Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (435)

Search Parameters:
Keywords = oscillating–rotating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2270 KB  
Article
Effect of Manual and Electronic Toothbrushes on Color Stability and Contact Profilometry of Different CAD/CAM Ceramic Materials After Immersion in Coffee for Varying Time Intervals
by Mohammed M. Al Moaleem and Manea Musa M. Alahmari
Prosthesis 2025, 7(5), 110; https://doi.org/10.3390/prosthesis7050110 (registering DOI) - 25 Aug 2025
Abstract
Aim: This study evaluated the effect of manual and electronic toothbrushes on the color stability (∆E*) and surface roughness (Ra) of four CAD/CAM ceramics after their immersion in coffee for 2 and 4 weeks. Methodology: A total of 160 specimens (Vitablocs [...] Read more.
Aim: This study evaluated the effect of manual and electronic toothbrushes on the color stability (∆E*) and surface roughness (Ra) of four CAD/CAM ceramics after their immersion in coffee for 2 and 4 weeks. Methodology: A total of 160 specimens (Vitablocs Mark II, Ceramill Zolid zirconia, Vita Triluxe Forte, and IPS e.max CAD) were divided into four brushing subgroups (manual, sonic, oscillating–rotating, and ionic). The samples underwent daily coffee staining, thermocycling (5–55 °C), and twice-daily brushing. Color parameters (L, a, and b) were assessed and measured utilizing a spectrophotometer (Vita Easyshade) at baseline, 2 weeks, and 4 weeks. ∆E* was calculated using the CIEDE2000 formula, and surface roughness (Ra, µm) was assessed via contact profilometry at the study’s conclusion. Data were analyzed using Kruskal–Wallis and Mann–Whitney tests (α = 0.05). Results: Among the tested samples, IPS e.max ceramic with manual toothbrushing exhibited the highest ΔE* values after 2 and 4 weeks (∆E* = 4.424 and ∆E* = 4.802) of immersion. Moreover, Ceramill Zolid zirconia demonstrated the highest ΔE* values with ionic brushing (∆E* = 4.883 at 2 weeks; ΔE* = 4.760 at 4 weeks). Significant differences were observed among ceramics and cleaning methods, with manual/ionic brushing causing the greatest changes (p < 0.05). IPS e.max had the highest Ra with manual brushing (0.745–0.789 µm), whereas Ceramill Zolid zirconia with ionic brushing showed the highest Ra values among the electric methods (0.745–0.757 µm). Conclusions: Manual brushing induced clinically unacceptable color changes in IPS e.max CAD, whereas ionic brushing adversely affected Ceramill Zolid zirconia. All brushing methods increased surface roughness beyond acceptable limits. Full article
Show Figures

Figure 1

19 pages, 3965 KB  
Article
Mapping the Spatio-Temporal Heterogeneity and Trends of Global Catholic Development After WWII
by Xiaobiao Lin, Bowei Wu and Yifan Tang
Religions 2025, 16(8), 1056; https://doi.org/10.3390/rel16081056 - 15 Aug 2025
Viewed by 344
Abstract
Understanding the spatio-temporal dynamics of religion is crucial for explaining cultural and geopolitical transformations. Based on multi-source religious demographic data, this study analyzes the spatio-temporal dynamics of global Catholicism after WWII using gravity migration and standard deviational ellipse models, revealing spatial heterogeneity and [...] Read more.
Understanding the spatio-temporal dynamics of religion is crucial for explaining cultural and geopolitical transformations. Based on multi-source religious demographic data, this study analyzes the spatio-temporal dynamics of global Catholicism after WWII using gravity migration and standard deviational ellipse models, revealing spatial heterogeneity and tracing the migration of its developmental center. Spatial typology techniques are further employed to classify patterns of Catholic growth efficiency. Our findings reveal that: (1) The absolute number of global Catholics has steadily increased, exhibiting a west-heavy, east-light pattern, with particularly notable growth in the Americas and Sub-Saharan Africa. The proportion of Catholics has declined—especially in traditional strongholds such as Europe and the Americas—while rising in emerging missionary regions, notably in Africa. (2) The macro-trend of Catholic development demonstrates a continuous southward shift in its global center of gravity, transitioning from Europe to the Global South—particularly regions like Africa, Asia, and Latin America. The standard deviational ellipse reveals pronounced oscillation, with an increasing rotation angle and a southward tilt, suggesting an accelerating pace of change in the global distribution of Catholicism. (3) Post-WWII, Catholic growth outpaced population in 75.57% of countries, though modestly. Developmental efficiency temporally followed a trajectory of “broad weak positive—drastic polarization—weak equilibrium”, while spatially reflecting pronounced regional heterogeneity shaped by the combined effects of colonial legacies, social demands, political dynamics, and modernity shocks. Overall, our study provides empirical support for understanding the links between religious spatial patterns and social transformation. Full article
(This article belongs to the Special Issue Global Catholicism)
Show Figures

Figure 1

12 pages, 1622 KB  
Article
Pitch Invariance Reveals Skill-Specific Coordination in Human Movement: A Screw-Theoretic Reanalysis of Golf Swing Dynamics
by Wangdo Kim
J. Funct. Morphol. Kinesiol. 2025, 10(3), 315; https://doi.org/10.3390/jfmk10030315 - 15 Aug 2025
Viewed by 365
Abstract
Background: Skilled human movement, such as the golf swing, emerges from coordinated rotational and translational dynamics. This study investigates pitch—a screw-theoretic invariant defined as the ratio of linear to angular velocity along the instantaneous screw axis (ISA)—as a compact metric for quantifying motor [...] Read more.
Background: Skilled human movement, such as the golf swing, emerges from coordinated rotational and translational dynamics. This study investigates pitch—a screw-theoretic invariant defined as the ratio of linear to angular velocity along the instantaneous screw axis (ISA)—as a compact metric for quantifying motor coordination. Methods: We reanalyzed a validated motion capture dataset involving a proficient and a novice female golfer. ISA trajectories and pitch values were computed from 3D marker data, and synchronized with vertical ground reaction force (GRF) signals collected via force plate. Results: The proficient golfer exhibited tightly bounded pitch oscillations (approximately ±0.0025 cm/rad) that were temporally aligned with a single, well-defined GRF peak. In contrast, the novice showed irregular pitch fluctuations (−0.025 to +0.01 cm/rad) and asynchronous GRF patterns with multiple peaks. Conclusions: These findings demonstrate that pitch can serve as a biomechanical indicator of skilled performance, reflecting the degree of intersegmental coordination and force timing. Screw theory thus offers a rigorous framework for evaluating movement efficiency in sport and rehabilitation contexts. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

33 pages, 4686 KB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 390
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

21 pages, 4524 KB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Viewed by 334
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

16 pages, 1249 KB  
Article
Impact of Electromagnetic Field on the Physicochemical Properties, Permeability, and Accumulation of Salicylic Acid
by Karolina Zyburtowicz-Ćwiartka, Anna Nowak, Anna Muzykiewicz-Szymańska, Łukasz Kucharski, Maciej Konopacki, Rafał Rakoczy and Paula Ossowicz-Rupniewska
Appl. Sci. 2025, 15(13), 7606; https://doi.org/10.3390/app15137606 - 7 Jul 2025
Cited by 1 | Viewed by 438
Abstract
Transdermal drug delivery offers a non-invasive route for the systemic and localized administration of therapeutics; however, the skin’s barrier function limits its efficiency. This study investigates the application of various electromagnetic field (EMF) configurations to enhance the transdermal delivery of salicylic acid, a [...] Read more.
Transdermal drug delivery offers a non-invasive route for the systemic and localized administration of therapeutics; however, the skin’s barrier function limits its efficiency. This study investigates the application of various electromagnetic field (EMF) configurations to enhance the transdermal delivery of salicylic acid, a model compound with moderate lipophilicity and ionizability. Samples were exposed to pulsed, oscillating, static, and rotating magnetic fields, and their effects on physicochemical properties, thermal stability, skin permeation, and accumulation were evaluated. Structural analyses (FTIR, XRD) and thermal assessments (TGA, DSC) confirmed that EMF exposure did not alter the chemical structure or stability of salicylic acid. In vitro transdermal studies using porcine skin and Franz diffusion cells revealed that pulsed magnetic fields—especially with a 5 s on/5 s off cycle—and rotating magnetic fields at 30–50 Hz significantly enhanced drug permeation compared to controls. In contrast, static fields of negative polarity increased skin retention, suggesting their potential for controlled, localized delivery. These findings demonstrate that EMFs can be used as tunable, non-destructive tools to modulate drug transport across the skin and support their integration into transdermal delivery systems aimed at optimizing therapeutic profiles. Full article
Show Figures

Figure 1

25 pages, 11401 KB  
Article
In Vitro Comparison of Monolithic Zirconia Crowns: Marginal/Internal Adaptation and 3D-Quantified Preparation Defects Using Air-Driven, Electric-Driven, and Piezoelectric Ultrasonic Handpieces
by Rand Saman Jadid and Abdulsalam Rasheed Al-Zahawi
Prosthesis 2025, 7(4), 75; https://doi.org/10.3390/prosthesis7040075 - 1 Jul 2025
Viewed by 1044
Abstract
Purpose: The aim of this study was to compare the effect of rotary (air-driven, electric-driven) and oscillating (piezoelectric ultrasonic) handpieces on the quality of crown preparation, marginal integrity, and internal adaptation of monolithic zirconia crowns. Materials and Methods: Seventy-two standardized premolar preparations were [...] Read more.
Purpose: The aim of this study was to compare the effect of rotary (air-driven, electric-driven) and oscillating (piezoelectric ultrasonic) handpieces on the quality of crown preparation, marginal integrity, and internal adaptation of monolithic zirconia crowns. Materials and Methods: Seventy-two standardized premolar preparations were performed using the air-driven handpiece with a guide pin-ended tapered fissure diamond bur on a modified dental surveyor. The finishing process utilized three handpiece types (n = 24/group) with fine/superfine diamond burs under controlled force with a fixed number of rotations and controlled advancement time. Marginal/internal adaptation was evaluated via the triple-scan technique; defects (marginal, axial, and occlusal) were quantified based on predefined criteria through the inspection of the Standard Tessellation Language (STL) file. Results: One-way ANOVA with Tukey HSD and Kruskal–Wallis with Dunn–Bonferroni tests were utilized. The marginal gap showed no significant differences (p > 0.05, η2 = 0.04). The electric handpiece outperformed the ultrasonic (p = 0.023, η2 = 0.105) in internal adaptation, while the air-driven showed no differences (p > 0.05). The ultrasonic handpiece produced fewer marginal defects than the air-driven (p = 0.039, ε2 = 0.132), but more axial defects (median 9 vs. 6, p = 0.014, ε2 = 0.168) than the electric handpiece and occlusal defects (5 vs. 3, 4 p = 0.007, p = 0.015, ε2 = 0.227) than rotary handpieces. The air-driven handpiece exhibited comparable defect numbers to the electric handpiece without statistical significance (p > 0.05). Conclusions: Handpiece selection had a small effect on marginal adaptation but more pronounced effects on overall defect formations and internal adaptation. The ultrasonic handpiece’s decreased marginal defects but variable axial/occlusal results reveal technological constraints, whereas rotary handpieces’ consistency reflects their operator-dependent nature. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Graphical abstract

21 pages, 4392 KB  
Article
Sub-Synchronous Oscillation Robust Damping Method for HVDC with Embedded Energy Storage
by Jingbo Zhao, Yongyong Jia, Guojiang Zhang, Haiyun An and Tianhui Zhao
Electronics 2025, 14(13), 2599; https://doi.org/10.3390/electronics14132599 - 27 Jun 2025
Viewed by 310
Abstract
This paper proposes a multi-channel robust damping controller based on the static H∞ loop shaping method, specifically tailored for modular multilevel converter-based high-voltage direct current (MMC-HVDC) systems with embedded energy storage. The controller is designed to suppress sub-synchronous oscillations, a critical issue in [...] Read more.
This paper proposes a multi-channel robust damping controller based on the static H∞ loop shaping method, specifically tailored for modular multilevel converter-based high-voltage direct current (MMC-HVDC) systems with embedded energy storage. The controller is designed to suppress sub-synchronous oscillations, a critical issue in power systems. To optimize the controller’s performance, a genetic algorithm is employed to tune the weighting functions for robust control. Additionally, the TLS-ESPRIT (Total Least Squares–Estimation of Signal Parameters via Rotational Invariance Techniques) identification algorithm is utilized to clarify the system oscillation characteristics, thereby enhancing the controller’s effectiveness. Simulation results demonstrate that the sub-synchronous oscillation controller, designed based on the proposed robust control algorithm, achieves satisfactory oscillation suppression effects under various disturbances, underscoring its robustness. This study highlights the potential of MMC-HVDC systems with embedded energy storage in mitigating power grid oscillations, contributing to the advancement of power system stability and reliability. Full article
Show Figures

Figure 1

17 pages, 2466 KB  
Article
Uniformity of Linear-Move Irrigation with a Single Sprinkler of the Self-Propelled Hard Hose Traveler
by Zhengdian Xu, Shuang Li, Lei Shi, Changyu Zhang, Qingjiang Xiang, Zhu Zhu and Hui Pan
Water 2025, 17(13), 1917; https://doi.org/10.3390/w17131917 - 27 Jun 2025
Viewed by 394
Abstract
In this study, a self-propelled hard hose traveler is developed as a modification of the conventional design. The traveler demonstrated enhanced field applicability and intelligence level in Europe and central–eastern China. A parametric configuration scheme was attained through the irrigator’s computational modeling and [...] Read more.
In this study, a self-propelled hard hose traveler is developed as a modification of the conventional design. The traveler demonstrated enhanced field applicability and intelligence level in Europe and central–eastern China. A parametric configuration scheme was attained through the irrigator’s computational modeling and experimental validation. This study proposed a uniform water distribution calculation model for single-sprinkler linear-move irrigation. The deviation rate between calculated and experimental values was 7.3%. The average application depth decreased with increased sprinkler motion speed and path spacing. The uniformity of water distribution (CU value) exhibited an oscillating trend as the path spacing changed. As the sprinkler rotation angle increased along a specific path, the CU value first rose from 69.2% to 80.0% and then declined to 68.7%. When irrigation and sprinkler motions were combined, the CU value at 1.5 R initially decreased from 92.1% to 72.9%, then increased to 84.2% as the sprinkler rotation angle increased. The combined sprinkler and irrigation motions showed a significantly better uniformity than the specific path irrigation. The highest CU value was 95.0%, with a nozzle diameter of 16.0 × 6.0 mm, a sprinkler rotation angle of 180°, and a path spacing of 1.6 R. This study introduces a novel approach for water-saving irrigation equipment and offers practical guidance for farmers on operating the self-propelled hard hose traveler. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery, 3rd Edition)
Show Figures

Figure 1

27 pages, 2574 KB  
Article
Optimized Quantum-Resistant Cryptosystem: Integrating Kyber-KEM with Hardware TRNG on Zynq Platform
by Kuang Zhang, Mengya Yang, Zeyu Yuan, Yingzi Zhang and Wenyi Liu
Electronics 2025, 14(13), 2591; https://doi.org/10.3390/electronics14132591 - 27 Jun 2025
Viewed by 544
Abstract
Traditional cryptographic systems face critical vulnerabilities posed by the rapid advancement of quantum computing, particularly concerning key exchange mechanisms and the quality of entropy sources for random number generation. To address these challenges, this paper proposes a multi-layered, quantum-resistant hybrid cryptographic architecture. First, [...] Read more.
Traditional cryptographic systems face critical vulnerabilities posed by the rapid advancement of quantum computing, particularly concerning key exchange mechanisms and the quality of entropy sources for random number generation. To address these challenges, this paper proposes a multi-layered, quantum-resistant hybrid cryptographic architecture. First, to ensure robust data confidentiality and secure key establishment, the architecture employs AES-256 (Advanced Encryption Standard-256) for data encryption and utilizes the Kyber Key Encapsulation Mechanism (KEM), which is based on the Learning With Errors (LWE) problem, for secure key exchange. Second, to further bolster overall security by establishing a high-quality cryptographic foundation, we design a TRNG (true random number generator) system based on a multi-level Ring Oscillator (RO) architecture (employing 5, 7, 9, and 11 inverter stages), which provides a reliable and high-quality entropy source. Third, to enable intelligent and adaptive security management, we introduce FA-Kyber (Flow-Adaptive Kyber), a dual-trigger key exchange framework facilitating dynamic key management strategies. Experimental evaluations demonstrate that our implementation exhibits robust performance, achieving an encrypted data transmission throughput of over 550 Mbps with an average end-to-end latency of only 3.14 ms and a key exchange success rate of 99.99% under various network conditions. The system exhibits excellent stability under network congestion, maintaining 86% of baseline throughput under moderate stress, while adaptively increasing the key rotation frequency to enhance security. This comprehensive approach strikes an optimal balance between performance and post-quantum resilience for sensitive communications. Full article
(This article belongs to the Special Issue New Trends in Cryptography, Authentication and Information Security)
Show Figures

Figure 1

12 pages, 7858 KB  
Article
Strain Monitoring of Vertical Axis Wind Turbine Tower Using Fiber Bragg Gratings
by Bastien Van Esbeen, Valentin Manto, Damien Kinet, Corentin Guyot and Christophe Caucheteur
Sensors 2025, 25(13), 3921; https://doi.org/10.3390/s25133921 - 24 Jun 2025
Viewed by 464
Abstract
This article presents the findings of an experimental study conducted on a vertical axis wind turbine (VAWT) tower instrumented with cascaded fiber Bragg grating (FBG) sensors to detect bending deformations. Structural health monitoring (SHM) is an essential need in the industry to reduce [...] Read more.
This article presents the findings of an experimental study conducted on a vertical axis wind turbine (VAWT) tower instrumented with cascaded fiber Bragg grating (FBG) sensors to detect bending deformations. Structural health monitoring (SHM) is an essential need in the industry to reduce costs and maintenance time, and to prevent machine failures. First, FBG strain sensors were glued vertically along the tower to investigate the sensors behavior as a function of their height. The maximum signal-to-noise ratio is obtained when FBGs are placed at the tower base. Then, four packages were installed inside the tower, at the base, according to four cardinal directions. Each package contains an FBG strain sensor, and an extra temperature FBG for discrimination. The use of easy-to-deploy packages is a must for industrial installations. Afterwards, by using power spectral density (PSD) on the strain signals, three sources of tower oscillations are discovered: wind force, structure unbalance, and 1st tower mode resonance, each with its intrinsic frequency. Wind force and structure unbalance cause mechanical stresses at a frequency proportional to the wind turbine rotational speed, while the 1st tower mode frequency depends only on the machine geometry, regardless of the rotational speed. This study also analyzes the deformation amplitude for different rotational rates within the VAWT operational range (10–35 rpm). The resonance amplitude depends on the proximity of the rotational rate to the resonant frequency (22 rpm) and the duration at that rate. For structure unbalance, the oscillation amplitude increases with the rotational rate, due to the centrifugal effect. It is supposed that wind force deformation amplitude naturally depends on wind speed, which is unpredictable at a given precise time. The results of our experimental observations are very valuable for both the wind turbine manufacturer and owner. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 5284 KB  
Article
Experimental Study of a Broadband Vibration Energy Harvester Based on Orthogonal Magnetically Coupled Double Cantilever Beam
by Yanhao Feng, Jianhua Wang, Xiangye Chen and Peng Liu
Micromachines 2025, 16(6), 722; https://doi.org/10.3390/mi16060722 - 19 Jun 2025
Viewed by 2860
Abstract
Purpose: The aim of this study is to achieve automated energy capture and charging for the ADXL355 accelerometer, enhance the vibration energy collection efficiency, and widen the energy trapping frequency band of a system in a working environment for bridge health state [...] Read more.
Purpose: The aim of this study is to achieve automated energy capture and charging for the ADXL355 accelerometer, enhance the vibration energy collection efficiency, and widen the energy trapping frequency band of a system in a working environment for bridge health state detection. Methods: A vibration energy harvester based on a magnetic coupling cantilever beam in an orthogonal direction was proposed. The harvester works by adjusting the angle and magnetic spacing between the two cantilever-beam piezoelectric oscillators, enabling the oscillators to produce large-scale and stable vibrations when excited by an external broadband vibration source. Results: Sinusoidal frequency sweep experiments showed that, under an excitation amplitude of 0.2 g, the proposed broadband vibration energy harvester based on orthogonal magnetic coupling double cantilever beams achieved the best energy harvesting performance when the magnetic angle of the double cantilever beam system was 130°, and the radius was 16 mm. In the frequency range of 5–20 Hz, the system can effectively capture higher effective voltages across all frequency bands, with a total captured voltage value of approximately 15.3 V. Compared with the control group, the system’s energy harvesting capacity under this working condition increases by 770%. Additionally, the effective frequency band of the system was broadened by 3.7 Hz. Conclusions: Unlike previous studies, which often limited the angles of the magnetic fields generated by the magnets at the ends of piezoelectric beams to specific values, this study explores the influence of rotating these magnetic fields to general angles on the working frequency band of the structure. The findings provide a new perspective and theoretical basis for the optimal design of broadband vibration energy harvesters. Full article
Show Figures

Figure 1

19 pages, 3230 KB  
Article
Research on Nonlinear Pitch Control Strategy for Large Wind Turbine Units Based on Effective Wind Speed Estimation
by Longjun Li, Xiangtian Deng, Yandong Liu, Xuxin Yue, Haoran Wang, Ruibo Liu, Zhaobing Cai and Ruiqi Cai
Electronics 2025, 14(12), 2460; https://doi.org/10.3390/electronics14122460 - 17 Jun 2025
Viewed by 295
Abstract
With the increasing capacity of wind turbines, key components including the rotor diameter, tower height, and tower radius expand correspondingly. This heightened inertia extends the response time of pitch actuators during rapid wind speed variations occurring above the rated wind speed. Consequently, wind [...] Read more.
With the increasing capacity of wind turbines, key components including the rotor diameter, tower height, and tower radius expand correspondingly. This heightened inertia extends the response time of pitch actuators during rapid wind speed variations occurring above the rated wind speed. Consequently, wind turbines encounter significant output power oscillations and complex structural loading challenges. To address these issues, this paper proposes a novel pitch control strategy combining an effective wind speed estimation with the inverse system method. The developed control system aims to stabilize the power output and rotational speed despite wind speed fluctuations. Central to this approach is the estimation of the aerodynamic rotor torque using an extended Kalman filter (EKF) applied to the drive train model. The estimated torque is then utilized to compute the effective wind speed at the rotor plane via a differential method. Leveraging this wind speed estimate, the inverse system technique transforms the nonlinear wind turbine dynamics into a linearized, decoupled pseudo-linear system. This linearization facilitates the design of a more agile pitch controller. Simulation outcomes demonstrate that the proposed strategy markedly enhances the pitch response speed, diminishes output power oscillations, and alleviates structural loads, notably at the tower base. These improvements bolster operational safety and stability under the above-rated wind speed conditions. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

19 pages, 9027 KB  
Article
Switching Control of Planar PPR Underactuated Robot with External Interference and Non-Zero Initial Velocity
by Zixin Huang, Xiangyu Gong, Qian Lei and Hongjian Zhou
Appl. Sci. 2025, 15(12), 6601; https://doi.org/10.3390/app15126601 - 12 Jun 2025
Viewed by 324
Abstract
Planar underactuated robots are mainly applied in the microgravity field, such as deep sea and deep space. The system modeling and stability control of planar underactuated robots are prerequisites to ensure successful task completion. The planar prismatic–prismatic–rotational (PPR) underactuated robot is one type [...] Read more.
Planar underactuated robots are mainly applied in the microgravity field, such as deep sea and deep space. The system modeling and stability control of planar underactuated robots are prerequisites to ensure successful task completion. The planar prismatic–prismatic–rotational (PPR) underactuated robot is one type of planar underactuated robot structure. In this paper, the dynamic system model of planar PPR underactuated robots is built, and the switching-control strategy is designed. In the first phase, an improved PD controller based on the linkage coupling of the PPR model is designed to adjust the state quantities of the three linkages and stabilize the first two linkages to the target state. This controller has certain robustness and rapidity. In the second phase, the PPR model is downgraded to the PR model, an open-loop iterative controller is designed, and the third underactuated link is stabilized to the target state through oscillation convergence. Finally, the effectiveness and applicability of the proposed strategy were verified through the comparison of setting torque interference and the simulation of the initial velocity of the link. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

16 pages, 3666 KB  
Article
Point Deflection in Topological Interlocking Plates
by Arcady V. Dyskin and Elena Pasternak
Appl. Sci. 2025, 15(12), 6496; https://doi.org/10.3390/app15126496 - 9 Jun 2025
Viewed by 311
Abstract
The bending of topological interlocking (TI) plates under point loading is not smooth; it is accompanied by developing lines of localization commensurate with the symmetry of the interlocking assembly. Furthermore, the developed stage of deflection is characterized by post-peak softening. This paper proposes [...] Read more.
The bending of topological interlocking (TI) plates under point loading is not smooth; it is accompanied by developing lines of localization commensurate with the symmetry of the interlocking assembly. Furthermore, the developed stage of deflection is characterized by post-peak softening. This paper proposes a new concept that explains these experimentally observed phenomena. A new model considers that due to the absence of bonding between the blocks, they assume independent rotational degrees of freedom; this is missed in the traditional modeling of TI structures. The bending resistance of TI beams relies on the elasticity of the peripheral constraint (frame or post-tensioning cables) resisting the additional loading caused by the relative rotation of blocks—a phenomenon called elbowing. This is independent of the particulars of the shape of interlocking blocks, which makes it possible to model the deflection of the TI beams as the deflection of fragmented beams consisting of parallelepiped blocks with restricted out-of-beam relative displacements. The model demonstrates that the bending of TI beams produces the experimentally observed point deflection, which is considerably different from that of conventional beams. This is a consequence of independent block rotation and elbowing. It is shown that the other consequence of block rotation with elbowing is the force–deflection relationship exhibiting a post-peak softening (apparent negative stiffness). Based on the point deflection model, it is demonstrated that oscillations of TI blocks involve a unidirectional damping with discontinuous velocity dependence. This paper develops a model of such damping. The results are important for designing flexible topological interlocking structures with energy absorption. Full article
Show Figures

Figure 1

Back to TopTop