Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,794)

Search Parameters:
Keywords = oscillation indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3795 KiB  
Article
An Improved Galerkin Framework for Solving Unsteady High-Reynolds Navier–Stokes Equations
by Jinlin Tang and Qiang Ma
Appl. Sci. 2025, 15(15), 8606; https://doi.org/10.3390/app15158606 (registering DOI) - 3 Aug 2025
Viewed by 133
Abstract
The numerical simulation of unsteady, high-Reynolds-number incompressible flows governed by the Navier–Stokes (NS) equations presents significant challenges in computational fluid dynamics, primarily concerning numerical stability and computational efficiency. Standard Galerkin finite element methods often suffer from non-physical oscillations in convection-dominated regimes, while the [...] Read more.
The numerical simulation of unsteady, high-Reynolds-number incompressible flows governed by the Navier–Stokes (NS) equations presents significant challenges in computational fluid dynamics, primarily concerning numerical stability and computational efficiency. Standard Galerkin finite element methods often suffer from non-physical oscillations in convection-dominated regimes, while the multiscale nature of these flows demands prohibitively high computational resources for uniformly refined meshes. This paper proposes an improved Galerkin framework that synergistically integrates a Variational Multiscale Stabilization (VMS) method with an adaptive mesh refinement (AMR) strategy to overcome these dual challenges. Based on the Ritz–Galerkin formulation with the stable Taylor–Hood (P2P1) element, a VMS term is introduced, derived from a generalized θ-scheme. This explicitly constructs a subgrid-scale model to effectively suppress numerical oscillations without introducing excessive artificial diffusion. To enhance computational efficiency, a novel a posteriori error estimator is developed based on dual residuals. This estimator provides the robust and accurate localization of numerical errors by dynamically weighting the momentum and continuity residuals within each element, as well as the flux jumps across element boundaries. This error indicator guides an AMR algorithm that combines longest-edge bisection with local Delaunay re-triangulation, ensuring optimal mesh adaptation to complex flow features such as boundary layers and vortices. Furthermore, the stability of the Taylor–Hood element, essential for stable velocity–pressure coupling, is preserved within this integrated framework. Numerical experiments are presented to verify the effectiveness of the proposed method, demonstrating its ability to achieve stable, high-fidelity solutions on adaptively refined grids with a substantial reduction in computational cost. Full article
Show Figures

Figure 1

20 pages, 3035 KiB  
Article
Study of Taconis-Based Cryogenic Thermoacoustic Engine with Hydrogen and Helium
by Matthew P. Shenton, Jacob W. Leachman and Konstantin I. Matveev
Energies 2025, 18(15), 4114; https://doi.org/10.3390/en18154114 - 2 Aug 2025
Viewed by 249
Abstract
Taconis oscillations represent spontaneous excitation of acoustic modes in tubes with large temperature gradients in cryogenic systems. In this study, Taconis oscillations in hydrogen and helium systems are enhanced with a porous material resulting in a standing-wave thermoacoustic engine. A theoretical model is [...] Read more.
Taconis oscillations represent spontaneous excitation of acoustic modes in tubes with large temperature gradients in cryogenic systems. In this study, Taconis oscillations in hydrogen and helium systems are enhanced with a porous material resulting in a standing-wave thermoacoustic engine. A theoretical model is developed using the thermoacoustic software DeltaEC, version v6.4b2.7, to predict system performance, and an experimental apparatus is constructed for engine characterization. The low-amplitude thermoacoustic model predicts the pressure amplitude, frequency, and temperature gradient required for excitation of the standing-wave system. Experimental measurements, including the onset temperature ratio, acoustic pressure amplitudes, and frequencies, are recorded for different stack materials and geometries. The findings indicate that, independent of stack, hydrogen systems excite at smaller temperature differentials than helium (because of different properties such as lower viscosity for hydrogen), and the stack geometry and material affect the onset temperature ratio. However, pressure amplitude in the excited states varies minimally. Initial measurements are also conducted in a cooling setup with an added regenerator. The configuration with stainless-steel mesh screens produces a small cryogenic refrigeration effect with a decrease in temperature of about 1 K. The reported characterization of a Taconis-based thermoacoustic engine can be useful for the development of novel thermal management systems for cryogenic storage vessels, including refrigeration and pressurization. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

23 pages, 6377 KiB  
Article
Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
by Chuandong Liu, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong and Bin Li
Agronomy 2025, 15(8), 1872; https://doi.org/10.3390/agronomy15081872 - 1 Aug 2025
Viewed by 134
Abstract
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed [...] Read more.
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed was systematically investigated, and a predictive model (R2 = 0.959) was also established by using Box–Behnken design response surface methodology (BBD-RSM). The results show that the collision restitution coefficient varies in the range of 0.539–0.649, with the key influencing factors ranked as follows: moisture content (Mc) > material layer thickness (L) > drop height (H). The EDEM simulation methodology was adopted to validate the experimental results, and the results show that there is a minimal relative error (−1% < δ < 1%) between the measured and simulated rebound heights, indicating that the established model shows a reliable prediction performance. Moreover, by comprehensively analyzing stress, strain, and energy during the collision process between rapeseed and Q235 steel, it can be concluded that the process can be divided into five stages—free fall, collision compression, collision recovery, rebound oscillation, and rebound stabilization. The maximum stress (1.19 × 10−2 MPa) and strain (6.43 × 10−6 mm) were observed at the beginning of the collision recovery stage, which can provide some theoretical and practical basis for optimizing and designing rapeseed machines, thus achieving the goals of precise control, harvest loss reduction, and increased yields. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

19 pages, 5698 KiB  
Article
Enhancing Iced 8-Bundled Conductor Galloping Prediction for UHV Transmission Line Infrastructure Through High-Fidelity Aerodynamic Modeling
by Bolin Zhong, Mengqi Cai, Maoming Hu and Jiahao Sun
Infrastructures 2025, 10(8), 201; https://doi.org/10.3390/infrastructures10080201 - 1 Aug 2025
Viewed by 99
Abstract
Icing on eight-bundled conductors can significantly alter their aerodynamic behavior, potentially leading to structural instabilities such as galloping. This study employed wind tunnel experiments and numerical simulations to analyze the aerodynamic parameters of each iced conductor across various angles of attack. The simulations [...] Read more.
Icing on eight-bundled conductors can significantly alter their aerodynamic behavior, potentially leading to structural instabilities such as galloping. This study employed wind tunnel experiments and numerical simulations to analyze the aerodynamic parameters of each iced conductor across various angles of attack. The simulations incorporated detailed stranded conductor geometries to assess their influence on aerodynamic accuracy. Incorporating stranded geometry in simulations reduced average errors in lift and drag coefficients by 45–50% compared to smooth models. The Den Hartog coefficient prediction error decreased from 15.6% to 3.9%, indicating improved reliability in oscillation predictions. Additionally, conductors with larger windward areas exhibited more pronounced wake effects, with lower sub-conductors experiencing greater wake interference than upper ones. The above results illustrate that explicit modeling of stranded conductor surfaces enhances the precision of aerodynamic simulations, providing a more accurate framework for predicting icing-induced galloping in multi-bundled conductors. Full article
Show Figures

Figure 1

13 pages, 2254 KiB  
Article
Mechanistic Study and Regulatory Effects of Chloride Ions on the B-Z Oscillating Reaction
by Lidan Niu, Lijuan Zhou, Qihui Wang and Wenjing Yang
Molecules 2025, 30(15), 3210; https://doi.org/10.3390/molecules30153210 - 31 Jul 2025
Viewed by 179
Abstract
This work investigated the mechanistic role of chloride ions (Cl) in the Belousov–Zhabotinsky (B-Z) oscillating reaction. We conducted a multivariate statistical analysis of the B-Z response, established a quadratic polynomial regression model, and determined the contributions of the experimental parameters to [...] Read more.
This work investigated the mechanistic role of chloride ions (Cl) in the Belousov–Zhabotinsky (B-Z) oscillating reaction. We conducted a multivariate statistical analysis of the B-Z response, established a quadratic polynomial regression model, and determined the contributions of the experimental parameters to the induction time. The results indicate that the relationship between the experimental parameters and the induction time is often nonmonotonic, exhibiting secondary dependence. Then, we studied the influence mechanism by which Cl affects the B-Z reaction system. Both experimental and theoretical studies indicate that as the concentration of Cl increases, the system becomes more active as the activation energy increases. When the Cl concentration is less than 1 mmol/L, the induced apparent activation energy remains relatively constant. However, as the Cl concentration increases from 1.00 mmol/L to 2.00 mmol/L, the induced apparent activation energy increases rapidly from 50 kJ/mol to 120 kJ/mol, which severely hinders the induction period and then increases the induction time. Full article
Show Figures

Figure 1

8 pages, 1177 KiB  
Proceeding Paper
Quadruped Robot Locomotion Based on Deep Learning Rules
by Pedro Escudero-Villa, Gustavo Danilo Machado-Merino and Jenny Paredes-Fierro
Eng. Proc. 2025, 87(1), 100; https://doi.org/10.3390/engproc2025087100 - 30 Jul 2025
Viewed by 184
Abstract
This research presents a reinforcement learning framework for stable quadruped locomotion using Proximal Policy Optimization (PPO). We address critical challenges in articulated robot control—including mechanical complexity and trajectory instability by implementing a 12-degree-of-freedom model in PyBullet simulation. Our approach features three key innovations: [...] Read more.
This research presents a reinforcement learning framework for stable quadruped locomotion using Proximal Policy Optimization (PPO). We address critical challenges in articulated robot control—including mechanical complexity and trajectory instability by implementing a 12-degree-of-freedom model in PyBullet simulation. Our approach features three key innovations: (1) a hybrid reward function (Rt=0.72 · eΔCoGt + 0.25 · vt  0.11 · τt) explicitly prioritizing center-of-gravity (CoG) stabilization; (2) rigorous benchmarking demonstrating Adam’s superiority over SGD for policy convergence (68% lower reward variance); and (3) a four-metric evaluation protocol quantifying locomotion quality through reward progression, CoG deviation, policy loss, and KL-divergence penalties. Experimental results confirm an 87.5% reduction in vertical CoG oscillation (from 2.0″ to 0.25″) across 1 million training steps. Policy optimization achieved −6.2 × 10−4 loss with KL penalties converging to 0.13, indicating stable gait generation. The framework’s efficacy is further validated by consistent CoG stabilization during deployment, demonstrating potential for real-world applications requiring robust terrain adaptation. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

28 pages, 11176 KiB  
Article
Robust Discontinuity Indicators for High-Order Reconstruction of Piecewise Smooth Functions
by Yipeng Li, Qiao Chen and Xiangmin Jiao
Mathematics 2025, 13(15), 2442; https://doi.org/10.3390/math13152442 - 29 Jul 2025
Viewed by 108
Abstract
The accurate reconstruction of piecewise continuous functions on meshes is challenging due to potential spurious oscillations—namely the Gibbs phenomenon—especially for high-order methods. This paper introduces the Robust Discontinuity Indicators (RDI) method, a novel technique for constructing discontinuity indicators. These indicators [...] Read more.
The accurate reconstruction of piecewise continuous functions on meshes is challenging due to potential spurious oscillations—namely the Gibbs phenomenon—especially for high-order methods. This paper introduces the Robust Discontinuity Indicators (RDI) method, a novel technique for constructing discontinuity indicators. These indicators can effectively identify both C0 and C1 discontinuities in a single pass using a new comprehensive theoretical analysis combined with cell-based overshoot–undershoot indicators and node-based oscillation indicators. In addition to detecting discontinuities, these indicator values can also facilitate the construction of adaptive weighting schemes to mitigate the Gibbs phenomenon. Due to its flexibility, RDI can accommodate complex geometries and applies to nonuniform unstructured meshes and general surfaces, broadening its utility. Through experiments, we show that RDI can accurately capture discontinuities while producing fewer false positives than two-pass methods. By providing a more rigorous method for discontinuity detection, RDI has the potential to offer significant improvements in computational simulations and data remapping. Full article
Show Figures

Figure 1

46 pages, 7184 KiB  
Article
Climate in Europe and Africa Sequentially Shapes the Spring Passage of Long-Distance Migrants at the Baltic Coast in Europe
by Magdalena Remisiewicz and Les G. Underhill
Diversity 2025, 17(8), 528; https://doi.org/10.3390/d17080528 - 29 Jul 2025
Viewed by 285
Abstract
Since the 1980s, earlier European springs have led to the earlier arrival of migrant passerines. We predict that arrival is related to a suite of climate indices operating during the annual cycle (breeding, autumn migration, wintering, spring migration) in Europe and Africa over [...] Read more.
Since the 1980s, earlier European springs have led to the earlier arrival of migrant passerines. We predict that arrival is related to a suite of climate indices operating during the annual cycle (breeding, autumn migration, wintering, spring migration) in Europe and Africa over the year preceding arrival. The climate variables include the Indian Ocean Dipole (IOD), Southern Oscillation Index (SOI), and North Atlantic Oscillation (NAO). Furthermore, because migrants arrive sequentially from different wintering areas across Africa, we predict that relationships with climate variables operating in different parts of Africa will change within the season. We tested this using daily ringing data at Bukowo, a spring stopover site on the Baltic coast. We calculated an Annual Anomaly (AA) of spring passage (26 March–15 May, 1982–2024) for four long-distance migrants (Blackcap, Lesser Whitethroat, Willow Warbler, Chiffchaff). We decomposed the anomaly in two ways: into three independent main periods and nine overlapping periods. We used multiple regression to explore the relationships of the arrival of these species at Bukowo. We found sequential effects of climate indices. Bukowo is thus at a crossroads of populations arriving from different wintering regions. The drivers of phenological shifts in passage of wide-ranging species are related to climate indices encountered during breeding, wintering, and migration. Full article
Show Figures

Figure 1

15 pages, 1551 KiB  
Article
Migration Safety of Perfluoroalkyl Substances from Sugarcane Pulp Tableware: Residue Analysis and Takeout Simulation Study
by Ling Chen, Changying Hu and Zhiwei Wang
Molecules 2025, 30(15), 3166; https://doi.org/10.3390/molecules30153166 - 29 Jul 2025
Viewed by 262
Abstract
The rapid growth of plant-based biodegradable tableware, driven by plastic restrictions, necessitates rigorous safety assessments of potential chemical contaminants like per- and polyfluoroalkyl substances (PFASs). This study comprehensively evaluated PFAS contamination risks in commercial sugarcane pulp tableware, focusing on the residues of five [...] Read more.
The rapid growth of plant-based biodegradable tableware, driven by plastic restrictions, necessitates rigorous safety assessments of potential chemical contaminants like per- and polyfluoroalkyl substances (PFASs). This study comprehensively evaluated PFAS contamination risks in commercial sugarcane pulp tableware, focusing on the residues of five target PFASs (PFOA, PFOS, PFNA, PFHxA, PFPeA) and their migration behavior under simulated use and takeout conditions. An analysis of 22 samples revealed elevated levels of total fluorine (TF: 33.7–163.6 mg/kg) exceeding the EU limit (50 mg/kg) in 31% of products. While sporadic PFOA residues surpassed the EU single compound limit (0.025 mg/kg) in 9% of samples (16.1–25.5 μg/kg), the levels of extractable organic fluorine (EOF: 4.9–17.4 mg/kg) and the low EOF/TF ratio (3.19–10.4%) indicated inorganic fluorides as the primary TF source. Critically, the migration of all target PFASs into food simulants (water, 4% acetic acid, 50% ethanol, 95% ethanol) under standardized use conditions was minimal (PFOA: 0.52–0.70 μg/kg; PFPeA: 0.54–0.63 μg/kg; others < LOQ). Even under aggressive simulated takeout scenarios (50 °C oscillation for 12 h + 12 h storage at 25 °C), PFOA migration reached only 0.99 ± 0.01 μg/kg in 95% ethanol. All migrated levels were substantially (>15-fold) below typical safety thresholds (e.g., 0.01 mg/kg). These findings demonstrate that, despite concerning residue levels in some products pointing to manufacturing contamination sources, migration during typical and even extended use scenarios poses negligible immediate consumer risk. This study underscores the need for stricter quality control targeting PFOA and inorganic fluoride inputs in sugarcane pulp tableware production. Full article
Show Figures

Figure 1

14 pages, 1855 KiB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Viewed by 216
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

21 pages, 11260 KiB  
Article
GaN HEMT Oscillators with Buffers
by Sheng-Lyang Jang, Ching-Yen Huang, Tzu Chin Yang and Chien-Tang Lu
Micromachines 2025, 16(8), 869; https://doi.org/10.3390/mi16080869 - 28 Jul 2025
Viewed by 250
Abstract
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability [...] Read more.
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability due to the self-heating effect and lattice mismatch between the SiC substrate and the GaN. Depletion-mode GaN HEMTs are utilized for radio frequency applications, and this work investigates three wide-bandgap (WBG) GaN HEMT fixed-frequency oscillators with output buffers. The first GaN-on-SiC HEMT oscillator consists of an HEMT amplifier with an LC feedback network. With the supply voltage of 0.8 V, the single-ended GaN oscillator can generate a signal at 8.85 GHz, and it also supplies output power of 2.4 dBm with a buffer supply of 3.0 V. At 1 MHz frequency offset from the carrier, the phase noise is −124.8 dBc/Hz, and the figure of merit (FOM) of the oscillator is −199.8 dBc/Hz. After the previous study, the hot-carrier stressed RF performance of the GaN oscillator is studied, and the oscillator was subject to a drain supply of 8 V for a stressing step time equal to 30 min and measured at the supply voltage of 0.8 V after the step operation for performance benchmark. Stress study indicates the power oscillator with buffer is a good structure for a reliable structure by operating the oscillator core at low supply and the buffer at high supply. The second balanced oscillator can generate a differential signal. The feedback filter consists of a left-handed transmission-line LC network by cascading three unit cells. At a 1 MHz frequency offset from the carrier of 3.818 GHz, the phase noise is −131.73 dBc/Hz, and the FOM of the 2nd oscillator is −188.4 dBc/Hz. High supply voltage operation shows phase noise degradation. The third GaN cross-coupled VCO uses 8-shaped inductors. The VCO uses a pair of drain inductors to improve the Q-factor of the LC tank, and it uses 8-shaped inductors for magnetic coupling noise suppression. At the VCO-core supply of 1.3 V and high buffer supply, the FOM at 6.397 GHz is −190.09 dBc/Hz. This work enhances the design techniques for reliable GaN HEMT oscillators and knowledge to design high-performance circuits. Full article
(This article belongs to the Special Issue Research Trends of RF Power Devices)
Show Figures

Figure 1

55 pages, 1629 KiB  
Review
Serotonin Modulation of Dorsoventral Hippocampus in Physiology and Schizophrenia
by Charalampos L. Kandilakis and Costas Papatheodoropoulos
Int. J. Mol. Sci. 2025, 26(15), 7253; https://doi.org/10.3390/ijms26157253 - 27 Jul 2025
Viewed by 778
Abstract
The serotonergic system, originating in the raphe nuclei, differentially modulates the dorsal and ventral hippocampus, which are implicated in cognition and emotion, respectively. Emerging evidence from rodent models (e.g., neonatal ventral hippocampal lesion, pharmacological NMDA receptor antagonist exposure) and human postmortem studies indicates [...] Read more.
The serotonergic system, originating in the raphe nuclei, differentially modulates the dorsal and ventral hippocampus, which are implicated in cognition and emotion, respectively. Emerging evidence from rodent models (e.g., neonatal ventral hippocampal lesion, pharmacological NMDA receptor antagonist exposure) and human postmortem studies indicates dorsoventral serotonergic alterations in schizophrenia. These data include elevated 5-HT1A receptor expression in the dorsal hippocampus, linking serotonergic hypofunction to cognitive deficits, and hyperactive 5-HT2A/3 receptor signaling and denser serotonergic innervation in the ventral hippocampus driving local hyperexcitability associated with psychosis and stress responsivity. These dorsoventral serotonergic alterations are shown to disrupt the excitation–inhibition balance, impair synaptic plasticity, and disturb network oscillations, as established by in vivo electrophysiology and functional imaging. Synthesizing these multi-level findings, we propose a novel “dorsoventral serotonin imbalance” model of schizophrenia, in which ventral hyperactivation predominantly contributes to psychotic symptoms and dorsal hypoactivity underlies cognitive deficits. We further highlight promising preclinical evidence that selective targeting of region- and receptor-specific targeting, using both pharmacological agents and emerging delivery technologies, may offer novel therapeutic opportunities enabling symptom-specific strategies in schizophrenia. Full article
Show Figures

Figure 1

29 pages, 16859 KiB  
Article
Coastal Geoheritage and Sustainability: A Study in the Low Coast of Costa Branca, Rio Grande do Norte, Brazil
by Fernando Eduardo Borges da Silva, Matheus Dantas das Chagas, Marco Túlio Mendonça Diniz and Paulo Pereira
Sustainability 2025, 17(15), 6709; https://doi.org/10.3390/su17156709 - 23 Jul 2025
Viewed by 423
Abstract
This study assesses the risk of geoheritage degradation along a low-lying coastal stretch Okin the municipalities of Macau, Guamaré, and Galinhos, located in the central portion of Rio Grande do Norte’s northern coastline, Brazil. Twelve geosites, inventoried based on their scientific value, susceptibility [...] Read more.
This study assesses the risk of geoheritage degradation along a low-lying coastal stretch Okin the municipalities of Macau, Guamaré, and Galinhos, located in the central portion of Rio Grande do Norte’s northern coastline, Brazil. Twelve geosites, inventoried based on their scientific value, susceptibility to degradation, and representation of diverse coastal processes and landforms, were numerically assessed for their degradation risk. The methodology comprised 11 sub-criteria grouped into three main criteria: natural vulnerability, anthropogenic vulnerability, and public use. The results indicate that all 12 geosites in the study area are subject to moderate to high degradation risk, with the highest levels observed in those with the most evident signs of human use and intervention. To mitigate these impacts, the implementation of access restrictions or protective measures by local authorities is recommended. Furthermore, raising awareness among local communities about the environmental consequences of their activities and the geosites’ role in promoting sustainability is essential. Given the region’s heightened vulnerability to sea level oscillations, future assessments should incorporate climate change implications into the assessment criteria. Full article
Show Figures

Figure 1

17 pages, 7068 KiB  
Article
Effect of Ni-Based Buttering on the Microstructure and Mechanical Properties of a Bimetallic API 5L X-52/AISI 316L-Si Welded Joint
by Luis Ángel Lázaro-Lobato, Gildardo Gutiérrez-Vargas, Francisco Fernando Curiel-López, Víctor Hugo López-Morelos, María del Carmen Ramírez-López, Julio Cesar Verduzco-Juárez and José Jaime Taha-Tijerina
Metals 2025, 15(8), 824; https://doi.org/10.3390/met15080824 - 23 Jul 2025
Viewed by 307
Abstract
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic [...] Read more.
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic plates. After the root welding pass, buttering with an ERNiCrMo-3 filler wire was performed and multi-pass welding followed using an ER70S-6 electrode. The results obtained by optical and scanning electron microscopy indicated that the shielding atmosphere, welding parameters, and electric arc oscillation enabled good arc stability and proper molten metal transfer from the filler wire to the sidewalls of the joint during welding. Vickers microhardness (HV) and tensile tests were performed for correlating microstructural and mechanical properties. The mixture of ERNiCrMo-3 and ER70S-6 filler materials presented fine interlocked grains with a honeycomb network shape of the Ni–Fe mixture with Ni-rich grain boundaries and a cellular-dendritic and equiaxed solidification. Variation of microhardness at the weld metal (WM) in the middle zone of the bimetallic welded joints (BWJ) is associated with the manipulation of the welding parameters, promoting precipitation of carbides in the austenitic matrix and formation of martensite during solidification of the weld pool and cooling of the WM. The BWJ exhibited a mechanical strength of 380 and 520 MPa for the yield stress and ultimate tensile strength, respectively. These values are close to those of the as-received API 5L X-52 steel. Full article
Show Figures

Figure 1

16 pages, 2088 KiB  
Article
Research on the Composite Scattering Characteristics of a Rough-Surfaced Vehicle over Stratified Media
by Chenzhao Yan, Xincheng Ren, Jianyu Huang, Yuqing Wang and Xiaomin Zhu
Appl. Sci. 2025, 15(15), 8140; https://doi.org/10.3390/app15158140 - 22 Jul 2025
Viewed by 160
Abstract
To meet the requirements for radar echo acquisition and feature extraction from stratified media and rough-surfaced targets, a vehicle was geometrically modelled in CAD. Monte Carlo techniques were applied to generate the rough interfaces at air–snow and snow–soil boundaries and over the vehicle [...] Read more.
To meet the requirements for radar echo acquisition and feature extraction from stratified media and rough-surfaced targets, a vehicle was geometrically modelled in CAD. Monte Carlo techniques were applied to generate the rough interfaces at air–snow and snow–soil boundaries and over the vehicle surface. Soil complex permittivity was characterized with a four-component mixture model, while snow permittivity was described using a mixed-media dielectric model. The composite electromagnetic scattering from a rough-surfaced vehicle on snow-covered soil was then analyzed with the finite-difference time-domain (FDTD) method. Parametric studies examined how incident angle and frequency, vehicle orientation, vehicle surface root mean square (RMS) height, snow liquid water content and depth, and soil moisture influence the composite scattering coefficient. Results indicate that the coefficient oscillates with scattering angle, producing specular reflection lobes; it increases monotonically with larger incident angles, higher frequencies, greater vehicle RMS roughness, and higher snow liquid water content. By contrast, its dependence on snow thickness, vehicle orientation, and soil moisture is complex and shows no clear trend. Full article
Show Figures

Figure 1

Back to TopTop