Exploring Principal Component Analysis for Enhanced Insights into Physical and Operational Characteristics of Palladium-Based Membrane Composites: Advancing Hydrogen (H2) Energy Potential to Revolutionize the Energy Sector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Normalization and PCA
2.2. PCA
Membrane Type | # | T [K] | ΔP (kPa) | Thickness [μm] | FluxH2 (mol/m2s) | PeH2 (mol/m2s Pa) | References |
---|---|---|---|---|---|---|---|
Pd–ZrO2–PSS a | 1 | 773 | 100 | 10 | 0.083 | 0.0083 | [19] |
Pd–αAl2O3 | 2 | 573 | 290 | 1 | 2.05 | 0.0038 | [20] |
Pd–Al2O3 | 3 | 723 | 4.8 | 0.000003 | [21] | ||
Pd/Ag–Al2O3 | 4 | 142 | 10 | 0.142 | 0.000001 | [22] | |
Pd/Ag–PSS | 5 | 723 | 1000 | 29 | [23] | ||
Pd–PSS | 6 | 683 | 20 | [24] | |||
Pd–Al2O3 | 7 | 573 | 30 | 3 | 0.15 | 0.000006 | [25] |
Pd–GCM b | 8 | 473 | 10 | 15 | 0.223 | 0.00000223 | [26] |
Pd–Al2O3 | 9 | 801 | 2.5 | 0.00000162 | [27] | ||
Pd/Ag–PSS | 10 | 723 | 162 | 50 | [28] | ||
Melt-spun Zr–Al–Co–Ni–Cu | 11 | 673 | 390 | 44 | 0.0044 | 1.13 × 10−8 | [29] |
Pd alloy/PNS c | 12 | 773 | 358 | 0.083 | [30] | ||
Pd–Cu alloy | 13 | 725 | 0.75 | 1.6 | [31] | ||
Pd/Ni | 14 | 673 | 20 | 2.5 | 0.31 | 0.0000115 | [32] |
Pd/Ag alloy | 15 | 620 | 400 | 5.5 | 0.000001 | [33] | |
Pd/MPSS d | 16 | 773 | 100 | 6 | 0.302 | 0.00000302 | [34] |
Pd | 17 | 473 | 51 | 95 | 0.0267 | 5.235 × 10−7 | [19] |
Pd84–Cu16/ ZrO2–PSS | 18 | 753 | 250 | 5 | 0.6 | 0.0005265 | [35] |
Pd/PSS | 19 | 773 | 100 | 11.7 | 0.000791 | [36] | |
Pd90–Ag10–α Al2O3 | 20 | 544.5 | 165 | 20 | 0.14 | 0.00000125 | [37] |
Pd–CS e | 21 | 698 | 400 | 2 | 0.000001688 | [38] | |
Pd/Pd–Ag–PSS | 22 | 723 | 100 | 2.5 | 0.3 | 0.000003 | [34] |
Pd–Ag/αFe2O3/ PSS | 23 | 773 | 300 | 18 | 0.000491 | [39] | |
Pd–Cu/αAl2O3 | 24 | 723 | 345 | 11 | 0.8 | 0.00000231 | [40] |
Pd/TiO2 | 25 | 773 | 45 | 0.35 | 0.283 | 0.00000628 | [41] |
Pd–Ni/SS | 26 | 723 | 68 | 0.8 | 0.7265 | 0.00001051 | [42] |
Pd–Ru–In/SS | 27 | 645 | 100 | 1.5 | 0.049 | 0.00000049 | [43] |
Pd–Al2O3 | 28 | 673 | 100 | 5 | 0.155 | 0.00000155 | [44] |
Pd/PSS | 29 | 793 | 150 | 10 | 0.175 | 0.000001166 | [45] |
3. Results and Discussion
3.1. PCA for the Entire Dataset
3.2. PCA with the Exclusion of Outliers
3.3. PCA of Subsets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J. Energy Access Challenge and the Role of Fossil Fuels in Meeting Electricity Demand: Promoting Renewable Energy Capacity for Sustainable Development. Geosci. Front. 2024, 15, 101873. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Zhang, Q.; Alotaibi, B.S.; Abuhussain, M.A.; Alvarado, R. Toward Sustainable Development Goals 7 and 13: A Comprehensive Policy Framework to Combat Climate Change. Environ. Impact Assess. Rev. 2024, 105, 107415. [Google Scholar] [CrossRef]
- Basile, A.; Gallucci, F.; Tosti, S. Synthesis, Characterization, and Applications of Palladium Membranes. Membr. Sci. Technol. 2008, 13, 255–323. [Google Scholar]
- Gritz, A.; Wolff, G. Gas and Energy Security in Germany and Central and Eastern Europe. Energy Policy 2024, 184, 113885. [Google Scholar] [CrossRef]
- Al-Mufachi, N.A.; Rees, N.V.; Steinberger-Wilkens, R. Hydrogen Selective Membranes: A Review of Palladium-Based Dense Metal Membranes. Renew. Sustain. Energy Rev. 2015, 47, 540–551. [Google Scholar] [CrossRef]
- Rothenberger, K.S.; Cugini, A.V.; Howard, B.H.; Killmeyer, R.P.; Ciocco, M.V.; Morreale, B.D.; Enick, R.M.; Bustamante, F.; Mardilovich, I.P.; Ma, Y.H. High Pressure Hydrogen Permeance of Porous Stainless Steel Coated with a Thin Palladium Film via Electroless Plating. J. Membr. Sci. 2004, 244, 55–68. [Google Scholar] [CrossRef]
- Al-Shaeli, M.; Teber, O.O.; Al-Juboori, R.A.; Khataee, A.; Koyuncu, I.; Vatanpour, V. Inorganic Layered Polymeric Membranes: Highly-Ordered Porous Ceramics for Surface Engineering of Polymeric Membranes. Sep. Purif. Technol. 2024, 127925. [Google Scholar] [CrossRef]
- Gallucci, F.; Fernandez, E.; Corengia, P.; van Sint Annaland, M. Recent Advances on Membranes and Membrane Reactors for Hydrogen Production. Chem. Eng. Sci. 2013, 92, 40–66. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, H.; Rui, Z.; Liu, P.; Li, Y.; Lin, Y.S. High-Temperature Stability of Palladium Membranes on Porous Metal Supports with Different Intermediate Layers. Ind. Eng. Chem. Res. 2009, 48, 1880–1886. [Google Scholar] [CrossRef]
- Pal, N.; Agarwal, M.; Maheshwari, K.; Solanki, Y.S. A Review on Types, Fabrication and Support Material of Hydrogen Separation Membrane. Mater. Today: Proc. 2020, 28, 1386–1391. [Google Scholar] [CrossRef]
- Chen, C.; Lu, L.; Fei, L.; Xu, J.; Wang, B.; Li, B.; Shen, L.; Lin, H. Membrane-Catalysis Integrated System for Contaminants Degradation and Membrane Fouling Mitigation: A Review. Sci. Total Environ. 2023, 904, 166220. [Google Scholar] [CrossRef] [PubMed]
- Arratibel Plazaola, A.; Pacheco Tanaka, D.A.; Van Sint Annaland, M.; Gallucci, F. Recent Advances in Pd-Based Membranes for Membrane Reactors. Molecules 2017, 22, 51. [Google Scholar] [CrossRef] [PubMed]
- Murshid, N.; Mouhtady, O.; Abu-Samha, M.; Obeid, E.; Kharboutly, Y.; Chaouk, H.; Halwani, J.; Younes, K. Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis. Gels 2022, 8, 702. [Google Scholar] [CrossRef] [PubMed]
- Younes, K.; Kharboutly, Y.; Antar, M.; Chaouk, H.; Obeid, E.; Mouhtady, O.; Abu-samha, M.; Halwani, J.; Murshid, N. Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach. Gels 2023, 9, 304. [Google Scholar] [CrossRef] [PubMed]
- Mouhtady, O.; Obeid, E.; Abu-samha, M.; Younes, K.; Murshid, N. Evaluation of the Adsorption Efficiency of Graphene Oxide Hydrogels in Wastewater Dye Removal: Application of Principal Component Analysis. Gels 2022, 8, 447. [Google Scholar] [CrossRef]
- Peiris, R.H.; Budman, H.; Moresoli, C.; Legge, R.L. Development of a Species Specific Fouling Index Using Principal Component Analysis of Fluorescence Excitation–Emission Matrices for the Ultrafiltration of Natural Water and Drinking Water Production. J. Membr. Sci. 2011, 378, 257–264. [Google Scholar] [CrossRef]
- Younes, K.; Mouhtady, O.; Chaouk, H.; Obeid, E.; Roufayel, R.; Moghrabi, A.; Murshid, N. The Application of Principal Component Analysis (PCA) for the Optimization of the Conditions of Fabrication of Electrospun Nanofibrous Membrane for Desalination and Ion Removal. Membranes 2021, 11, 979. [Google Scholar] [CrossRef]
- Younes, K.; Moghnie, S.; Khader, L.; Obeid, E.; Mouhtady, O.; Grasset, L.; Murshid, N. Application of Unsupervised Learning for the Evaluation of Burial Behavior of Geomaterials in Peatlands: Case of Lignin Moieties Yielded by Alkaline Oxidative Cleavage. Polymers 2023, 15, 1200. [Google Scholar] [CrossRef]
- Wang, D.; Tong, J.; Xu, H.; Matsumura, Y. Preparation of Palladium Membrane over Porous Stainless Steel Tube Modified with Zirconium Oxide. Catal. Today 2004, 93, 689–693. [Google Scholar] [CrossRef]
- Sato, K.; Hanaoka, T.; Niwa, S.; Stefan, C.; Namba, T.; Mizukami, F. Direct Hydroxylation of Aromatic Compounds by a Palladium Membrane Reactor. Catal. Today 2005, 104, 260–266. [Google Scholar] [CrossRef]
- Van Dyk, L.; Miachon, S.; Lorenzen, L.; Torres, M.; Fiaty, K.; Dalmon, J.-A. Comparison of Microporous MFI and Dense Pd Membrane Performances in an Extractor-Type CMR. Catal. Today 2003, 82, 167–177. [Google Scholar] [CrossRef]
- Liang, W.; Hughes, R. The Catalytic Dehydrogenation of Isobutane to Isobutene in a Palladium/Silver Composite Membrane Reactor. Catal. Today 2005, 104, 238–243. [Google Scholar] [CrossRef]
- Lin, W.-H.; Chang, H.-F. A Study of Ethanol Dehydrogenation Reaction in a Palladium Membrane Reactor. Catal. Today 2004, 97, 181–188. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Liu, S.-L.; Chuang, C.-H.; Chu, Y.-T. Effect of Incipient Removal of Hydrogen through Palladium Membrane on the Conversion of Methane Steam Reforming: Experimental and Modeling. Catal. Today 2003, 82, 127–139. [Google Scholar] [CrossRef]
- Itoh, N.; Akiha, T.; Sato, T. Preparation of Thin Palladium Composite Membrane Tube by a CVD Technique and Its Hydrogen Permselectivity. Catal. Today 2005, 104, 231–237. [Google Scholar] [CrossRef]
- Altinisik, O.; Dogan, M.; Dogu, G. Preparation and Characterization of Palladium-Plated Porous Glass for Hydrogen Enrichment. Catal. Today 2005, 105, 641–646. [Google Scholar] [CrossRef]
- Kleinert, A.; Grubert, G.; Pan, X.; Hamel, C.; Seidel-Morgenstern, A.; Caro, J. Compatibility of Hydrogen Transfer via Pd-Membranes with the Rates of Heterogeneously Catalysed Steam Reforming. Catal. Today 2005, 104, 267–273. [Google Scholar] [CrossRef]
- Basile, A.; Gallucci, F.; Paturzo, L. Hydrogen Production from Methanol by Oxidative Steam Reforming Carried out in a Membrane Reactor. Catal. Today 2005, 104, 251–259. [Google Scholar] [CrossRef]
- Shimpo, Y.; Yamaura, S.; Okouchi, H.; Nishida, M.; Kajita, O.; Kimura, H.; Inoue, A. Hydrogen Permeation Characteristics of Melt-Spun Zr60Al15Co2. 5Ni7. 5Cu15 Glassy Alloy Membrane. J. Alloys Compd. 2004, 372, 197–200. [Google Scholar] [CrossRef]
- Ryi, S.-K.; Park, J.-S.; Kim, S.-H.; Cho, S.-H.; Park, J.-S.; Kim, D.-W. Development of a New Porous Metal Support of Metallic Dense Membrane for Hydrogen Separation. J. Membr. Sci. 2006, 279, 439–445. [Google Scholar] [CrossRef]
- Hoang, H.T.; Tong, H.D.; Gielens, F.C.; Jansen, H.V.; Elwenspoek, M.C. Fabrication and Characterization of Dual Sputtered Pd–Cu Alloy Films for Hydrogen Separation Membranes. Mater. Lett. 2004, 58, 525–528. [Google Scholar] [CrossRef]
- Zhang, Y.; Gwak, J.; Murakoshi, Y.; Ikehara, T.; Maeda, R.; Nishimura, C. Hydrogen Permeation Characteristics of Thin Pd Membrane Prepared by Microfabrication Technology. J. Membr. Sci. 2006, 277, 203–209. [Google Scholar] [CrossRef]
- Hou, K.; Hughes, R. Preparation of Thin and Highly Stable Pd/Ag Composite Membranes and Simulative Analysis of Transfer Resistance for Hydrogen Separation. J. Membr. Sci. 2003, 214, 43–55. [Google Scholar] [CrossRef]
- Tong, J.; Suda, H.; Haraya, K.; Matsumura, Y. A Novel Method for the Preparation of Thin Dense Pd Membrane on Macroporous Stainless Steel Tube Filter. J. Membr. Sci. 2005, 260, 10–18. [Google Scholar] [CrossRef]
- Gao, H.; Lin, J.Y.; Li, Y.; Zhang, B. Electroless Plating Synthesis, Characterization and Permeation Properties of Pd–Cu Membranes Supported on ZrO2 Modified Porous Stainless Steel. J. Membr. Sci. 2005, 265, 142–152. [Google Scholar] [CrossRef]
- Mardilovich, I.P.; Engwall, E.; Ma, Y.H. Dependence of Hydrogen Flux on the Pore Size and Plating Surface Topology of Asymmetric Pd-Porous Stainless Steel Membranes. Desalination 2002, 144, 85–89. [Google Scholar] [CrossRef]
- Huang, T.-C.; Wei, M.-C.; Chen, H.-I. Preparation of Hydrogen-Permselective Palladium–Silver Alloy Composite Membranes by Electroless Co-Deposition. Sep. Purif. Technol. 2003, 32, 239–245. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D.; He, M.; Xu, H.; Li, W. Experimental and Simulation Studies on Concentration Polarization in H2 Enrichment by Highly Permeable and Selective Pd Membranes. J. Membr. Sci. 2006, 274, 83–91. [Google Scholar] [CrossRef]
- Yepes, D.; Cornaglia, L.M.; Irusta, S.; Lombardo, E.A. Different Oxides Used as Diffusion Barriers in Composite Hydrogen Permeable Membranes. J. Membr. Sci. 2006, 274, 92–101. [Google Scholar] [CrossRef]
- Roa, F.; Way, J.D.; McCormick, R.L.; Paglieri, S.N. Preparation and Characterization of Pd–Cu Composite Membranes for Hydrogen Separation. Chem. Eng. J. 2003, 93, 11–22. [Google Scholar] [CrossRef]
- Wu, L.-Q.; Xu, N.; Shi, J. Preparation of a Palladium Composite Membrane by an Improved Electroless Plating Technique. Ind. Eng. Chem. Res. 2000, 39, 342–348. [Google Scholar] [CrossRef]
- Nam, S.-E.; Lee, S.-H.; Lee, K.-H. Preparation of a Palladium Alloy Composite Membrane Supported in a Porous Stainless Steel by Vacuum Electrodeposition. J. Membr. Sci. 1999, 153, 163–173. [Google Scholar] [CrossRef]
- Yan, S.; Maeda, H.; Kusakabe, K.; Morooka, S. Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation. Ind. Eng. Chem. Res. 1994, 33, 616–622. [Google Scholar] [CrossRef]
- Dittmeyer, R.; Höllein, V.; Daub, K. Membrane Reactors for Hydrogenation and Dehydrogenation Processes Based on Supported Palladium. J. Mol. Catal. A: Chem. 2001, 173, 135–184. [Google Scholar] [CrossRef]
- Liang, W.; Hughes, R. The Effect of Diffusion Direction on the Permeation Rate of Hydrogen in Palladium Composite Membranes. Chem. Eng. J. 2005, 112, 81–86. [Google Scholar] [CrossRef]
- Conde, J.J.; Maroño, M.; Sánchez-Hervás, J.M. Pd-Based Membranes for Hydrogen Separation: Review of Alloying Elements and Their Influence on Membrane Properties. Sep. Purif. Rev. 2017, 46, 152–177. [Google Scholar] [CrossRef]
- Sanz, R.; Calles, J.A.; Alique, D.; Furones, L. H2 Production via Water Gas Shift in a Composite Pd Membrane Reactor Prepared by the Pore-Plating Method. Int. J. Hydrog. Energy 2014, 39, 4739–4748. [Google Scholar] [CrossRef]
- Rajlaxmi; Gupta, N.; Behere, R.P.; Layek, R.K.; Kuila, B.K. Polymer Nanocomposite Membranes and Their Application for Flow Catalysis and Photocatalytic Degradation of Organic Pollutants. Mater. Today Chem. 2021, 22, 100600. [Google Scholar] [CrossRef]
- Weber, M.; Drobek, M.; Rebière, B.; Charmette, C.; Cartier, J.; Julbe, A.; Bechelany, M. Hydrogen Selective Palladium-Alumina Composite Membranes Prepared by Atomic Layer Deposition. J. Membr. Sci. 2020, 596, 117701. [Google Scholar] [CrossRef]
- de Nooijer, N.; Arratibel Plazaola, A.; Meléndez Rey, J.; Fernandez, E.; Pacheco Tanaka, D.A.; van Sint Annaland, M.; Gallucci, F. Long-Term Stability of Thin-Film Pd-Based Supported Membranes. Processes 2019, 7, 106. [Google Scholar] [CrossRef]
- Zahid, M.; Rashid, A.; Akram, S.; Rehan, Z.A.; Razzaq, W. A Comprehensive Review on Polymeric Nano-Composite Membranes for Water Treatment. J. Membr. Sci. Technol 2018, 8, 1–20. [Google Scholar] [CrossRef]
- Singh, H.; Saxena, P.; Puri, Y.M. The Manufacturing and Applications of the Porous Metal Membranes: A Critical Review. CIRP J. Manuf. Sci. Technol. 2021, 33, 339–368. [Google Scholar] [CrossRef]
- Liguori, S.; Iulianelli, A.; Dalena, F.; Pinacci, P.; Drago, F.; Broglia, M.; Huang, Y.; Basile, A. Performance and Long-Term Stability of Pd/PSS and Pd/Al2O3 Membranes for Hydrogen Separation. Membranes 2014, 4, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.K.; Lu, Y.K.; Fang, J.S.; Chen, G.S. Ultrasound Assistance in the Sensitization and Activation of Porous Al2O3 Supports for Improving the Hydrogen Separation of Pd/Al2O3 Composite Membranes. Int. J. Hydrog. Energy 2024, 55, 1007–1016. [Google Scholar] [CrossRef]
- Habib, M.A.; Harale, A.; Paglieri, S.; Alrashed, F.S.; Al-Sayoud, A.; Rao, M.V.; Nemitallah, M.A.; Hossain, S.; Hussien, M.; Ali, A.; et al. Palladium-Alloy Membrane Reactors for Fuel Reforming and Hydrogen Production: A Review. Energy Fuels 2021, 35, 5558–5593. [Google Scholar] [CrossRef]
- Zhao, L.; Goldbach, A.; Xu, H. Tailoring Palladium Alloy Membranes for Hydrogen Separation from Sulfur Contaminated Gas Streams. J. Membr. Sci. 2016, 507, 55–62. [Google Scholar] [CrossRef]
- Perović, K.; Morović, S.; Jukić, A.; Košutić, K. Alternative to Conventional Solutions in the Development of Membranes and Hydrogen Evolution Electrocatalysts for Application in Proton Exchange Membrane Water Electrolysis: A Review. Materials 2023, 16, 6319. [Google Scholar] [CrossRef]
- Paglieri, S.N.; Way, J.D. INNOVATIONS IN PALLADIUM MEMBRANE RESEARCH. Sep. Purif. Methods 2002, 31, 1–169. [Google Scholar] [CrossRef]
- Akter, M.; Uddin, M.H.; Tania, I.S. Biocomposites Based on Natural Fibers and Polymers: A Review on Properties and Potential Applications. J. Reinf. Plast. Compos. 2022, 41, 705–742. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Mariam Jacob, M.; Dayanandan, N.; Chinthala, M.; Ponnuchamy, M.; Vo, D.-V.N.; Appunni, S.; Selvan Gajendhran, A. Chitosan/Metal Organic Frameworks for Environmental, Energy, and Bio-Medical Applications: A Review. Mater. Adv. 2023, 4, 5920–5947. [Google Scholar] [CrossRef]
- Alique, D.; Martinez-Diaz, D.; Sanz, R.; Calles, J.A. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production. Membranes 2018, 8, 5. [Google Scholar] [CrossRef]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younes, K.; Al-Shaar, W.; Hochlaf, M.; Fattouche, M.; Belaidi, S.; El Sawda, C. Exploring Principal Component Analysis for Enhanced Insights into Physical and Operational Characteristics of Palladium-Based Membrane Composites: Advancing Hydrogen (H2) Energy Potential to Revolutionize the Energy Sector. Processes 2025, 13, 192. https://doi.org/10.3390/pr13010192
Younes K, Al-Shaar W, Hochlaf M, Fattouche M, Belaidi S, El Sawda C. Exploring Principal Component Analysis for Enhanced Insights into Physical and Operational Characteristics of Palladium-Based Membrane Composites: Advancing Hydrogen (H2) Energy Potential to Revolutionize the Energy Sector. Processes. 2025; 13(1):192. https://doi.org/10.3390/pr13010192
Chicago/Turabian StyleYounes, Khaled, Walid Al-Shaar, Majdi Hochlaf, Maroua Fattouche, Salah Belaidi, and Christina El Sawda. 2025. "Exploring Principal Component Analysis for Enhanced Insights into Physical and Operational Characteristics of Palladium-Based Membrane Composites: Advancing Hydrogen (H2) Energy Potential to Revolutionize the Energy Sector" Processes 13, no. 1: 192. https://doi.org/10.3390/pr13010192
APA StyleYounes, K., Al-Shaar, W., Hochlaf, M., Fattouche, M., Belaidi, S., & El Sawda, C. (2025). Exploring Principal Component Analysis for Enhanced Insights into Physical and Operational Characteristics of Palladium-Based Membrane Composites: Advancing Hydrogen (H2) Energy Potential to Revolutionize the Energy Sector. Processes, 13(1), 192. https://doi.org/10.3390/pr13010192