Coastal Geoheritage and Sustainability: A Study in the Low Coast of Costa Branca, Rio Grande do Norte, Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geosites
2.2.1. Hypersaline Deserts
2.2.2. Macau Magmatism
2.2.3. Ponta Do Tubarão Estuary
2.2.4. Mangue Seco Dome
2.2.5. Minhoto–Amaro Beach
2.2.6. Presídio Island
2.2.7. Cabeço Da Pescada
2.2.8. Galinhos–Guamaré Estuarine System
2.2.9. Galinhos Beach
2.2.10. André Dunes
2.2.11. Capim Dunes
2.2.12. Galinhos Aeolianite
2.3. Degradation Risk Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crofts, R.; Gordon, J.E.; Brilha, J.; Gray, M.; Gunn, J.; Larwood, J.; Santucci, V.L.; Tormey, D.; Worboys, G.L. Guidelines for Geoconservation in Protected and Conserved Areas; Best Practice Protected Area Guidelines Series No. 31; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Gordon, J.E.; Barron, H.F. The role of geodiversity in delivering ecosystem services and benefits in Scotland. Scott. J. Geol. 2013, 49, 41–58. [Google Scholar] [CrossRef]
- Neumann, B.; Ott, K.; Kenchington, R. Strong sustainability in coastal areas: A conceptual interpretation of SDG 14. Sustain. Sci. 2017, 12, 1019–1035. [Google Scholar] [CrossRef] [PubMed]
- Henriques, M.H.; Castro, A.R.S.F.; Félix, Y.R.; Carvalho, I.S. Promoting sustainability in a low density territory through geoheritage: Casa da Pedra case-study (Araripe Geopark, NE Brazil). Resour. Policy 2020, 67, 101684. [Google Scholar] [CrossRef]
- Cengiz, C.; Şahin, Ş.; Cengiz, B.; Başkır, M.B.; Dağlı, P.K. Evaluation of the visitor understanding of coastal geotourism and geoheritage potential based on sustainable regional development in western Black Sea Region, Turkey. Sustainability 2021, 13, 11812. [Google Scholar] [CrossRef]
- Newsome, D.; Dowling, R.K. (Eds.) Geotourism: The Tourism of Geology and Landscape; Goodfellow Publishers: Oxford, UK, 2010. [Google Scholar]
- Rosado-González, E.M.; Palacio-Prieto, J.L.; Sá, A.A. Geotourism in Latin America and Caribbean UNESCO Global Geoparks: Contribution for Sustainable Development Goals. In Technological Progress, Inequality and Entrepreneurship; From Consumer Division to Human Centricity; Ratten, V., Ed.; Springer: Cham, Switzerland, 2020; pp. 107–121. [Google Scholar] [CrossRef]
- Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 23 January 2025).
- Khoso, R.B.; Negri, A.; Guerini, M.; Mantovani, A.; Shajahan, R.; Gentilini, S.; Perotti, L.; Giardino, M. The virtuous circle of geodiversity: Application of geoscience knowledge for sustainability in the framework of the International Geodiversity Day. Quaest. Geogr. 2024, 43, 95–120. [Google Scholar] [CrossRef]
- Arias-Díaz, A.; Murcia, H.; Vallejo-Hincapié, F.; Németh, K. Understanding geodiversity for sustainable development in the Chinchiná River Basin, Caldas, Colombia. Land 2023, 12, 2053. [Google Scholar] [CrossRef]
- Chakraborty, A. Geodiversity and tourism sustainability in the Anthropocene. Tour. Hosp. 2022, 3, 496–508. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.; Hay, J.E.; McLean, R.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate, Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Tucker, J.; Daoud, M.; Oates, N.; Few, R.; Conway, D.; Mtisi, S.; Matheson, S. Social vulnerability in three high-poverty climate change hot spots: What does the climate change literature tell us? Reg. Environ. Change 2015, 15, 783–800. [Google Scholar] [CrossRef]
- Selmi, L.; Canesin, T.S.; Gauci, R.; Pereira, P.; Coratza, P. Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage. Sustainability 2022, 14, 4262. [Google Scholar] [CrossRef]
- Rabelo, T.O.; Diniz, M.T.M.; de Araújo, I.G.D.; Terto, M.L.d.O.; Queiroz, L.S.; Araújo, P.V.d.N.; Pereira, P. Risk of degradation and coastal flooding hazard on geoheritage in protected areas of the semi-arid coast of Brazil. Water 2023, 15, 2564. [Google Scholar] [CrossRef]
- Vandelli, V.; Selmi, L.; Faccini, F.; Ferrando, A.; Coratza, P. Geoheritage Degradation Risk Assessment: Methodologies and Insights. Sustainability 2024, 16, 10336. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (Brazilian Institute of Geography and Statistics). Available online: https://www.ibge.gov.br (accessed on 20 January 2025).
- Suguio, K.; Martin, L.; Bittencourt, A.C.S.P.; Domingues, J.M.L.; Flexor, J.-M.; Azevedo, A.E.G.d. Flutuações do nível relativo do mar durante o Quaternário superior ao longo do litoral brasileiro e suas implicações na sedimentação costeira. Rev. Bras. Geosci. 1985, 15, 273–286. (In Portuguese) [Google Scholar] [CrossRef]
- Barbosa, M.E.F.; Boski, T.; Bezerra, F.H.R.; Lima-Filho, F.P.; Gomes, M.P.; Pereira, L.C.; Maia, R.P. Late Quaternary infilling of the Assu River embayment and related sea level changes in NE Brazil. Mar. Geol. 2018, 405, 23–37. [Google Scholar] [CrossRef]
- Bezerra, F.H.; Amaral, R.F.; Silva, F.O.; Sousa, M.O.; Vieira, M.M.; Lima, E.N.; Fonseca, V.P. Nota Explicativa da Folha Macau, SB. 24-XD-II; CPRM—Serviço Geológico do Brasil: Rio de Janeiro, Brazil, 2009. (In Portuguese) [Google Scholar]
- Angelin, L.A.; Medeiros, V.C.; Nesi, J.R. Programa Geologia do Brasil—PGB. Projeto Geologia e Recursos Minerais do Estado do Rio Grande do Norte; Mapa geológico do Estado do Rio Grande do Norte. Escala. 1:500,000; CPRM/FAPERN: Recife, Brasil, 2006. (In Portuguese) [Google Scholar]
- Bezerra, F.H.; Marques, F.O.; Vasconcelos, D.L.; Rossetti, D.F.; Tavares, A.C.; Maia, R.P.; de Castro, D.L.; Nogueira, F.C.; Fuck, R.A.; Medeiros, W.E. Review of tectonic inversion of sedimentary basins in NE and N Brazil: Analysis of mechanisms, timing and effects on structures and relief. J. S. Am. Earth Sci. 2023, 126, 104356. [Google Scholar] [CrossRef]
- Diniz, M.T.M.; Terto, M.L.d.O.; da Silva, F.E.B. Assessment of the geomorphological heritage of the Costa Branca area, a potential geopark in Brazil. Resources 2023, 12, 13. [Google Scholar] [CrossRef]
- Silva, F.B. Geopatrimônio dos Municípios de Porto do Mangue e Macau-RN. Master’s Thesis, Federal University of Rio Grande do Norte, Natal, Brazil, 2022. (In Portuguese). [Google Scholar]
- Chagas, M.D. Avaliação do Patrimônio Geomorfológico dos Municípios de Guamaré e Galinhos-RN. Master’s Thesis, Federal University of Rio Grande do Norte, Natal, Brazil, 2023. (In Portuguese). [Google Scholar]
- Diniz, M.T. Condicionantes Socioeconômicos e Naturais para a Produção de sal Marinho No Brasil: As Particularidades da Principal Região Produtora. Ph.D. Thesis, Ceará State University, Fortaleza, Brazil, 2013. (In Portuguese). [Google Scholar]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinisation under climate change in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Karmakar, R.; Das, I.; Dutta, D.; Rakshit, A. Potential effects of climate change on soil properties: A review. Sci. Int. 2016, 4, 51–73. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, N.; Chen, S.; Huang, J.; Taghizadeh, R.; Peng, J.; Wigneron, J.; Frappart, F. Soil Salinization Trend from 2003 to 2022 across the Globe Response to Climate Change. Res. Sq. 2024, 1, 1–24. [Google Scholar] [CrossRef]
- Nhung, T.T.; Vo, P.L.; Nghi, V.V.; Bang, H.Q. Salt intrusion adaptation measures for sustainable agricultural development under the effects of climate change: A case of Ca Mau Peninsula, Vietnam. Clim. Risk Manag. 2019, 23, 88–100. [Google Scholar] [CrossRef]
- Silveira, I.M.d.; Vital, H.; Amaro, V.E.; Sousa, M.E.; Chaves, M.S. The evolutionary study of environmental conditions of the Guamaré coast (northeastern Brazil). J. Coast. Res. 2006, 1, 237–241. [Google Scholar]
- Silva, A.G.A.; Vital, H. Estimation of Presídio’s Barrier Island (Guamaré-NE/Brazil) Migration by Means of GIS and Remote Sensing. Coastline Rep. 2010, 16, 47–50. [Google Scholar]
- Brasi. Novo Código Florestal. Lei 12.651 de 25 de maio de 2012. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. 2017. (In Portuguese)
- Costa Neto, L.X. Caracterização Geológica, Geomorfológica e Oceanográfica do Sistema Pisa Sal, Galinhos/RN—Nordeste do Brasil, Com Ênfase à Erosão, ao Transporte e à Sedimentação. Ph.D. Thesis, Federal University of Rio Grande do Norte, Natal, Brazil, 2009. (In Portuguese). [Google Scholar]
- Lima, Z.M.C.; Vital, H.; Tabosa, W.F. Morphodynamic variability of the Galinhos Spit, northeastern Brazil. J. Coast. Res. 2006, 1, 598–601. [Google Scholar]
- Silva, M.D.V.; Lima, M.Z.; Nascimento, M.A.L. Qualitative assessment of the geomorphological heritage of Galinhos spit, in the northern coastal zone of Rio Grande do Norte. Northeast. Geosci. J. 2020, 6, 306–318. [Google Scholar]
- Sayles, R.W. Bermuda during the ice age. Proc. Am. Acad. Arts Sci. 1931, 66, 381–486. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Caicedo-Potosí, J.; Berrezueta, E. Geoheritage and Geosites: A Bibliometric Analysis and Literature Review. Geosciences 2022, 12, 169. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and Quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Brilha, J. Geoheritage: Inventories and Evaluation. In Geoheritage: Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–85. [Google Scholar] [CrossRef]
- Pereira, P.; Pereira, D. Methodological guidelines for geomorphosite assessment. Géomorphologie Relief Process. Environ. 2010, 16, 215–222. [Google Scholar] [CrossRef]
- Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing “scientific” and “additional values” of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Reynard, E.; Perret, A.; Bussard, J.; Grangier, L.; Martin, S. Integrated Approach for the Inventory and Management of Geomorphological Heritage at the Regional Scale. Geoheritage 2016, 8, 43–60. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Garcia, M.d.G.M.; Reynard, E. Comparing quantitative methods on the evaluation of scientific value in geosites: Analysis from the Itatiaia National Park, Brazil. Geomorphology 2022, 396, 107988. [Google Scholar] [CrossRef]
- Diniz, M.T.M.; de Araújo, I.G.D. Proposal of a quantitative assessment method for viewpoint geosites. Resources 2022, 11, 115. [Google Scholar] [CrossRef]
- da Costa, H.L.; Diniz, M.T.M.; Xavier, R.A.; Queiroz, L.S.; Maia, R.P. Quantitative assessment of the geomorphological heritage of the Pedra da Boca State Park’s surroundings: Key geoheritage site in Northeast Brazil. Int. J. Geoheritage Park. 2023, 11, 433–449. [Google Scholar] [CrossRef]
- Reynard, E.; Panizza, M. Geomorphosites: Definition, assessment and mapping. Géomorphologie Relief Process. Environ. 2005, 11, 177–180. [Google Scholar] [CrossRef]
- Coratza, P.; Hobléa, F. The specificities of geomorphological heritage. In Geoheritage: Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 87–106. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Reynard, E.; Garcia, M.d.G.M. Geomorphosites Assessment Methods: Comparative Analysis and Typology. Geoheritage 2019, 11, 1799–1815. [Google Scholar] [CrossRef]
- Brocx, M.; Semeniuk, V. Geoheritage and geoconservation—History, definition, scope and scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Diniz, M.T.M.; de Araújo, I.G.D.; das Chagas, M.D. Comparative study of quantitative assessment of the geomorphological heritage of the coastal zone of Icapuí-Ceará, Brazil. Int. J. Geoheritage Park. 2022, 10, 124–142. [Google Scholar] [CrossRef]
- Rabelo, T.O. Geoconservação e Risco de Degradação em Ambientes Costeiros: Uma Proposta de Avaliação do Geopatrimônio Costeiro dos Municípios de Raposa-MA e Galinhos-RN. Ph.D. Thesis, Federal University of Rio Grande do Norte, Natal, Brazil, 2022. (In Portuguese). [Google Scholar]
- Gray, M. Geodiversity: Developing the paradigm. Proc. Geol. Assoc. 2008, 119, 287–298. [Google Scholar] [CrossRef]
- García-Ortiz, E.; Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Concepts and terminology for the risk of degradation of geological heritage sites: Fragility and natural vulnerability, a case study. Proc. Geol. Assoc. 2014, 125, 463–479. [Google Scholar] [CrossRef]
Concept | Definition |
---|---|
Natural vulnerability | The sensitivity of a geosite to being damaged or destroyed by natural processes not involved in its creation. |
Anthropogenic vulnerability | The sensitivity of a geosite to being damaged or destroyed by human activities related to its economic value due to its geological characteristics (mining, quarrying, collecting, etc.). |
Public use | The susceptibility of a geosite to being damaged due to its location and its current or possible use (vandalism, lack of access control, lack of physical protection, etc.). |
Fragility | The sensitivity of a geosite to being damaged by processes involved in its creation and directly related to its geological characteristics. |
Criteria | Sub-Criteria | Indicators | Points |
---|---|---|---|
A. Natural vulnerability | A1. Active processes | No active processes affect the geosite. | 0 |
One active process affects the geosite episodically. | 1 | ||
One active process affects the geosite continuously or seasonally. | 2 | ||
Two or more active processes affect the geosite. | 3 | ||
A2. Proximity | No possibility of degradation. | 0 | |
One possible active process in proximity to the geosite. | 1 | ||
Two possible active processes in proximity to the geosite. | 2 | ||
More than two active processes in proximity to the geosite. | 3 | ||
B. Anthropogenic vulnerability | B1. Economic interest | No geodiversity elements of economic interest. | 0 |
The geosite has one element of geodiversity of economic interest. | 1 | ||
The geosite has two elements of geodiversity of economic interest. | 2 | ||
The geosite has more than two elements of geodiversity of economic interest | 3 | ||
B2. Private Interest | No geodiversity elements of private interest. | 0 | |
The geosite has one collectible element of geodiversity for private interest. | 1 | ||
The geosite has two collectible geodiversity elements of private interest. | 2 | ||
The geosite has more than two collectible elements of geodiversity for private interest. | 3 | ||
C. Public use | C1. Legal protection | The geosite is protected for its geoheritage. | 0 |
The geosite is inside a protected natural area. | 1 | ||
The geosite is inside an area protected for other values (historical, cultural, etc.). | 2 | ||
The geosite is not in a protected area. | 3 | ||
C2. Human proximity | The geosite is located less than 100 m from a potential degradation activity. | 3 | |
The geosite is located less than 500 m from a potential degradation activity. | 2 | ||
The geosite is located less than 1 km from a potential degradation activity. | 1 | ||
The geosite is located more than 1 km from a potential degradation activity. | 0 | ||
C3. Accessibility | The geosite is located less than 100 m from a paved road and bus parking space. | 3 | |
The geosite is located less than 100 m from a paved road. | 2 | ||
The geosite is located less than 100 m from a gravel road or between 100 and 500 m from a paved road. | 1 | ||
The geosite is located more than 100 m from a gravel road or more than 500 m from a paved road/no direct access. | 0 | ||
C4. Population density | The geosite is not located near human occupation. | 0 | |
The geosite is located in a village or town in the rural area of a city. | 1 | ||
The geosite is located in the urban area of a city. | 2 | ||
The geosite is located in a city considered to be a regional center. | 3 | ||
C5. Physical protection | The geosite has no protection. | 3 | |
The geosite has a structure for tourists but without physical protection of the geoheritage. | 2 | ||
The geosite has physical protection but without structure for tourists. | 1 | ||
The geosite has physical protection of geoheritage features and structure for tourists. | 0 | ||
C6. Degrading use | No degradation from public use. | 0 | |
One element of degradation. | 1 | ||
Two elements of degradation. | 2 | ||
More than two elements of degradation. | 3 | ||
C7. Control of access | No control at all. | 3 | |
The geosite is monitored by one method of control. | 2 | ||
The geosite is monitored by two methods of control. | 1 | ||
the geosite is monitored by more than two methods of control. | 0 |
Total Score | Risk Level |
---|---|
0–6 points | Low |
9–16 points | Moderate |
17–24 points | High |
25–33 points | Very high |
Geosite | A1 | A2 | A | B1 | B2 | B | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hypersaline deserts | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 3 | 3 | 1 | 3 | 0 | 3 | 14 | 15 |
Macau magmatism | 3 | 0 | 3 | 0 | 1 | 1 | 3 | 3 | 0 | 1 | 1 | 1 | 2 | 11 | 15 |
Mangue Seco dome | 0 | 0 | 0 | 2 | 0 | 2 | 3 | 0 | 3 | 0 | 3 | 3 | 3 | 15 | 17 |
Ponta do Tubarão estuary | 0 | 1 | 1 | 3 | 0 | 3 | 1 | 3 | 3 | 1 | 3 | 3 | 3 | 17 | 21 |
Minhoto–Amaro beach | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 1 | 2 | 1 | 3 | 9 | 10 |
Presídio Island | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 3 | 0 | 1 | 2 | 0 | 3 | 10 | 11 |
Cabeço da Pescada | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 3 | 9 | 9 |
Guamaré–Galinhos estuarine system | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 3 | 3 | 2 | 3 | 2 | 3 | 17 | 19 |
Galinhos beach | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 3 | 3 | 2 | 2 | 2 | 3 | 15 | 17 |
André dunes | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 3 | 1 | 3 | 8 | 9 |
Capim dunes | 0 | 0 | 0 | 2 | 1 | 3 | 1 | 3 | 0 | 1 | 3 | 3 | 3 | 14 | 17 |
Galinhos aeolianite | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 3 | 1 | 3 | 11 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, F.E.B.; Chagas, M.D.d.; Diniz, M.T.M.; Pereira, P. Coastal Geoheritage and Sustainability: A Study in the Low Coast of Costa Branca, Rio Grande do Norte, Brazil. Sustainability 2025, 17, 6709. https://doi.org/10.3390/su17156709
da Silva FEB, Chagas MDd, Diniz MTM, Pereira P. Coastal Geoheritage and Sustainability: A Study in the Low Coast of Costa Branca, Rio Grande do Norte, Brazil. Sustainability. 2025; 17(15):6709. https://doi.org/10.3390/su17156709
Chicago/Turabian Styleda Silva, Fernando Eduardo Borges, Matheus Dantas das Chagas, Marco Túlio Mendonça Diniz, and Paulo Pereira. 2025. "Coastal Geoheritage and Sustainability: A Study in the Low Coast of Costa Branca, Rio Grande do Norte, Brazil" Sustainability 17, no. 15: 6709. https://doi.org/10.3390/su17156709
APA Styleda Silva, F. E. B., Chagas, M. D. d., Diniz, M. T. M., & Pereira, P. (2025). Coastal Geoheritage and Sustainability: A Study in the Low Coast of Costa Branca, Rio Grande do Norte, Brazil. Sustainability, 17(15), 6709. https://doi.org/10.3390/su17156709