C.E.; Corti, C.W. The Purification of Hydrogen. Platin. Met. Rev. 1983, 27, 157–169. [Google Scholar] [CrossRef]
- Wisniak, J. Thomas Graham: I. Contributions to Thermodynamics, Chemistry, and Occlusion of Gases. Educ. Quím. 2013, 24, 316–325. [Google Scholar] [CrossRef]
- Paglieri, S.N.; Way, J.D. Innovations in Palladium Membrane Research. Sep. Purif. Methods 2002, 31, 1–169. [Google Scholar] [CrossRef]
- Phair, J.W.; Donelson, R. Developments and Design of Novel (Non-Palladium-Based) Metal Membranes for Hydrogen Separation. Ind. Eng. Chem. Res. 2006, 45, 5657–5674. [Google Scholar] [CrossRef]
- Dube, S.; Gorimbo, J.; Moyo, M.; Okoye-Chine, C.G.; Liu, X. Synthesis and Application of Ni-Based Membranes in Hydrogen Separation and Purification Systems: A Review. J. Environ. Chem. Eng. 2023, 11, 109194. [Google Scholar] [CrossRef]
- Aoki, K.; Ogata, Y.; Kusakabe, K.; Morooka, S. Applicability of Palladium Membrane for the Separation of Protium and Deuterium. Int. J. Hydrogen Energy 1998, 23, 325–332. [Google Scholar] [CrossRef]
- Bulubasa, G.; Niculescu, A.; Craciun, M.; Bucur, C.; Ana, G.; Bornea, A. Investigations on Hydrogen Isotope Separation Factor Employing Palladium-Based Solid Metallic Membranes. Fusion Sci. Technol. 2024, 1–5. [Google Scholar] [CrossRef]
- Pati, S.; Jat, R.A.; Anand, N.S.; Derose, D.J.; Karn, K.N.; Mukerjee, S.K.; Parida, S.C. Pd-Ag-Cu Dense Metallic Membrane for Hydrogen Isotope Purification and Recovery at Low Pressures. J. Membr. Sci. 2017, 522, 151–158. [Google Scholar] [CrossRef]
- Shere, L.; Hill, A.K.; Mays, T.J.; Lawless, R.; Brown, R.; Perera, S.P. The next Generation of Low Tritium Hydrogen Isotope Separation Technologies for Future Fusion Power Plants. Int. J. Hydrogen Energy 2024, 55, 319–338. [Google Scholar] [CrossRef]
- Sharma, B.; Myung, J. Pd-Based Ternary Alloys Used for Gas Sensing Applications: A Review. Int. J. Hydrogen Energy 2019, 44, 30499–30510. [Google Scholar] [CrossRef]
- Gryaznov, V.M. Hydrogen Permeable Palladium Membrane Catalysts: An Aid to the Efficient Production of Ultra Pure Chemicals and Pharmaceuticals. Platin. Met. Rev. 1986, 30, 68–72. [Google Scholar] [CrossRef]
- Gryaznov, V.M. Surface Catalytic Properties and Hydrogen Diffusion in Palladium Alloy Membranes. Z. Phys. Chem. 1986, 147, 123–132. [Google Scholar] [CrossRef]
- Shu, J.; Grandjean, B.P.A.; Neste, A.V.; Kaliaguine1, S. Catalytic Palladium-based Membrane Reactors: A Review. Can. J. Chem. Eng. 1991, 69, 1036–1060. [Google Scholar] [CrossRef]
- Basile, A.; Tereschenko, G.F.; Orekhova, N.V.; Ermilova, M.M.; Gallucci, F.; Iulianelli, A. An Experimental Investigation on Methanol Steam Reforming with Oxygen Addition in a Flat Pd-Ag Membrane Reactor. Int. J. Hydrogen Energy 2006, 31, 1615–1622. [Google Scholar] [CrossRef]
- Basov, N.L.; Ermilova, M.M.; Orekhova, N.V.; Yaroslavtsev, A.B. Membrane Catalysis in the Dehydrogenation and Hydrogen Production Processes. Russ. Chem. Rev. 2013, 82, 352–368. [Google Scholar] [CrossRef]
- Dittmeyer, R.; Caro, J. Catalytic Membrane Reactors. In Handbook of Heterogeneous Catalysis; Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J., Eds.; Wiley: Hoboken, NJ, USA, 2008; pp. 2198–2248. ISBN 978-3-527-31241-2. [Google Scholar]
- Gallucci, F.; Fernandez, E.; Corengia, P.; Van Sint Annaland, M. Recent Advances on Membranes and Membrane Reactors for Hydrogen Production. Chem. Eng. Sci. 2013, 92, 40–66. [Google Scholar] [CrossRef]
- Gryaznov, V. Metal Containing Membranes for the Production of Ultrapure Hydrogen and The Recovery of Hydrogen Isotopes. Sep. Purif. Methods 2000, 29, 171–187. [Google Scholar] [CrossRef]
- Gryaznov, V.M. Platinum Metals as Components of Catalyst-Membrane Systems. Platin. Met. Rev. 1992, 36, 70–79. [Google Scholar] [CrossRef]
- Fuerst, T.F. Dense Metallic Membrane Reactor Synthesis of Ammonia at Moderate Conditions and Low Cost. In Proceedings of the NH3 Fuel Conference 2017, Minneapolis, MN, USA, 1–2 November 2017. [Google Scholar]
- Delima, R. Efficient, Carbon-Neutral Hydrogenation Using a Palladium Membrane Reactor. Ph.D. Thesis, University of British Columbia, Kelowna, BC, Canada, 2021. [Google Scholar] [CrossRef]
- Han, G.; Li, G.; Sun, Y. Electrocatalytic Hydrogenation Using Palladium Membrane Reactors. JACS Au 2024, 4, 328–343. [Google Scholar] [CrossRef]
- Jansonius, R.P.; Kurimoto, A.; Marelli, A.M.; Huang, A.; Sherbo, R.S.; Berlinguette, C.P. Hydrogenation without H2 Using a Palladium Membrane Flow Cell. Cell Rep. Phys. Sci. 2020, 1, 100105. [Google Scholar] [CrossRef]
- Das, P.; Lee, Y.-S.; Lee, S.-C.; Bhattacharjee, S. Computational Design of a New Palladium Alloy with Efficient Hydrogen Storage Capacity and Hydrogenation-Dehydrogenation Kinetics. Int. J. Hydrogen Energy 2023, 48, 18795–18803. [Google Scholar] [CrossRef]
- Jia, Y.; Huang, T.-H.; Lin, S.; Guo, L.; Yu, Y.-M.; Wang, J.-H.; Wang, K.-W.; Dai, S. Stable Pd–Cu Hydride Catalyst for Efficient Hydrogen Evolution. Nano Lett. 2022, 22, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Kawae, T.; Inagaki, Y.; Wen, S.; Hirota, S.; Itou, D.; Kimura, T. Superconductivity in Palladium Hydride Systems. J. Phys. Soc. Jpn. 2020, 89, 051004. [Google Scholar] [CrossRef]
- Liguori, S.; Kian, K.; Buggy, N.; Anzelmo, B.H.; Wilcox, J. Opportunities and Challenges of Low-Carbon Hydrogen via Metallic Membranes. Prog. Energy Combust. Sci. 2020, 80, 100851. [Google Scholar] [CrossRef]
- Lewis, F.A. The Palladium-Hydrogen System: Part III: Alloy Systems and Hydrogen Permeation. Platin. Met. Rev. 1982, 26, 121–128. [Google Scholar] [CrossRef]
- Jamieson, H.C.; Weatherly, G.C.; Manchester, F.D. The β → α Phase Transformation in Palladium-Hydrogen Alloys. J. Common Met. 1976, 50, 85–102. [Google Scholar] [CrossRef]
- Bosko, M.L.; Dalla Fontana, A.; Tarditi, A.; Cornaglia, L. Advances in Hydrogen Selective Membranes Based on Palladium Ternary Alloys. Int. J. Hydrogen Energy 2021, 46, 15572–15594. [Google Scholar] [CrossRef]
- Morreale, B.D.; Howard, B.H.; Iyoha, O.; Enick, R.M.; Ling, C.; Sholl, D.S. Experimental and Computational Prediction of the Hydrogen Transport Properties of Pd4S. Ind. Eng. Chem. Res. 2007, 46, 6313–6319. [Google Scholar] [CrossRef]
- O’Brien, C.P.; Howard, B.H.; Miller, J.B.; Morreale, B.D.; Gellman, A.J. Inhibition of Hydrogen Transport through Pd and Pd47Cu53 Membranes by H2S at 350 °C. J. Membr. Sci. 2010, 349, 380–384. [Google Scholar] [CrossRef]
- Rivera, D.J.; Muhich, C.L. Preventing H2S Poisoning of Dense Pd Membranes for H2 Purification Using an Electric-Field: An Ab Initio Study. Surf. Sci. 2023, 733, 122303. [Google Scholar] [CrossRef]
- Grønvold, F.; Røst, E. The Crystal Structures of Pd4 Se and Pd4S. Acta Crystallogr. 1962, 15, 11–13. [Google Scholar] [CrossRef]
- Alfonso, D.R. First-Principles Studies of H2S Adsorption and Dissociation on Metal Surfaces. Surf. Sci. 2008, 602, 2758–2768. [Google Scholar] [CrossRef]
- Amano, M.; Nishimura, C.; Komaki, M. Effects of High Concentration CO and CO2 on Hydrogen Permeation through the Palladium Membrane. Mater. Trans. JIM 1990, 31, 404–408. [Google Scholar] [CrossRef]
- Li, H.; Goldbach, A.; Li, W.; Xu, H. PdC Formation in Ultra-Thin Pd Membranes during Separation of H2/CO Mixtures. J. Membr. Sci. 2007, 299, 130–137. [Google Scholar] [CrossRef]
- Ziemecki, S.B.; Jones, G.A.; Swartzfager, D.G.; Harlow, R.L.; Faber, J. Formation of Interstitial Palladium-Carbon Phase by Interaction of Ethylene, Acetylene, and Carbon Monoxide with Palladium. J. Am. Chem. Soc. 1985, 107, 4547–4548. [Google Scholar] [CrossRef]
- O’Brien, C.P.; Dunbar, Z.W.; Lee, I.C. A Spectroscopic Membrane Permeation Cell for In-Situ Infrared-Reflection Absorption Spectroscopic Analysis of Membrane Surfaces and Simultaneous Measurement of Trans-Membrane Gas Permeation Rates. J. Membr. Sci. 2017, 526, 43–51. [Google Scholar] [CrossRef]
- Gao, H.; Lin, Y.S.; Li, Y.; Zhang, B. Chemical Stability and Its Improvement of Palladium-Based Metallic Membranes. Ind. Eng. Chem. Res. 2004, 43, 6920–6930. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Z.; Wang, H.; Yan, H.; Yang, F.; Cheng, G.; Zhang, Z. Efficient Hydrogen Recovery and Purification from Industrial Waste Hydrogen to High-Purity Hydrogen Based on Metal Hydride Powder. Chem. Eng. J. 2023, 455, 140689. [Google Scholar] [CrossRef]
- Mordkovich, V.Z.; Baichtock, Y.K.; Sosna, M.H. The Large Scale Production of Hydrogen from Gas Mixtures: A Use for Ultra Thin Palladium Alloy Membranes. Platinum Metals Rev. 1992, 36, 90–97. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Chen, F.L.; Kinari, Y. Permeability and Diffusivity of Hydrogen through Pd-Y-In(Sn, Pb) Alloy Membranes. J. Alloys Compd. 1994, 205, 205–210. [Google Scholar] [CrossRef]
- Ievlev, V.M.; Burkhanov, G.S.; Roshan, N.R.; Belonogov, E.K.; Maksimenko, A.A.; Dontsov, A.I.; Rudakov, K.E. Structure, Mechanical Properties, and Hydrogen Permeability of Pd-Cu and Pd-Ru Membrane Foils Prepared by Magnetron Sputtering. Russ. Metall. Met. 2012, 2012, 994–1001. [Google Scholar] [CrossRef]
- Hall, C.K. A Review of the Statistical Theory of the Phase-Change Behavior of Hydrogen in Metals. In Electronic Structure and Properties of Hydrogen in Metals; Jena, P., Satterthwaite, C.B., Eds.; Springer US: Boston, MA, USA, 1983; pp. 11–24. ISBN 978-1-4684-7632-3. [Google Scholar]
- Horikawa, D.; Matsumura, T.; Ebisugi, M.; Kubota, S. Hydrogen Permeable Membrane Made of Pdcu Alloy and Hydrogen Purification Method Due to Hydrogen Permeable Membrane. JP Patent JP2023039770A, 9 September 2021. [Google Scholar]
- Warren, J. The Effect of Hydrogen on Palladium-Copper Based Membranes for Hydrogen Purification. Master Thesis, University of Birmingham, Birmingham, UK, 2012. [Google Scholar]
- Guerreiro, B.H.; Martin, M.H.; Roué, L.; Guay, D. Hydrogen Permeability of PdCuAu Membranes Prepared from Mechanically-Alloyed Powders. J. Membr. Sci. 2016, 509, 68–82. [Google Scholar] [CrossRef]
- Kamakoti, P.; Morreale, B.D.; Ciocco, M.V.; Howard, B.H.; Killmeyer, R.P.; Cugini, A.V.; Sholl, D.S. Prediction of Hydrogen Flux Through Sulfur-Tolerant Binary Alloy Membranes. Science 2005, 307, 569–573. [Google Scholar] [CrossRef]
- Wang, T.; Dong, P.; Li, J.; You, Y.-W. The Factors Affecting the Diffusion Properties of Hydrogen in Palladium Copper Alloys: Ab Initio Study. Int. J. Hydrogen Energy 2022, 47, 27579–27589. [Google Scholar] [CrossRef]
- Kulprathipanja, A.; Alptekin, G.; Falconer, J.; Way, J. Pd and Pd–Cu Membranes: Inhibition of H Permeation by HS. J. Membr. Sci. 2005, 254, 49–62. [Google Scholar] [CrossRef]
- Peters, T.A.; Kaleta, T.; Stange, M.; Bredesen, R. Hydrogen Transport through a Selection of Thin Pd-Alloy Membranes: Membrane Stability, H2S Inhibition, and Flux Recovery in Hydrogen and Simulated WGS Mixtures. Catal. Today 2012, 193, 8–19. [Google Scholar] [CrossRef]
- Mundschau, M.V.; Xie, X.; Evenson, C.R.; Sammells, A.F. Dense Inorganic Membranes for Production of Hydrogen from Methane and Coal with Carbon Dioxide Sequestration. Catal. Today 2006, 118, 12–23. [Google Scholar] [CrossRef]
- Coulter, K.E.; Way, J.D.; Gade, S.K.; Chaudhari, S.; Sholl, D.S.; Semidey-Flecha, L. Predicting, Fabricating, and Permeability Testing of Free-Standing Ternary Palladium−Copper−Gold Membranes for Hydrogen Separation. J. Phys. Chem. C 2010, 114, 17173–17180. [Google Scholar] [CrossRef]
- Shu, J.; Bongondo, B.E.W.; Grandjean, B.P.A.; Adnot, A.; Kaliaguine, S. Surface Segregation of PdAg Membranes upon Hydrogen Permeation. Surf. Sci. 1993, 291, 129–138. [Google Scholar] [CrossRef]
- Lai, T.; Lind, M.L. Heat Treatment Driven Surface Segregation in Pd77Ag23 Membranes and the Effect on Hydrogen Permeability. Int. J. Hydrogen Energy 2015, 40, 373–382. [Google Scholar] [CrossRef]
- Easa, J.; Yan, C.; Schneider, W.F.; O’Brien, C.P. CO and C3H6 Poisoning of Hydrogen Permeation across Pd77Ag23 Alloy Membranes: A Comparative Study with Pure Palladium. Chem. Eng. J. 2022, 430, 133080. [Google Scholar] [CrossRef]
- Coulter, K.E.; Way, J.D.; Gade, S.K.; Chaudhari, S.; Alptekin, G.O.; DeVoss, S.J.; Paglieri, S.N.; Pledger, B. Sulfur Tolerant PdAu and PdAuPt Alloy Hydrogen Separation Membranes. J. Membr. Sci. 2012, 405–406, 11–19. [Google Scholar] [CrossRef]
- Mckinley, D.L. Method for Hydrogen Separation and Purification; CRC Press: Boca Raton, FL, USA, 1969. [Google Scholar]
- Gade, S.K.; DeVoss, S.J.; Coulter, K.E.; Paglieri, S.N.; Alptekin, G.O.; Way, J.D. Palladium–Gold Membranes in Mixed Gas Streams with Hydrogen Sulfide: Effect of Alloy Content and Fabrication Technique. J. Membr. Sci. 2011, 378, 35–41. [Google Scholar] [CrossRef]
- Mckinley, D.L. Metal Alloy for Hydrogen Separation and Purification. U.S. Patent 3,350,845, 18 November 1965. [Google Scholar]
- Hughes, D.T.; Harris, I.R. A Comparative Study of Hydrogen Permeabilities and Solubilities in Some Palladium Solid Solution Alloys. J. Common Met. 1978, 61, P9–P21. [Google Scholar] [CrossRef]
- Hughes, D.T.; Harris, I.R. Hydrogen Diffusion Membranes Based on Some Palladium-Rare Earth Solid Solution Alloys. Z. Phys. Chem. 1979, 117, 185–193. [Google Scholar] [CrossRef]
- Kolchugina, N.B.; Gorbunov, S.V.; Roshan, N.R.; Burkhanov, G.S.; Kaminskaya, T.P.; Dormidontov, N.A.; Bakulina, A.S.; Rusinov, D.A. Membrane Pd–7.70 Wt % Lu Alloy for the Preparation and Purification of Hydrogen. Phys. Met. Metallogr. 2021, 122, 54–59. [Google Scholar] [CrossRef]
- Kolchugina, N.B.; Gorbunov, S.V.; Roshan, N.R.; Burkhanov, G.S.; Dormidontov, N.A.; Zheleznyi, M.V.; Bakulina, A.S. Membrane Characteristics of Palladium-Samarium Alloy Foils: Mechanical Properties and Hydrogen Permeability. In Proceedings of the METAL 2020—29th International Conference on Metallurgy and Materials, Conference Proceedings, Brno, Czech Republic, 20–22 May 2020; pp. 1042–1047. [Google Scholar]
- Fletcher, S. Thin Film Palladium—Yttrium Membranes for Hydrogen Separation. Ph.D. Thesis, The University of Birmingham, Birmingham, UK, 2009. [Google Scholar]
- Shirasaki, Y.; Tsuneki, T.; Seki, T.; Yasuda, I.; Sato, T.; Itoh, N. Improvement in Hydrogen Permeability of Palladium Membrane by Alloying with Transition Metals. J. Chem. Eng. Jpn. 2018, 51, 123–125. [Google Scholar] [CrossRef]
- Job, A.L.; Li, C.; Fuerst, T.F.; Douglas Way, J.; Wolden, C.A. Acceleration of Pd-V Intermetallic Diffusion by Hydrogen. J. Alloys Compd. 2024, 972, 172825. [Google Scholar] [CrossRef]
- Suzuki, A.; Yukawa, H.; Nambu, T.; Matsumoto, Y.; Murata, Y. Consistent Description of Hydrogen Permeability through Metal Membrane Based on Hydrogen Chemical Potential. Int. J. Hydrogen Energy 2014, 39, 7919–7924. [Google Scholar] [CrossRef]
- Didenko, L.P.; Sementsova, L.A.; Chizhov, P.E.; Babak, V.N.; Savchenko, V.I. Separation Performance of Foils from Pd—In(6%)—Ru(0.5%), Pd—Ru(6%), and Pd—Ru(10%) Alloys and Influence of CO2, CH4, and Water Vapor on the H2 Flow Rate through the Test Membranes. Russ. Chem. Bull. 2016, 65, 1997–2003. [Google Scholar] [CrossRef]
- Kehr, K.W. Theory of the Diffusion of Hydrogen in Metals. In Hydrogen in Metals I; Alefeld, G., Völkl, J., Eds.; Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 28, pp. 197–226. ISBN 978-3-540-08705-2. [Google Scholar]
- Al-Mufachi, N.A.; Rees, N.V.; Steinberger-Wilkens, R. Hydrogen Selective Membranes: A Review of Palladium-Based Dense Metal Membranes. Renew. Sustain. Energy Rev. 2015, 47, 540–551. [Google Scholar] [CrossRef]
- Wang, J.-S. On the Diffusion of Gases through Metals. Math. Proc. Camb. Philos. Soc. 1936, 32, 657–662. [Google Scholar] [CrossRef]
- Caravella, A.; Barbieri, G.; Drioli, E. Modelling and Simulation of Hydrogen Permeation through Supported Pd-Alloy Membranes with a Multicomponent Approach. Chem. Eng. Sci. 2008, 63, 2149–2160. [Google Scholar] [CrossRef]
- Deveau, N.D.; Ma, Y.H.; Datta, R. Beyond Sieverts’ Law: A Comprehensive Microkinetic Model of Hydrogen Permeation in Dense Metal Membranes. J. Membr. Sci. 2013, 437, 298–311. [Google Scholar] [CrossRef]
- Ward, T.L.; Dao, T. Model of Hydrogen Permeation Behavior in Palladium Membranes. J. Membr. Sci. 1999, 153, 211–231. [Google Scholar] [CrossRef]
- Theampetch, A.; Prapainainar, C.; Tungkamani, S.; Narataruksa, P.; Sornchamni, T.; Árnadóttir, L.; Jovanovic, G.N. Detailed Microkinetic Modelling of Syngas to Hydrocarbons via Fischer Tropsch Synthesis over Cobalt Catalyst. Int. J. Hydrogen Energy 2021, 46, 24721–24741. [Google Scholar] [CrossRef]
- Cortright, R.D.; Dumesic, J.A. Kinetics of Heterogeneous Catalytic Reactions: Analysis of Reaction Schemes. In Advances in Catalysis; Elsevier: Amsterdam, The Netherlands, 2001; Volume 46, pp. 161–264. ISBN 978-0-12-007846-2. [Google Scholar]
- Motagamwala, A.H.; Dumesic, J.A. Microkinetic Modeling: A Tool for Rational Catalyst Design. Chem. Rev. 2021, 121, 1049–1076. [Google Scholar] [CrossRef]
- deRosset, A.J. Diffusion of Hydrogen through Palladium Membranes. Ind. Eng. Chem. 1960, 52, 525–528. [Google Scholar] [CrossRef]
- Kompaniets, T.N.; Kurdyumov, A.A. Surface Processes in Hydrogen Permeation through Metal Membranes. Prog. Surf. Sci. 1984, 17, 75–151. [Google Scholar] [CrossRef]
- Caravella, A.; Scura, F.; Barbieri, G.; Drioli, E. Sieverts Law Empirical Exponent for Pd-Based Membranes: Critical Analysis in Pure H2 Permeation. J. Phys. Chem. B 2010, 114, 6033–6047. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, F. Richardson Law. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–2. ISBN 978-3-642-40872-4. [Google Scholar]
- Gallucci, F.; De Falco, M.; Tosti, S.; Marrelli, L.; Basile, A. The Effect of the Hydrogen Flux Pressure and Temperature Dependence Factors on the Membrane Reactor Performances. Int. J. Hydrogen Energy 2007, 32, 4052–4058. [Google Scholar] [CrossRef]
- Ma, Y.H. Hydrogen Separation Membranes. In Advanced Membrane Technology and Applications; Wiley: Hoboken, NJ, USA, 2008; pp. 671–681. ISBN 978-0-471-73167-2. [Google Scholar]
- Mejdell, A.L.; Klette, H.; Ramachandran, A.; Borg, A.; Bredesen, R. Hydrogen Permeation of Thin, Free-Standing Pd/Ag23% Membranes before and after Heat Treatment in Air. J. Membr. Sci. 2008, 307, 96–104. [Google Scholar] [CrossRef]
- Daynes, H.A. The Process of Diffusion through a Rubber Membrane. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1920, 97, 286–307. [Google Scholar] [CrossRef]
- Yuan, M.; Lee, K.; Van Campen, D.G.; Liguori, S.; Toney, M.F.; Wilcox, J. Hydrogen Purification in Palladium-Based Membranes: An Operando X-Ray Diffraction Study. Ind. Eng. Chem. Res. 2019, 58, 926–934. [Google Scholar] [CrossRef]
- Wang, D.; Flanagan, T.B.; Shanahan, K.L. Permeation of Hydrogen through Pre-Oxidized Pd Membranes in the Presence and Absence of CO. J. Alloys Compd. 2004, 372, 158–164. [Google Scholar] [CrossRef]
- Gorbunov, S.V.; Kannykin, S.V.; Penkina, T.N.; Roshan, N.R.; Chustov, E.M.; Burkhanov, G.S. Palladium–Lead Alloys for the Purification of Hydrogen-Containing Gas Mixtures and the Separation of Hydrogen from Them. Russ. Metall. Met. 2017, 2017, 54–59. [Google Scholar] [CrossRef]
- Keurentjes, J.T.F.; Gielens, F.C.; Tong, H.D.; Van Rijn, C.J.M.; Vorstman, M.A.G. High-Flux Palladium Membranes Based on Microsystem Technology. Ind. Eng. Chem. Res. 2004, 43, 4768–4772. [Google Scholar] [CrossRef]
- Lundin, S.-T.B.; Yamaguchi, T.; Wolden, C.A.; Oyama, S.T.; Way, J.D. The Role (or Lack Thereof) of Nitrogen or Ammonia Adsorption-Induced Hydrogen Flux Inhibition on Palladium Membrane Performance. J. Membr. Sci. 2016, 514, 65–72. [Google Scholar] [CrossRef]
- Yan, Y.; Li, F.; Wang, D.; Huang, X.; Zhu, J.; Zhu, H.; Wang, X.; Tang, T. Determining Flux-Limiting Mechanism of Hydrogen Permeation through Palladium Membrane by n Value. Int. J. Hydrogen Energy 2024, 55, 1122–1130. [Google Scholar] [CrossRef]
- Budhi, Y.W.; Irawan, H.K.; Fitri, R.A.; Wibisono, T.A.S.E.; Restiawaty, E.; Miyamoto, M.; Uemiya, S. Effect of Co-Existing Gases on Hydrogen Permeation through a Pd82–Ag18/α-Al2O3 Membrane during Transient Start-Up. Heliyon 2023, 9, e16979. [Google Scholar] [CrossRef]
- Petr, S.; Lukas, K.; Tomas, J. Selectivity and Separation Factor for Components During Multicomponent Membrane Gas Separation. Chem. Eng. Trans. 2022, 92, 109–114. [Google Scholar] [CrossRef]
- Koros, W.J.; Ma, Y.H.; Shimidzu, T. Terminology for Membranes and Membrane Processes (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 1479–1489. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Tsuneki, T.; Ota, Y.; Yasuda, I.; Tachibana, S.; Nakajima, H.; Kobayashi, K. Development of Membrane Reformer System for Highly Efficient Hydrogen Production from Natural Gas. Int. J. Hydrogen Energy 2009, 34, 4482–4487. [Google Scholar] [CrossRef]
- Maier, W.F.; Stöwe, K.; Sieg, S. Combinatorial and High-Throughput Materials Science. Angew. Chem. Int. Ed. 2007, 46, 6016–6067. [Google Scholar] [CrossRef] [PubMed]
- Potyrailo, R.; Rajan, K.; Stoewe, K.; Takeuchi, I.; Chisholm, B.; Lam, H. Combinatorial and High-Throughput Screening of Materials Libraries: Review of State of the Art. ACS Comb. Sci. 2011, 13, 579–633. [Google Scholar] [CrossRef]
- Fleutot, B.; Miller, J.B.; Gellman, A.J. Apparatus for Deposition of Composition Spread Alloy Films: The Rotatable Shadow Mask. J. Vac. Sci. Technol. Vac. Surf. Films 2012, 30, 061511. [Google Scholar] [CrossRef]
- Yin, C.; Guo, Z.; Gellman, A.J. Surface Segregation Across Ternary Alloy Composition Space: CuxAuyPd1−x−y. J. Phys. Chem. C 2020, 124, 10605–10614. [Google Scholar] [CrossRef]
- Ludwig, A. Discovery of New Materials Using Combinatorial Synthesis and High-Throughput Characterization of Thin-Film Materials Libraries Combined with Computational Methods. Npj Comput. Mater. 2019, 5, 70. [Google Scholar] [CrossRef]
- Lewis, A.; Zhao, H.; Hopkins, S. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods; Cornell University: Ithaca, NY, USA; Georgia Institute of Technology: Atlanta, GA, USA; Colorado School of Mines: Golden, CO, USA, 2014; p. 1172598. [Google Scholar]
- Gregoire, J.M.; van Dover, R.B.; Jin, J.; DiSalvo, F.J.; Abruña, H.D. Getter Sputtering System for High-Throughput Fabrication of Composition Spreads. Rev. Sci. Instrum. 2007, 78, 072212. [Google Scholar] [CrossRef] [PubMed]
- Pişkin, F. A Combinatorial Study on Hydrogen Separation Membranes. Çoğulcu yaklaşımla hidrojen ayırıcı membranların geliştirilmesi. Ph.D. Thesis, Middle East Technical University, Çankaya/Ankara, Türkiye, 2018. [Google Scholar]
- Pişkin, F.; Akyıldız, H.; Öztürk, T. Ti Modified Pd–Ag Membranes for Hydrogen Separation. Int. J. Hydrogen Energy 2015, 40, 7553–7558. [Google Scholar] [CrossRef]
- Pişkin, F.; Öztürk, T. Combinatorial Screening of Pd-Ag-Ni Membranes for Hydrogen Separation. J. Membr. Sci. 2017, 524, 631–636. [Google Scholar] [CrossRef]
- Pişkin, F.; Öztürk, T. Nb-Pd-Ti BCC Thin Films for Hydrogen Separation. J. Alloys Compd. 2019, 775, 411–418. [Google Scholar] [CrossRef]
- Köse, M.M.; Pişkin, F.; Öztürk, T. Development of Hydrogen Separation Membrane in Palladium Based Ternary Systems. Master’s Thesis, Middle East Technical University, Ankara, Türkiye, 2022. [Google Scholar]
- Tarditi, A.M.; Imhoff, C.; Braun, F.; Miller, J.B.; Gellman, A.J.; Cornaglia, L. PdCuAu Ternary Alloy Membranes: Hydrogen Permeation Properties in the Presence of H2S. J. Membr. Sci. 2015, 479, 246–255. [Google Scholar] [CrossRef]
- Priyadarshini, D.; Kondratyuk, P.; Picard, Y.N.; Morreale, B.D.; Gellman, A.J.; Miller, J.B. High-Throughput Characterization of Surface Segregation in CuxPd1−x Alloys. J. Phys. Chem. C 2011, 115, 10155–10163. [Google Scholar] [CrossRef]
- Yu, X.; Gellman, A.J. Suppression of B2 Phase in Pd Cu1- Alloy Thin Films. Thin Solid Films 2018, 668, 50–55. [Google Scholar] [CrossRef]
- den Broeder, F.J.A.; van der Molen, S.J.; Kremers, M.; Huiberts, J.N.; Nagengast, D.G.; van Gogh, A.T.M.; Huisman, W.H.; Koeman, N.J.; Dam, B.; Rector, J.H.; et al. Visualization of Hydrogen Migration in Solids Using Switchable Mirrors. Nature 1998, 394, 656–658. [Google Scholar] [CrossRef]
- Huiberts, J.N.; Griessen, R.; Rector, J.H.; Wijngaarden, R.J.; Dekker, J.P.; de Groot, D.G.; Koeman, N.J. Yttrium and Lanthanum Hydride Films with Switchable Optical Properties. Nature 1996, 380, 231–234. [Google Scholar] [CrossRef]
- Iannuzzi, D.; Lisanti, M.; Capasso, F. Effect of Hydrogen-Switchable Mirrors on the Casimir Force. Proc. Natl. Acad. Sci. USA 2004, 101, 4019–4023. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, T.F.; Hoekstra, A.F. Ultraviolet Triggered Switchable Mirrors. Adv. Mater. 2002, 14, 247–250. [Google Scholar] [CrossRef]
- Griessen, R.; Giebels, I.A.M.E.; Dam, B. Optical Properties of Metal-Hydrides: Switchable Mirrors; Vrije Universiteit: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Gremaud, R.; Broedersz, C.P.; Borsa, D.M.; Borgschulte, A.; Mauron, P.; Schreuders, H.; Rector, J.H.; Dam, B.; Griessen, R. Hydrogenography: An Optical Combinatorial Method to Find New Light-Weight Hydrogen-Storage Materials. Adv. Mater. 2007, 19, 2813–2817. [Google Scholar] [CrossRef]
- Manhard, A.; von Toussaint, U.; Sand, P.; Stienecker, M. Visualizing Spatially Inhomogeneous Hydrogen Isotope Diffusion by Hydrogenography. Nucl. Mater. Energy 2023, 36, 101498. [Google Scholar] [CrossRef]
- Gremaud, R.; Slaman, M.; Schreuders, H.; Dam, B.; Griessen, R. An Optical Method to Determine the Thermodynamics of Hydrogen Absorption and Desorption in Metals. Appl. Phys. Lett. 2007, 91, 231916. [Google Scholar] [CrossRef]
- Borgschulte, A.; Lohstroh, W.; Westerwaal, R.J.; Schreuders, H.; Rector, J.H.; Dam, B.; Griessen, R. Combinatorial Method for the Development of a Catalyst Promoting Hydrogen Uptake. J. Alloys Compd. 2005, 404–406, 699–705. [Google Scholar] [CrossRef]
- de Man, S.; Gonzalez-Silveira, M.; Visser, D.; Bakker, R.; Schreuders, H.; Baldi, A.; Dam, B.; Griessen, R. Combinatorial Method for Direct Measurements of the Intrinsic Hydrogen Permeability of Separation Membrane Materials. J. Membr. Sci. 2013, 444, 70–76. [Google Scholar] [CrossRef]
- Westerwaal, R.J.; Den Besten, C.; Slaman, M.; Dam, B.; Nanu, D.E.; Böttger, A.J.; Haije, W.G. High Throughput Screening of Pd-Alloys for H2 Separation Membranes Studied by Hydrogenography and CVM. Int. J. Hydrogen Energy 2011, 36, 1074–1082. [Google Scholar] [CrossRef]
- Westerwaal, R.J.; Bouman, E.A.; Haije, W.G.; Schreuders, H.; Dutta, S.; Wu, M.Y.; Boelsma, C.; Ngene, P.; Basak, S.; Dam, B. The Hydrogen Permeability of Pd–Cu Based Thin Film Membranes in Relation to Their Structure: A Combinatorial Approach. Int. J. Hydrogen Energy 2015, 40, 3932–3943. [Google Scholar] [CrossRef]
- Czitrom, V. One-Factor-at-a-Time Versus Designed Experiments. Am. Stat. Assoc. 1999, 53, 126–131. [Google Scholar] [CrossRef]
- Potyrailo, R.A.; Mirsky, V.M. Combinatorial and High-Throughput Development of Sensing Materials: The First 10 Years. Chem. Rev. 2008, 108, 770–813. [Google Scholar] [CrossRef] [PubMed]
- Agnolin, S.; Gallucci, F. Unravelling the Effects of Surface Modification Pre-Treatments on Porous Hastelloy X Supports for H2 Selective Pd-Based Membranes Preparation with a Statistical Approach. J. Membr. Sci. 2024, 700, 122690. [Google Scholar] [CrossRef]
- Chen, W.-H.; Carrera Uribe, M.; Kwon, E.E.; Lin, K.-Y.A.; Park, Y.-K.; Ding, L.; Saw, L.H. A Comprehensive Review of Thermoelectric Generation Optimization by Statistical Approach: Taguchi Method, Analysis of Variance (ANOVA), and Response Surface Methodology (RSM). Renew. Sustain. Energy Rev. 2022, 169, 112917. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wu, D.-R.; Chang, M.-H.; Rajendran, S.; Ong, H.C.; Lin, K.-Y.A. Modeling of Hydrogen Separation through Pd Membrane with Vacuum Pressure Using Taguchi and Machine Learning Methods. Int. J. Hydrogen Energy 2024, in press. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, K.-H.; Chein, R.-Y.; Ong, H.C.; Arunachalam, K.D. Optimization of Hydrogen Enrichment via Palladium Membrane in Vacuum Environments Using Taguchi Method and Normalized Regression Analysis. Int. J. Hydrogen Energy 2022, 47, 42280–42292. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, J. Robust Optimization of the Efficient Syngas Fractions in Entrained Flow Coal Gasification Using Taguchi Method and Response Surface Methodology. Int. J. Hydrogen Energy 2017, 42, 4908–4921. [Google Scholar] [CrossRef]
- Murdock, R.; Kauwe, S.; Wang, A.; Sparks, T. Is Domain Knowledge Necessary for Machine Learning Materials Properties? Integr. Mater. Manuf. Innov. 2020, 9, 221–227. [Google Scholar] [CrossRef]
- Wang, A.Y.-T.; Murdock, R.J.; Kauwe, S.K.; Oliynyk, A.O.; Gurlo, A.; Brgoch, J.; Persson, K.A.; Sparks, T.D. Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices. Chem. Mater. 2020, 32, 4954–4965. [Google Scholar] [CrossRef]
- Chang, M.-H.; Chen, W.-H.; Wu, D.-R.; Ghorbani, M.; Rajendran, S.; Mohd Ashri Wan Daud, W. Analysis of Vacuum Operation on Hydrogen Separation from H2/H2O Mixture via Pd Membrane Using Taguchi Method, Response Surface Methodology, and Multivariate Adaptive Regression Splines. Energy Convers. Manag. X 2024, 23, 100645. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, K.-H.; Kuo, J.-K.; Saravanakumar, A.; Chew, K.W. Optimization Analysis of Hydrogen Separation from an H2/CO2 Gas Mixture via a Palladium Membrane with a Vacuum Using Response Surface Methodology. Int. J. Hydrogen Energy 2022, 47, 42266–42279. [Google Scholar] [CrossRef]
- Kondratyuk, P.; Gumuslu, G.; Shukla, S.; Miller, J.B.; Morreale, B.D.; Gellman, A.J. A Microreactor Array for Spatially Resolved Measurement of Catalytic Activity for High-Throughput Catalysis Science. J. Catal. 2013, 300, 55–62. [Google Scholar] [CrossRef]
- Priyadarshini, D.; Kondratyuk, P.; Miller, J.B.; Gellman, A.J. Compact Tool for Deposition of Composition Spread Alloy Films. J. Vac. Sci. Technol. Vac. Surf. Films 2012, 30, 011503. [Google Scholar] [CrossRef]
- O’Brien, C.P.; Miller, J.B.; Morreale, B.D.; Gellman, A.J. The Kinetics of H2–D2 Exchange over Pd, Cu, and PdCu Surfaces. J. Phys. Chem. C 2011, 115, 24221–24230. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Lezcano, G.; Velisoju, V.K.; Realpe, N.; Castaño, P. Microkinetic Modeling to Decode Catalytic Reactions and Empower Catalytic Design. ChemCatChem 2024, 16, e202301720. [Google Scholar] [CrossRef]
- Fishtik, I.; Callaghan, C.A.; Datta, R. Reaction Route Graphs. I. Theory and Algorithm. J. Phys. Chem. B 2004, 108, 5671–5682. [Google Scholar] [CrossRef]
- Sholl, D.; Steckel, J.A.; Sholl, D.S.; Steckel, J.A. Density Functional Theory: A Practical Introduction; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-37317-0. [Google Scholar]
- Ke, X.; Kramer, G.J.; Løvvik, O.M. The Influence of Electronic Structure on Hydrogen Absorption in Palladium Alloys. J. Phys. Condens. Matter 2004, 16, 6267–6277. [Google Scholar] [CrossRef]
- Lee, K.; Yuan, M.; Wilcox, J. Understanding Deviations in Hydrogen Solubility Predictions in Transition Metals through First-Principles Calculations. J. Phys. Chem. C 2015, 119, 19642–19653. [Google Scholar] [CrossRef]
- Kang, S.; Hao, S.; Sholl, D.S. Using First-Principles Models to Advance Development of Metal Membranes for High Temperature Hydrogen Purification. In Membrane Science and Technology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 14, pp. 309–331. ISBN 978-0-444-53728-7. [Google Scholar]
- Ozdogan, E.; Wilcox, J. Investigation of H 2 and H 2 S Adsorption on Niobium- and Copper-Doped Palladium Surfaces. J. Phys. Chem. B 2010, 114, 12851–12858. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, P.; Yang, D.; Yang, P.; Liao, N. First-Principles Evaluation of Pd–Pt–Ag and Pd–Pt–Au Ternary Alloys as High Performance Membranes for Hydrogen Separation. Int. J. Hydrogen Energy 2024, 68, 607–613. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Z.; Gellman, A.J.; Kitchin, J.R. Simulating Segregation in a Ternary Cu–Pd–Au Alloy with Density Functional Theory, Machine Learning, and Monte Carlo Simulations. J. Phys. Chem. C 2022, 126, 1800–1808. [Google Scholar] [CrossRef]
- Opetubo, O.; Ibitoye, A.I.; Oyinbo, S.T.; Jen, T.-C. Analysis of Hydrogen Embrittlement in Palladium–Copper Alloys Membrane from First Principal Method Using Density Functional Theory. Vacuum 2022, 205, 111439. [Google Scholar] [CrossRef]
- Kamakoti, P.; Sholl, D.S. Towards First Principles-Based Identification of Ternary Alloys for Hydrogen Purification Membranes. J. Membr. Sci. 2006, 279, 94–99. [Google Scholar] [CrossRef]
- Ko, W.-S.; Oh, J.-Y.; Shim, J.-H.; Suh, J.-Y.; Yoon, W.Y.; Lee, B.-J. Design of Sustainable V-Based Hydrogen Separation Membranes Based on Grain Boundary Segregation. Int. J. Hydrogen Energy 2014, 39, 12031–12044. [Google Scholar] [CrossRef]
- Fiolhais, C.; Nogueira, F.; Marques, M.A.L. (Eds.) A Primer in Density Functional Theory; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 620, ISBN 978-3-540-03083-6. [Google Scholar]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory, 2nd ed.; 5. Reprint; Wiley-VCH: Weinheim, Germany, 2008; ISBN 978-3-527-30372-4. [Google Scholar]
- Chen, Y.; Zhang, L.; Wang, H.; E, W. DeePKS: A Comprehensive Data-Driven Approach toward Chemically Accurate Density Functional Theory. J. Chem. Theory Comput. 2020, 17, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Kaxiras, E. Atomic and Electronic Structure of Solids, 1st ed.; Cambridge University Press: Cambridge, UK, 2003; ISBN 978-0-521-81010-4. [Google Scholar]
- Cramer, C.J.; Truhlar, D.G. Density Functional Theory for Transition Metals and Transition Metal Chemistry. Phys. Chem. Chem. Phys. 2009, 11, 10757. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef] [PubMed]
- Jemaa, N.; Grandjean, B.P.A.; Kaliaguine, S. Diffusion Coefficient of Hydrogen in a Pd-Ag Membrane: Effect of Hydrogen Solubility. Can. J. Chem. Eng. 1995, 73, 405–410. [Google Scholar] [CrossRef]
- Takahashi, K.; Takahashi, L. An Introduction to Materials Informatics and Catalysts Informatics. In Materials Informatics and Catalysts Informatics; Springer Nature: Singapore, 2024; pp. 1–24. ISBN 978-981-97-0216-9. [Google Scholar]
- Warde, J.; Knowles, D.M. Application of Neural Networks to Mechanical Property Determination of Ni-Base Superalloys. ISIJ Int. 1999, 39, 1006–1014. [Google Scholar] [CrossRef]
- Warde, J.; Knowles, D.M. Use of Neural Networks for Alloy Design. ISIJ Int. 1999, 39, 1015–1019. [Google Scholar] [CrossRef]
- De Pablo, J.J.; Jones, B.; Kovacs, C.L.; Ozolins, V.; Ramirez, A.P. The Materials Genome Initiative, the Interplay of Experiment, Theory and Computation. Curr. Opin. Solid State Mater. Sci. 2014, 18, 99–117. [Google Scholar] [CrossRef]
- Feldman, K.; Agnew, S.R. The Materials Genome Initiative at the National Science Foundation: A Status Report after the First Year of Funded Research. JOM 2014, 66, 336–344. [Google Scholar] [CrossRef]
- Howard, B. Hydrogen Permeance of Palladium–Copper Alloy Membranes over a Wide Range of Temperatures and Pressures. J. Membr. Sci. 2004, 241, 207–218. [Google Scholar] [CrossRef]
- Magnone, E.; Shin, M.C.; Lee, J.I.; Park, J.H. Relationship between Hydrogen Permeability and the Physical-Chemical Characteristics of Metal Alloy Membranes. J. Membr. Sci. 2023, 674, 121513. [Google Scholar] [CrossRef]
- Sayeed, H.M.; Mohanty, T.; Sparks, T.D. Annotating Materials Science Text: A Semi-Automated Approach for Crafting Outputs with Gemini Pro. Integr. Mater. Manuf. Innov. 2024, 13, 445–452. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Chen, F.L.; Furukawa, M.; Mine, K. X-Ray Studies of the Absorption of Hydrogen by Palladium-Rich Pd (Tb, Tm, Lu) Alloys. J. Common Met. 1990, 159, 191–198. [Google Scholar] [CrossRef]
- Ward, L.; Dunn, A.; Faghaninia, A.; Zimmermann, N.E.R.; Bajaj, S.; Wang, Q.; Montoya, J.; Chen, J.; Bystrom, K.; Dylla, M.; et al. Matminer: An Open Source Toolkit for Materials Data Mining. Comput. Mater. Sci. 2018, 152, 60–69. [Google Scholar] [CrossRef]
- Dunn, A.; Wang, Q.; Ganose, A.; Dopp, D.; Jain, A. Benchmarking Materials Property Prediction Methods: The Matbench Test Set and Automatminer Reference Algorithm. Npj Comput. Mater. 2020, 6, 138. [Google Scholar] [CrossRef]
- Song, F.; Guo, Z.; Mei, D. Feature Selection Using Principal Component Analysis. In Proceedings of the 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization, Yichang, China, 12–14 November 2010; IEEE: New York, NY, USA, 2010; pp. 27–30. [Google Scholar]
- Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; Scheffler, M.; Ghiringhelli, L.M. SISSO: A Compressed-Sensing Method for Identifying the Best Low-Dimensional Descriptor in an Immensity of Offered Candidates. Phys. Rev. Mater. 2018, 2, 083802. [Google Scholar] [CrossRef]
- Liu, L.C.; Wang, J.W.; He, Y.H.; Gong, H.R. Solubility, Diffusivity, and Permeability of Hydrogen at PdCu Phases. J. Membr. Sci. 2017, 542, 24–30. [Google Scholar] [CrossRef]
- Liu, L.C.; Gong, H.R.; Zhou, S.F.; Gong, X. Adsorption, Diffusion, and Permeation of Hydrogen at PdCu Surfaces. J. Membr. Sci. 2019, 588, 117206. [Google Scholar] [CrossRef]
- Nayebossadri, S.; Speight, J.D.; Book, D. Pd–Cu–M (M = Y, Ti, Zr, V, Nb, and Ni) Alloys for the Hydrogen Separation Membrane. ACS Appl. Mater. Interfaces 2017, 9, 2650–2661. [Google Scholar] [CrossRef] [PubMed]
- Tosques, J.; Honrado Guerreiro, B.; Martin, M.H.; Roué, L.; Guay, D. Hydrogen Solubility of Bcc PdCu and PdCuAg Alloys Prepared by Mechanical Alloying. J. Alloys Compd. 2017, 698, 725–730. [Google Scholar] [CrossRef]
- Semidey-Flecha, L.; Ling, C.; Sholl, D.S. Detailed First-Principles Models of Hydrogen Permeation through PdCu-Based Ternary Alloys. J. Membr. Sci. 2010, 362, 384–392. [Google Scholar] [CrossRef]
- Fatima; Liao, Y.; Tolba, S.A.; Ruiz Pestana, L.A.; Xia, W. Electronic Structure and Density Functional Theory. In Fundamentals of Multiscale Modeling of Structural Materials; Elsevier: Amsterdam, The Netherlands, 2023; pp. 3–35. ISBN 978-0-12-823021-3. [Google Scholar]
- Løvvik, O.M.; Peters, T.A.; Bredesen, R. First-Principles Calculations on Sulfur Interacting with Ternary Pd–Ag-Transition Metal Alloy Membrane Alloys. J. Membr. Sci. 2014, 453, 525–531. [Google Scholar] [CrossRef]
- Han, Z.; Xu, K.; Liao, N.; Xue, W. Theoretical Investigations of Permeability and Selectivity of Pd–Cu and Pd–Ni Membranes for Hydrogen Separation. Int. J. Hydrogen Energy 2021, 46, 23715–23722. [Google Scholar] [CrossRef]
- Semidey-Flecha, L.; Sholl, D.S. Combining Density Functional Theory and Cluster Expansion Methods to Predict H2 Permeance through Pd-Based Binary Alloy Membranes. J. Chem. Phys. 2008, 128, 144701. [Google Scholar] [CrossRef]
- Ling, C.; Semidey-Flecha, L.; Sholl, D.S. First-Principles Screening of PdCuAg Ternary Alloys as H2 Purification Membranes. J. Membr. Sci. 2011, 371, 189–196. [Google Scholar] [CrossRef]
- Stergiou, K.; Ntakolia, C.; Varytis, P.; Koumoulos, E.; Karlsson, P.; Moustakidis, S. Enhancing Property Prediction and Process Optimization in Building Materials through Machine Learning: A Review. Comput. Mater. Sci. 2023, 220, 112031. [Google Scholar] [CrossRef]
- Al-Mufachi, N.A.; Steinberger-Wilckens, R. X-Ray Diffraction Study on the Effects of Hydrogen on Pd60Cu40 Wt% Foil Membranes. J. Membr. Sci. 2018, 545, 266–274. [Google Scholar] [CrossRef]
- Lundin, S.-T.B.; Patki, N.S.; Fuerst, T.F.; Wolden, C.A.; Way, J.D. Inhibition of Hydrogen Flux in Palladium Membranes by Pressure–Induced Restructuring of the Membrane Surface. J. Membr. Sci. 2017, 535, 70–78. [Google Scholar] [CrossRef]
- Ferrin, P.; Kandoi, S.; Nilekar, A.U.; Mavrikakis, M. Hydrogen Adsorption, Absorption and Diffusion on and in Transition Metal Surfaces: A DFT Study. Surf. Sci. 2012, 606, 679–689. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, W.; Huang, C.; Gao, L.; Su, Y.; Qiao, L. The d Band Center as an Indicator for the Hydrogen Solution and Diffusion Behaviors in Transition Metals. Int. J. Hydrogen Energy 2022, 47, 38445–38454. [Google Scholar] [CrossRef]
- Hammer, B.; Nørskov, J.K. Theoretical Surface Science and Catalysis—Calculations and Concepts. In Advances in Catalysis; Elsevier: Amsterdam, The Netherlands, 2000; Volume 45, pp. 71–129. ISBN 978-0-12-007845-5. [Google Scholar]
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Solid Solution Alloys of AlCoCrFeNiTix with Excellent Room-Temperature Mechanical Properties. Appl. Phys. Lett. 2007, 90, 181904. [Google Scholar] [CrossRef]
- MacLeod, B.P.; Parlane, F.G.L.; Rupnow, C.C.; Dettelbach, K.E.; Elliott, M.S.; Morrissey, T.D.; Haley, T.H.; Proskurin, O.; Rooney, M.B.; Taherimakhsousi, N.; et al. A Self-Driving Laboratory Advances the Pareto Front for Material Properties. Nat. Commun. 2022, 13, 995. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zheng, K. Methods, Progresses, and Opportunities of Materials Informatics. InfoMat 2023, 5, e12425. [Google Scholar] [CrossRef]
- Lookman, T.; Balachandran, P.V.; Xue, D.; Yuan, R. Active Learning in Materials Science with Emphasis on Adaptive Sampling Using Uncertainties for Targeted Design. Npj Comput. Mater. 2019, 5, 21. [Google Scholar] [CrossRef]
- Mohanty, T.; Chandran, K.S.R.; Sparks, T.D. Machine Learning Guided Optimal Composition Selection of Niobium Alloys for High Temperature Applications. APL Mach. Learn. 2023, 1, 036102. [Google Scholar] [CrossRef]
- Halpren, E.; Yao, X.; Chen, Z.W.; Singh, C.V. Machine Learning Assisted Design of BCC High Entropy Alloys for Room Temperature Hydrogen Storage. Acta Mater. 2024, 270, 119841. [Google Scholar] [CrossRef]
- Cao, B.; Su, T.; Yu, S.; Li, T.; Zhang, T.; Zhang, J.; Dong, Z.; Zhang, T.-Y. Active Learning Accelerates the Discovery of High Strength and High Ductility Lead-Free Solder Alloys. Mater. Des. 2024, 241, 112921. [Google Scholar] [CrossRef]
Units | Membranes | PSA | Distillation | ||
---|---|---|---|---|---|
Feed requirements | H2 vol % | >25 | >40 | >10 | |
Product purity | 90–98 (polymeric)/>99.9 (Pd) | >99.9 | 90–98 | ||
Operating conditions | Temperature | °C | 0–100 | RT | –183 |
Feed pressure | bar | 20–160 | 10–40 | 5–75 | |
Hydrogen recovery | % | 85–95 | 50–92 | 90–99 | |
Productivity | Nm3·h−1 | <60,000 | 30–400,000 | 10,000–90,000 | |
Product pressure | bar | <1/3-feed | feed | feed/low | |
Capital investment | low | medium | high |
Membrane Type | Dense Metallic | Microporous Ceramic | Porous Carbon | Non-Porous Polymeric |
---|---|---|---|---|
Materials | Pd, Ta, V, Nb, and alloys | Silica, alumina | Carbon | Polymers |
Operating temperature range (°C) | 300–700 | 200–600 | 500–900 | <100 |
Mechanism | Solution–diffusion | Molecular sieving | Surface diffusion, molecular sieving | Solution–diffusion |
H2 selectivity | >1000 | 5–140 | 4–20 | Low |
H2 flux (10−3 mol∙m−2∙s−1, ΔP = 1 bar) | 60–300 | 60–300 | 10–200 | Low |
Poisoning | H2S, HCl, CO | - | Organics, adsorbing vapors at C | HCl, CO, SOx |
Stability | Phase transition, embrittlement | H2O | Embrittlement, oxidation | Compaction, swelling, water vapors |
Cost | High | Low | Low | Low |
Development status | Pilot, commercial up to 60 cm long | Non-commercial | Commercial at small scale | Commercial |
Metal | Crystal Structure * | H Solid Solubility in Equilibrium with Hydride at T) 27 °C (H/Metal) ** | ∆H Formation (of Hydrides) (kJ/mol) | H2 Permeability, , at T = 500 °C (mol∙m−1∙s−1∙Pa−0.5) | Activation Energies for Bulk Diffusion of Hydrogen, (kJ/mol) |
---|---|---|---|---|---|
Niobium | BCC | 0.05 | −60 (Nb–H2) | 1.6 × 10−6 | 10.2 |
Tantalum | BCC | 0.20 | −78 (Ta–H0.5) | 1.3 × 10−7 | 14.5 |
Vanadium | BCC | 0.05 | −54 (V–H2) | 1.9 × 10−7 | 5.6 |
Iron | BCC | 3 × 10−8 | +14 (Fe–H) | 1.8 × 10−10 | 44.8 (γ-Fe) |
Copper | FCC | <8 × 10−7 | 4.9 × 10−12 | 38.9 | |
Nickel | FCC | <7.6 × 10−5 | −6 (Ni–H0.5) | 7.8 × 10−11 | 40.0 |
Palladium | FCC | 0.03 | +20 (Pd2–H2) | 1.9 × 10−8 | 24.0 |
Platinum | FCC | <1 × 10−5 | +26 (Pt–H) | 2.0 × 10−12 | 24.7 |
Hafnium | HCP | α~0.01 | −133 (Hf–H2) | ||
β~1.0 | |||||
Titanium | HCP | α~0.0014 | −126 (Ti–H2γ) | ||
β~1.0 | |||||
Zirconium | HCP | <0.01 | −165 (Zr–H2) |
Performance Criteria | 2007 Target | 2010 Target | 2015 Target |
---|---|---|---|
Flux sccm/cm2 at 100 psi ΔP H2 partial pressure | 50 | 100 | 150 |
Operating temperature, °C | 400–700 | 300–600 | 250–500 |
S tolerance | Yes | Yes | Yes |
Cost, $/ft2 | 1000 | 500 | <250 |
WGS activity | Yes | Yes | Yes |
ΔP operating capability, system pressure, psi | 100 | Up to 400 | Up to 800–1000 |
CO tolerance | Yes | Yes | Yes |
Hydrogen purity | 95% | 99.5% | 99.99% |
Stability/durability (years) | 1 | 3 | >5 |
Parameter | Definition | Expression | References | |
---|---|---|---|---|
Measure of the differences in permeability values ϕ between H2 and N2 | (27) | [64,145,168,169] | ||
Ratio of the compositions of components H2 and N2 in the permeate relative to the composition ratio of these components in the retentate | (28) | [64,145,168,169] | ||
Ratio of the amount of H2 permeated through the membrane to the maximum H2 that can be recovered from the feed gas, including both the H2 present in the feed and the stoichiometrically maximum amount produced from reactions on the feed side | (29) | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolor, E.; Usman, M.; Boonyubol, S.; Mikami, K.; Cross, J.S. Advances in Palladium-Based Membrane Research: High-Throughput Techniques and Machine Learning Perspectives. Processes 2024, 12, 2855. https://doi.org/10.3390/pr12122855
Kolor E, Usman M, Boonyubol S, Mikami K, Cross JS. Advances in Palladium-Based Membrane Research: High-Throughput Techniques and Machine Learning Perspectives. Processes. 2024; 12(12):2855. https://doi.org/10.3390/pr12122855
Chicago/Turabian StyleKolor, Eric, Muhammad Usman, Sasipa Boonyubol, Koichi Mikami, and Jeffrey S. Cross. 2024. "Advances in Palladium-Based Membrane Research: High-Throughput Techniques and Machine Learning Perspectives" Processes 12, no. 12: 2855. https://doi.org/10.3390/pr12122855
APA StyleKolor, E., Usman, M., Boonyubol, S., Mikami, K., & Cross, J. S. (2024). Advances in Palladium-Based Membrane Research: High-Throughput Techniques and Machine Learning Perspectives. Processes, 12(12), 2855. https://doi.org/10.3390/pr12122855