Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = oxidized pullulan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 15765 KB  
Article
Harnessing Dual Power: Genistein-Loaded Pumpkisomes in Pullulan Microneedles for Potent Antioxidant and Anticancer Therapy Against Ehrlich Ascites Carcinoma and Breast Cancer Cells
by Sammar Fathy Elhabal, Mai S. Shoela, Mohamed Fathi Mohamed Elrefai, Fatma E. Hassan, Suzan Awad AbdelGhany Morsy, Wedian Younis Abdelgawad, Sahar K. Ali, Passant M. Mohie, Amal M. Elsharkawy, Tassneim M. Ewedah, Ibrahim S. Mousa, Marwa A. Fouad, Shady Allam and Ahmed Mohsen Elsaid Hamdan
Pharmaceutics 2026, 18(1), 36; https://doi.org/10.3390/pharmaceutics18010036 - 26 Dec 2025
Viewed by 505
Abstract
Background/Objectives: Breast cancer remains one of the leading causes of cancer-related mortality. Still, limited drug delivery systems for genistein, a powerful natural anticancer agent, draw significant attention. We aimed to develop a co-therapeutic/synergistic dual-compartment system; genistein-loaded pumpkisome nanovesicles (GNS-PKs) incorporated into pullulan microneedle [...] Read more.
Background/Objectives: Breast cancer remains one of the leading causes of cancer-related mortality. Still, limited drug delivery systems for genistein, a powerful natural anticancer agent, draw significant attention. We aimed to develop a co-therapeutic/synergistic dual-compartment system; genistein-loaded pumpkisome nanovesicles (GNS-PKs) incorporated into pullulan microneedle patches (MNs), and to explore its anticancer activity. Methods: GNS-PKs were prepared and characterized for particle size (P.S), polydispersity (PDI), zeta potential (Z.P), encapsulation efficiency (E.E%), and stability. Afterward, they were embedded in pullulan-dissolving microneedle arrays and characterized for release kinetics, mechanical strength, and in vitro cytotoxicity. The in vivo efficacy was evaluated in mice with solid Ehrlich Ascites Carcinoma (EAC), focusing on tumor volume, oxidative stress, inflammatory cytokines, Epidermal Growth Factor (EGFR) expression biomarkers, and histopathological analysis. Results: The optimized nanovesicles had a particle size of 170 nm, a zeta potential of −42 mV, and an entrapment efficiency of up to 92%. Pullulan microneedles demonstrated significantly high mechanical strength and effective deep penetration. In addition to, it markedly decreased MCF-7 cellular viability (IC50 = 3.5 µg/mL). Besides, it had a 76% reduction in tumor volume, significantly increased the antioxidant activity (SOD, CAT, GSH), decreased the levels of inflammatory biomarkers (IL-6, COX-2, NF-κB), and markedly downregulated the EGFR expression (p < 0.0001). Histological study revealed decreased mitotic activity and large tumor cells, with minimal systemic damage. Conclusions: GNS-PKs-pullulan microneedle system offers a hope for an innovative, potent, effective, and non-invasive strategy for breast cancer treatment with high antitumor efficacy. Full article
Show Figures

Graphical abstract

30 pages, 6021 KB  
Article
Encapsulation of Fish Oil in Pullulan/Sodium Caseinate Nanofibers: Fabrication, Characterization, and Oxidative Stability
by Suaad Dabora, Bo Jiang and Khin Su Su Hlaing
Foods 2025, 14(21), 3677; https://doi.org/10.3390/foods14213677 - 28 Oct 2025
Cited by 1 | Viewed by 852
Abstract
This study aims to enhance the oxidative stability of fish oil through encapsulation in pullulan/sodium caseinate (PUL/NaCAS) nanofibers. Electrospinning was employed to produce three formulations: control (0% fish oil) and samples with 5% and 10% fish oil. Characterization of the emulsions showed that [...] Read more.
This study aims to enhance the oxidative stability of fish oil through encapsulation in pullulan/sodium caseinate (PUL/NaCAS) nanofibers. Electrospinning was employed to produce three formulations: control (0% fish oil) and samples with 5% and 10% fish oil. Characterization of the emulsions showed that increasing oil content led to larger droplet size and reduced viscosity. Scanning electron microscopy (SEM) analysis revealed surface imperfections and a gradual increase in fiber diameter with higher oil loading. Fourier transform infrared (FTIR) spectroscopy confirmed molecular interactions, and fibers with 10% fish oil showed a shift toward a more amorphous structure. Fish oil incorporation also enhanced hydrophobicity and thermal stability, as indicated by thermal and wettability measurements. Antioxidant assays include 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and total phenolic content (TPC), which showed the highest bioactivity at 5% fish oil, with a slight decrease at 10%, likely due to structural saturation. Encapsulation at 5% fish oil significantly reduced lipid oxidation during storage (hydroperoxide values decreased from 8.6 to 4.8 mM at 60 °C/15 days), demonstrating the protective effect of the nanofiber matrix. Docking and density functional theory (DFT) analyses confirmed stable DHA/EPA–caseinate interactions and increased electronic stability, supporting the experimental results. Compared with conventional carriers such as spray-dried or maltodextrin-based systems, PUL/NaCAS nanofibers offered superior oxidative stability, bioactivity, and a biodegradable matrix. Overall, the 80PUL:20NaCAS:5% fish oil formulation represents a versatile platform for stabilizing omega-3 oils, with potential applications in food preservation, nutraceutical delivery, and functional packaging. Full article
Show Figures

Figure 1

27 pages, 12372 KB  
Article
A Self-Adhesive Ginsenoside Rk3/Metformin-Loaded Hydrogel Microneedle for Management of Systemic Sclerosis
by Yuanyuan Wang, Caiyun Zhong, Kexin Wang, Shihong Shen and Daidi Fan
Gels 2025, 11(6), 384; https://doi.org/10.3390/gels11060384 - 23 May 2025
Cited by 2 | Viewed by 1553
Abstract
Microcirculation damage, dermal thickening, and difficulty in the spatiotemporal coordination of key platelet factor 4 (CXCL4) and transforming growth factor-β (TGF-β) contribute to the lack of effective treatments for systemic sclerosis (scleroderma, SSc). To address these challenges, we proposed a novel synergistic drug [...] Read more.
Microcirculation damage, dermal thickening, and difficulty in the spatiotemporal coordination of key platelet factor 4 (CXCL4) and transforming growth factor-β (TGF-β) contribute to the lack of effective treatments for systemic sclerosis (scleroderma, SSc). To address these challenges, we proposed a novel synergistic drug combination of ginsenoside Rk3 (CXCL4 regulator) and metformin (Met, TGF-β regulator) based on molecular docking and developed an ultra-long release, dual-target regulation hydrogel microneedle system (Rk3/Met URS MN). The rapidly dissolving tips of this hydrogel microneedle consisted of polyvinyl alcohol and polyvinylpyrrolidone, and were loaded with polydopamine-coated, coordination-induced self-assembled Rk3/Met nanomedicines. These micro-tips could spatiotemporally synchronize transdermal delivery of the hydrophobic Rk3 and hydrophilic Met, providing ultra-long release for up to 10 days with a single administration. The recombinant collagen CF-1552/oxidized pullulan-based (CAOP) hydrogel backing exhibited skin self-adhesiveness and excellent mechanical properties and could perform localized moisture retention and free radical scavenging at the lesion site. In vitro and in vivo efficacy studies, along with bioinformatics analysis of RNA sequencing, demonstrated that the Rk3/Met URS MN achieved immune modulation, anti-inflammatory effects, angiogenesis promotion, and antifibrosis in SSc through synergistic CXCL4/TGF-β dual-target regulation. Notably, on the 10th day, the dermal thickness decreased from 248.97 ± 21.3 μm to 152.7 ± 18.1 μm, with no significant difference from the normal group, indicating its significant potential in clinical applications in SSc. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications)
Show Figures

Graphical abstract

22 pages, 3385 KB  
Article
Development and Characterization of Polymeric Films Loaded with Terbinafine for Fungal Infection Treatment
by Gabriela Biliuta, Simona Petronela Gherman, Raluca Ioana Baron, Alexandra Bargan, Lacramioara Ochiuz, Cristina Gabriela Tuchilus, Adrian Florin Spac and Daniela Elena Zavastin
Polymers 2025, 17(8), 1004; https://doi.org/10.3390/polym17081004 - 8 Apr 2025
Cited by 3 | Viewed by 1561
Abstract
Topical approaches to dermatophytosis have the advantage of targeted therapy and minimal side effects and are patient-friendly. The present study focused on obtaining thin, flexible, and transparent bioadhesive polymeric films loaded with terbinafine hydrochloride (TH), in order to be administered to the skin [...] Read more.
Topical approaches to dermatophytosis have the advantage of targeted therapy and minimal side effects and are patient-friendly. The present study focused on obtaining thin, flexible, and transparent bioadhesive polymeric films loaded with terbinafine hydrochloride (TH), in order to be administered to the skin affected by fungal infection. Polymeric films based on pullulan (P), oxidized pullulan (T-OP), sodium carboxymethylcellulose (NaCMC), and glycerin were obtained by the casting and evaporation technique, and the solubility of the drug was significantly increased by micellar solubilization with Tween-80, thus avoiding the use of organic solvents. Physico-chemical characterization through the FTIR technique and EDX analysis indicates the absence of strong interactions between the drug and the polymer, and the loading efficiency highlights the uniform distribution of the drug. The mechanical properties, bioadhesion, contact angle, and water sorption capacity highlight optimal adhesion parameters on the skin. In vitro studies indicate a prolonged drug release, in the first 300 min, of 80% and 60% for F2_TH and F1_TH, respectively, and the release kinetics follow the Weibull model. Significant antifungal activity was obtained for both polymeric films. The biocompatibility of the ingredients, the gentle technique for obtaining the films, and the results obtained from their analysis represent promise for their applicability in topical antifungal treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

15 pages, 3498 KB  
Article
Transcriptome Analysis of Aureobasidium pullulans YQ65 Grown on Yeast Extract Peptone Glucose and Potato Dextrose Agar Media and Quantification of Their Effects on Pullulan Production
by Wan Wang, Jiyun Zhao, Kai Zhang, Zhengran Wang, Jingqiu Ma, Qian Yang and Congyu Lin
Foods 2024, 13(22), 3619; https://doi.org/10.3390/foods13223619 - 13 Nov 2024
Cited by 3 | Viewed by 2611
Abstract
Pullulan is a high-value polysaccharide produced through the fermentation of Aureobasidium pullulans. It has significant applications in the fields of food, medicine, environmental science, and packaging. However, the yield, molecular weight, and other characteristics of pullulan can vary depending on the fermentation [...] Read more.
Pullulan is a high-value polysaccharide produced through the fermentation of Aureobasidium pullulans. It has significant applications in the fields of food, medicine, environmental science, and packaging. However, the yield, molecular weight, and other characteristics of pullulan can vary depending on the fermentation substrate used. Therefore, it is crucial to analyze the underlying causes of these variations at the molecular level. In this study, we first investigated the morphological differences in A. pullulans YQ65 when cultured in YPD and PDA media. The results indicated that different culture media significantly influence the primary cell morphology of A. pullulans YQ65, which in turn affects the synthesis of secondary metabolites. Subsequently, we employed different culture media to ferment pullulan and examined the variations in pullulan yield, molecular weight, and biomass. Moreover, FTIR and thermodynamic stability tests were conducted to analyze the differences among pullulans across different culture media. Finally, transcriptome analysis revealed that A. pullulans YQ65, when cultured in YPD and PDA media, regulates its growth and metabolism through the expression of key genes that are involved in pathways such as the proteasome, oxidative phosphorylation, metabolism of various secondary metabolites, fatty acid anabolism, carbon metabolism, and amino acid metabolism. The transcriptome results were further validated by assessing the expression of specific genes. This study enhances the understanding of the fermentation differences observed with different substrates in A. pullulans and provides valuable insights for optimizing culture substrates. Additionally, it offers guidance for utilizing agricultural and forestry processing waste, as well as food processing by-products, to produce pullulan cost-effectively in the future. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

27 pages, 1969 KB  
Review
Research Progress on Polysaccharide Composite Films and Coatings with Antioxidant and Antibacterial Ingredients to Extend the Shelf Life of Animal-Derived Meat
by Ming Yuan, Jun Mei and Jing Xie
Coatings 2024, 14(10), 1338; https://doi.org/10.3390/coatings14101338 - 18 Oct 2024
Cited by 5 | Viewed by 3914
Abstract
Animal-derived meat is rich in proteins and other nutrients, but is prone to spoilage during storage, including microbial contamination and fat oxidation. Therefore, there is an urgent need to find effective solutions to extend the shelf life of animal-derived meat. Polysaccharides are natural [...] Read more.
Animal-derived meat is rich in proteins and other nutrients, but is prone to spoilage during storage, including microbial contamination and fat oxidation. Therefore, there is an urgent need to find effective solutions to extend the shelf life of animal-derived meat. Polysaccharides are natural macromolecules containing multi-hydroxyl structures and functional groups, which have good solubility, film-forming properties, etc., and can form edible films. Polysaccharide films can be combined with biopolymers, nanoparticles, and natural active agents to improve their properties and enhance the antioxidant and antimicrobial activities of the films. This review summarizes the various sources of polysaccharides, such as chitosan, hyaluronic acid, sodium alginate, carrageenan, starch, and pullulan polysaccharides and their combination with different substances to extend the shelf life of animal-derived meat. This review may serve as a reference for further development of polysaccharides in animal-derived meat preservation. Full article
(This article belongs to the Special Issue Advanced Coatings and Films for Food Packing and Storage, 2nd Edition)
Show Figures

Figure 1

20 pages, 4941 KB  
Article
Liver-Targeted Nanoparticles Loaded with Cannabidiol Based on Redox Response for Effective Alleviation of Acute Liver Injury
by Xuan Zhang, Xiangzhou Yi, Xia Gao, Yongcheng Li and Xuanri Shen
Foods 2024, 13(15), 2464; https://doi.org/10.3390/foods13152464 - 4 Aug 2024
Cited by 2 | Viewed by 3448
Abstract
The purpose of this work was to construct liver-targeted nanoparticles based on the redox response to effectively deliver cannabidiol (CBD) for the prevention of acute liver injury (ALI). CBD-loaded nanoparticles (CBD NPs) with a particle size of 126.5 ± 1.56 nm were prepared [...] Read more.
The purpose of this work was to construct liver-targeted nanoparticles based on the redox response to effectively deliver cannabidiol (CBD) for the prevention of acute liver injury (ALI). CBD-loaded nanoparticles (CBD NPs) with a particle size of 126.5 ± 1.56 nm were prepared using the polymer DA-PP-LA obtained by grafting pullulan polysaccharide with deoxycholic acid (DA) and α-lipoic acid (α-LA). CBD NPs showed typical redox-response release behavior. Interestingly, CBD NPs exhibited admirable liver targeting ability, significantly accumulated in the liver, and effectively promoted the internalization of CBD in liver cells, thus effectively reducing the H2O2-induced oxidative damage of HepG2 cells and avoiding apoptosis. More importantly, CBD NPs effectively prevented CCl4-induced ALI by protecting liver function, ameliorating oxidative stress levels, inhibiting the production of inflammatory factors, and protecting the liver from histological damage. This study provides a promising strategy for achieving targeted delivery of CBD NPs in the liver, thereby effectively preventing ALI. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

18 pages, 8957 KB  
Article
Formation of Stable Vascular Networks by 3D Coaxial Printing and Schiff-Based Reaction
by Jingxin Shan, Zhiyuan Kong and Xiaohong Wang
Gels 2024, 10(6), 366; https://doi.org/10.3390/gels10060366 - 25 May 2024
Cited by 9 | Viewed by 3382
Abstract
Vascularized organs hold potential for various applications, such as organ transplantation, drug screening, and pathological model establishment. Nevertheless, the in vitro construction of such organs encounters many challenges, including the incorporation of intricate vascular networks, the regulation of blood vessel connectivity, and the [...] Read more.
Vascularized organs hold potential for various applications, such as organ transplantation, drug screening, and pathological model establishment. Nevertheless, the in vitro construction of such organs encounters many challenges, including the incorporation of intricate vascular networks, the regulation of blood vessel connectivity, and the degree of endothelialization within the inner cavities. Natural polymeric hydrogels, such as gelatin and alginate, have been widely used in three-dimensional (3D) bioprinting since 2005. However, a significant disparity exists between the mechanical properties of the hydrogel materials and those of human soft tissues, necessitating the enhancement of their mechanical properties through modifications or crosslinking. In this study, we aim to enhance the structural stability of gelatin–alginate hydrogels by crosslinking gelatin molecules with oxidized pullulan (i.e., a polysaccharide) and alginate molecules with calcium chloride (CaCl2). A continuous small-diameter vascular network with an average outer diameter of 1 mm and an endothelialized inner surface is constructed by printing the cell-laden hydrogels as bioinks using a coaxial 3D bioprinter. The findings demonstrate that the single oxidized pullulan crosslinked gelatin and oxidized pullulan/CaCl2 double-crosslinked gelatin–alginate hydrogels both exhibit a superior structural stability compared to their origins and CaCl2 solely crosslinked gelatin–alginate hydrogels. Moreover, the innovative gelatin and gelatin–alginate hydrogels, which have excellent biocompatibilities and very low prices compared with other hydrogels, can be used directly for tissue/organ construction, tissue/organ repairment, and cell/drug transportation. Full article
(This article belongs to the Special Issue Advances in Biomedical Hydrogels (2nd Edition))
Show Figures

Graphical abstract

15 pages, 3273 KB  
Article
Formation of Microcapsules of Pullulan by Emulsion Template Mechanism: Evaluation as Vitamin C Delivery Systems
by Esther Santamaría, Naroa Lizarreta, Susana Vílchez, Carme González and Alicia Maestro
Gels 2024, 10(6), 355; https://doi.org/10.3390/gels10060355 - 21 May 2024
Cited by 2 | Viewed by 2758
Abstract
Pullulan is a polysaccharide that has attracted the attention of scientists in recent times as a former of edible films. On the other hand, its use for the preparation of hydrogels needs more study, as well as the formation of pullulan microcapsules as [...] Read more.
Pullulan is a polysaccharide that has attracted the attention of scientists in recent times as a former of edible films. On the other hand, its use for the preparation of hydrogels needs more study, as well as the formation of pullulan microcapsules as active ingredient release systems for the food industry. Due to the slow gelation kinetics of pullulan with sodium trimetaphosphate (STMP), capsules cannot be formed through the conventional method of dropping into a solution of the gelling agent, as with other polysaccharides, since the pullulan chains migrate to the medium before the capsules can form by gelation. Pullulan microcapsules have been obtained by using inverse water-in-oil emulsions as templates. The emulsion that acts as a template has been characterized by monitoring its stability and by optical microscopy, and the size of the emulsion droplets has been correlated with the size of the microcapsules obtained, demonstrating that it is a good technique for their production. Although some flocs of droplets form, these remain dispersed during the gelation process and two capsule size distributions are obtained: those of the non-flocculated droplets and the flocculated droplets. The microcapsules have been evaluated as vitamin C release systems, showing zero-order release kinetics for acidic pH and Fickian mechanism for neutral pH. On the other hand, the microcapsules offer good protection of vitamin C against oxidation during an evaluation period of 14 days. Full article
(This article belongs to the Special Issue Food Hydrogels: Synthesis, Characterization and Applications)
Show Figures

Figure 1

26 pages, 5328 KB  
Article
Chitosan–Oxidized Pullulan Hydrogels Loaded with Essential Clove Oil: Synthesis, Characterization, Antioxidant and Antimicrobial Properties
by Dana Mihaela Suflet, Marieta Constantin, Irina Mihaela Pelin, Irina Popescu, Cristina M. Rimbu, Cristina Elena Horhogea and Gheorghe Fundueanu
Gels 2024, 10(4), 227; https://doi.org/10.3390/gels10040227 - 26 Mar 2024
Cited by 27 | Viewed by 5317
Abstract
Emulsion hydrogels are promising materials for encapsulating and stabilizing high amounts of hydrophobic essential oils in hydrophilic matrices. In this work, clove oil-loaded hydrogels (CS/OP-C) are synthesized by combining covalent and physical cross-linking approaches. First, clove oil (CO) was emulsified and stabilized in [...] Read more.
Emulsion hydrogels are promising materials for encapsulating and stabilizing high amounts of hydrophobic essential oils in hydrophilic matrices. In this work, clove oil-loaded hydrogels (CS/OP-C) are synthesized by combining covalent and physical cross-linking approaches. First, clove oil (CO) was emulsified and stabilized in a chitosan (CS) solution, which was further hardened by Schiff base covalent cross-linking with oxidized pullulan (OP). Second, the hydrogels were subjected to freeze–thaw cycles and, as a result, the clove oil was stabilized in physically cross-linked polymeric walls. Moreover, due to cryogelation, the obtained hydrogels exhibited sponge-like porous interconnected morphology (160–250 µm). By varying the clove oil content in the starting emulsion and the degree of cross-linking, the hydrogels displayed a high water retention capacity (swelling ratios between 1300 and 2000%), excellent elastic properties with fast shape recovery (20 s) after 70% compression, and controlled in vitro clove oil release in simulated skin conditions for 360 h. Furthermore, the prepared clove oil-loaded hydrogels had a strong scavenging activity of 83% and antibacterial and antifungal properties, showing a bacteriostatic effect after 48 and 72 h against S. aureus and E. coli. Our results recommend the new clove oil-embedded emulsion hydrogels as promising future materials for application as wound dressings. Full article
(This article belongs to the Special Issue Gel-Based Materials: Preparations and Characterization (2nd Edition))
Show Figures

Graphical abstract

15 pages, 1327 KB  
Article
Sophy β-Glucan from the Black Yeast Aureobasidium pullulans Attenuates Salmonella-Induced Intestinal Epithelial Barrier Injury in Caco-2 Cell Monolayers via Exerting Anti-Oxidant and Anti-Inflammatory Properties
by Fangshen Guo, Hongbin Liu, Xiaomin Li, Zeqiong Hu, Jia Huang, Ruichen Bi, Waseem Abbas, Yuming Guo and Zhong Wang
Antioxidants 2024, 13(1), 48; https://doi.org/10.3390/antiox13010048 - 28 Dec 2023
Cited by 7 | Viewed by 2889
Abstract
The zoonotic pathogens Salmonella spp. infection disrupted intestinal epithelial barrier function and induced local gastroenteritis and systemic inflammation in humans and animals. Sophy β-glucan, a water-soluble β-1,3/1,6-glucan synthesized from the black yeast Aureobasidium pullulans, was reported with immune-regulatory, anti-inflammatory, and anti-infective properties. [...] Read more.
The zoonotic pathogens Salmonella spp. infection disrupted intestinal epithelial barrier function and induced local gastroenteritis and systemic inflammation in humans and animals. Sophy β-glucan, a water-soluble β-1,3/1,6-glucan synthesized from the black yeast Aureobasidium pullulans, was reported with immune-regulatory, anti-inflammatory, and anti-infective properties. Here, we investigated the protective role of sophy β-glucan on Salmonella enterica serotype Enteritidis (SE)-challenged Caco-2 cells monolayer and explored underlying action mechanisms. The results showed that pretreatment with sophy β-glucan blocked the adhesion and invasion of SE onto Caco-2 cells along with alleviating SE-induced epithelial barrier injury, as evidenced by increased trans-epithelial electrical resistance, decreased fluorescently-labeled dextran 4 flux permeability, and an enhanced Claudin-4 protein level in the SE-stimulated Caco-2 cell monolayer. Moreover, treatment with β-glucan down-regulated pro-inflammatory factors (IL-1β, IL-8, and TNF-α) while up-regulating anti-inflammatory factors IL-10 at mRNA and protein levels in SE-infected Caco-2 cells. Furthermore, sophy β-glucan strengthened the anti-oxidative capacity of Caco-2 monolayers cells by elevating T-AOC and SOD activity and inhibiting MDA production defending SE. Together, our data showed that sophy β-glucan could prevent intestinal epithelial injury induced by SE, possibly by exerting anti-oxidant and anti-inflammatory properties, and it might be helpful for controlling SE infection. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

16 pages, 2186 KB  
Article
Pullulan-Graft-Polyoxazoline: Approaches from Chemistry and Physics
by Ivan M. Zorin, Petr A. Fetin, Nina G. Mikusheva, Alexey A. Lezov, Igor Perevyazko, Alexander S. Gubarev, Anna N. Podsevalnikova, Sergey G. Polushin and Nikolai V. Tsvetkov
Molecules 2024, 29(1), 26; https://doi.org/10.3390/molecules29010026 - 19 Dec 2023
Cited by 2 | Viewed by 2064
Abstract
An approach to the preparation of pullulan-graft-poly(2-methyl-2-oxazoline)s based on Cu-catalyzed azide–alkyne cycloaddition with polyoxazoline-azide was applied. All of the obtained polymers were characterized through classical molecular hydrodynamic methods and NMR. The formation of graft copolymers was accomplished by oxidative degradation of pullulan chains. [...] Read more.
An approach to the preparation of pullulan-graft-poly(2-methyl-2-oxazoline)s based on Cu-catalyzed azide–alkyne cycloaddition with polyoxazoline-azide was applied. All of the obtained polymers were characterized through classical molecular hydrodynamic methods and NMR. The formation of graft copolymers was accomplished by oxidative degradation of pullulan chains. Nevertheless, graft copolymers were obtained as uniform products with varied side chain lengths and degrees of substitution. Full article
(This article belongs to the Special Issue Polysaccharide-Based Biopolymer: Recent Development and Applications)
Show Figures

Figure 1

27 pages, 6772 KB  
Article
Tri-Component Hydrogel as Template for Nanocrystalline Hydroxyapatite Deposition Using Alternate Soaking Method for Bone Tissue Engineering Applications
by Irina Mihaela Pelin, Irina Popescu, Manuela Calin, Daniela Rebleanu, Geanina Voicu, Daniela Ionita, Marius-Mihai Zaharia, Marieta Constantin and Gheorghe Fundueanu
Gels 2023, 9(11), 905; https://doi.org/10.3390/gels9110905 - 16 Nov 2023
Cited by 6 | Viewed by 3137
Abstract
Composite hydrogels containing apatite-like particles can act as scaffolds for osteoblast proliferation, with applications in bone tissue engineering. In this respect, porous biocompatible hydrogels were obtained from chitosan, oxidized pullulan, and PVA in different ratios. The stability of the hydrogels was ensured both [...] Read more.
Composite hydrogels containing apatite-like particles can act as scaffolds for osteoblast proliferation, with applications in bone tissue engineering. In this respect, porous biocompatible hydrogels were obtained from chitosan, oxidized pullulan, and PVA in different ratios. The stability of the hydrogels was ensured both by covalent bonds between aldehyde groups of oxidized pullulan and free amino groups of chitosan, and by physical bonds formed during freeze–thaw cycles and lyophilization. The deposition of calcium phosphates was performed by alternate soaking of the porous hydrogels into solutions with calcium and phosphate ions, assuring a basic pH required for hydroxyapatite formation. The mineralized hydrogels were characterized using FTIR spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis, showing that inorganic particles containing between 80 and 92% hydroxyapatite were deposited in a high amount on the pore walls of the polymeric matrix. The composition of the organic matrix influenced the crystallization of calcium phosphates and the mechanical properties of the composite hydrogels. In vitro biological tests showed that mineralized hydrogels support the proliferation of MG-63 osteoblast-like cells to a greater extent compared to pristine hydrogels. Full article
(This article belongs to the Special Issue Innovative Biopolymer-Based Hydrogels (2nd Edition))
Show Figures

Graphical abstract

16 pages, 4431 KB  
Article
Preparation and Characterization of Eugenol Incorporated Pullulan-Gelatin Based Edible Film of Pickering Emulsion and Its Application in Chilled Beef Preservation
by Zhi-Gang Ding, Yi Shen, Fei Hu, Xiu-Xiu Zhang, Kiran Thakur, Mohammad Rizwan Khan and Zhao-Jun Wei
Molecules 2023, 28(19), 6833; https://doi.org/10.3390/molecules28196833 - 27 Sep 2023
Cited by 14 | Viewed by 3014
Abstract
The purpose of this study was to develop a composite film composed of eugenol Pickering emulsion and pullulan–gelatin, and to evaluate its preservation effect on chilled beef. The prepared composite film was comprehensively evaluated in terms of the stability of emulsion, the physical [...] Read more.
The purpose of this study was to develop a composite film composed of eugenol Pickering emulsion and pullulan–gelatin, and to evaluate its preservation effect on chilled beef. The prepared composite film was comprehensively evaluated in terms of the stability of emulsion, the physical properties of the film, and an analysis of freshness preservation for chilled beef. The emulsion size (296.0 ± 10.2 nm), polydispersity index (0.457 ± 0.039), and potential (20.1 ± 0.9 mV) proved the success of emulsion. At the same time, the films displayed good mechanical and barrier properties. The index of beef preservation also indicated that eugenol was a better active ingredient than clove essence oil, which led to the rise of potential of hydrogen, chroma and water content, and effectively inhibited microbial propagation, protein degradation and lipid oxidation. These results suggest that the prepared composites can be used as promising materials for chilled beef preservation. Full article
Show Figures

Figure 1

22 pages, 700 KB  
Review
Stabilization of Essential Oil: Polysaccharide-Based Drug Delivery System with Plant-like Structure Based on Biomimetic Concept
by Xue-Yee Lim, Jing Li, Hong-Mei Yin, Mu He, Ling Li and Tong Zhang
Polymers 2023, 15(16), 3338; https://doi.org/10.3390/polym15163338 - 8 Aug 2023
Cited by 16 | Viewed by 3775
Abstract
Essential oils (EOs) have stability problems, including volatility, oxidation, photosensitivity, heat sensitivity, humidity sensitivity, pH sensitivity, and ion sensitivity. A drug delivery system is an effective way to stabilize EOs, especially due to the protective effect of polymeric drug carriers. Polysaccharides are frequently [...] Read more.
Essential oils (EOs) have stability problems, including volatility, oxidation, photosensitivity, heat sensitivity, humidity sensitivity, pH sensitivity, and ion sensitivity. A drug delivery system is an effective way to stabilize EOs, especially due to the protective effect of polymeric drug carriers. Polysaccharides are frequently employed as drug carrier materials because they are highly safe, come in a variety of forms, and have plentiful sources. Interestingly, the EO drug delivery system is based on the biomimetic concept since it corresponds to the structure of plant tissue. In this paper, we associate the biomimetic plant-like structures of the EO drug delivery system with the natural forms of EO in plant tissues, and summarize the characteristics of polysaccharide-based drug carriers for EO protection. Thus, we highlight the research progress on polysaccharides and their modified materials, including gum arabic, starch, cellulose, chitosan, sodium alginate, pectin, and pullulan, and their use as biomimetic drug carriers for EO preparations due to their abilities and potential for EO protection. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery)
Show Figures

Figure 1

Back to TopTop