Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = orthotropic steel decks (OSDs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 16673 KiB  
Article
Investigation of the Effect on Fatigue Life Enhancement of Rib-to-Deck Welded Joints of Orthotropic Steel Deck by Extended Peening Treatment Utilization
by Yuki Banno, Niamatullah Ahmadzai and Koji Kinoshita
Metals 2025, 15(7), 753; https://doi.org/10.3390/met15070753 - 4 Jul 2025
Viewed by 195
Abstract
This study aimed to investigate the effect of the fatigue life enhancement of the rib-to-deck welded joints of orthotropic steel decks (OSDs) by extended peening treatment utilization. First, hammer peening was conducted around the weld bead of the test specimens of OSDs. It [...] Read more.
This study aimed to investigate the effect of the fatigue life enhancement of the rib-to-deck welded joints of orthotropic steel decks (OSDs) by extended peening treatment utilization. First, hammer peening was conducted around the weld bead of the test specimens of OSDs. It was found that the treatment on both the weld toes of the deck and the U-rib plates caused a deformation of the U-rib plate, i.e., peen forming. Then, fatigue tests were performed under R = 0.0, using an out-of-plane bending fatigue test machine by applying several magnitudes of pre-loadings, and the results showed that the specimens with peen forming had one JSSC class higher than the deck plate only. Finally, numerical simulations of peening treatment and peen forming were performed to reveal the reason for higher fatigue life enhancement by peen forming. Simulation results showed that peen forming would introduce about three times higher compressive residual stress at the weld root of the deck plate side than the peening treatment on the deck plate only, and induced compressive residual stresses around the weld root by peen forming were kept even after applying the pre-loadings. Therefore, it can be concluded that peen forming, as an extended peening treatment utilization, is highly effective in enhancing the fatigue life of OSDs. Full article
Show Figures

Figure 1

17 pages, 13938 KiB  
Article
Study on the Impact of Diaphragm Deformation on Fatigue Performance and Maintenance Strategies in Steel Bridge Decks
by Chuanxi Li, Yue Yao, Zhendong Li and Bohai Ji
Appl. Sci. 2025, 15(8), 4245; https://doi.org/10.3390/app15084245 - 11 Apr 2025
Viewed by 456
Abstract
Localized diaphragm (transversal plate) deformation and buckling were identified at the arc notch region during structural inspections of an operational steel bridge. To evaluate the potential structural consequences, alterations in the fatigue performance and stress characteristics induced by this deformation were systematically investigated [...] Read more.
Localized diaphragm (transversal plate) deformation and buckling were identified at the arc notch region during structural inspections of an operational steel bridge. To evaluate the potential structural consequences, alterations in the fatigue performance and stress characteristics induced by this deformation were systematically investigated through in situ monitoring combined with numerical simulation. It was demonstrated that the global load-transfer mechanism of the orthotropic steel deck (OSD) system remained minimally compromised. While within the localized deformation zone, the stress magnitudes at the diaphragm-to-U-rib (DU) welds were observed to be significantly amplified, and the stress concentration zones were found to be relocated to geometrically depressed regions. Based on the deformation-stage mechanical responses, the strategic employment of residual compressive stress generated through controlled hammer peening was proposed for counteracting stress escalation at DU welds recently caused by diaphragm buckling, whereas steel plate reinforcement strategies were recommended for mitigating progressive deformation development. Full article
Show Figures

Figure 1

18 pages, 19918 KiB  
Article
Experimental and Numerical Simulation Study on Residual Stress of Single-Sided Full-Penetration Welded Rib-to-Deck Joint of Orthotropic Steel Bridge Deck
by Jiangning Pei, Xinzhi Wang, Songlin Qin, Guangpeng Xu, Fulin Su, Shengbao Wang and Zhonglong Li
Buildings 2024, 14(9), 2641; https://doi.org/10.3390/buildings14092641 - 26 Aug 2024
Cited by 4 | Viewed by 1122
Abstract
Orthotropic steel bridge decks (OSDs) play a key role in long-span bridges, and full-penetration welding technology is crucial to improve their structural performance. This study proposes an innovative single-sided full-penetration welding rib-to-deck (RTD) joint technology. The accuracy of the numerical simulation in predicting [...] Read more.
Orthotropic steel bridge decks (OSDs) play a key role in long-span bridges, and full-penetration welding technology is crucial to improve their structural performance. This study proposes an innovative single-sided full-penetration welding rib-to-deck (RTD) joint technology. The accuracy of the numerical simulation in predicting the temperature field and stress field was verified by the combination of an experimental and numerical simulation, and the welding residual stress (WRS) of single-sided full-penetration welded RTD joints was analyzed. In addition, the effects of different welding parameters and RTD joint geometry on the WRS are discussed. The results show that the experimental results are consistent with the simulation results, indicating that the single-sided full-penetration welding technology without a groove is feasible. The WRS shows a peak tensile stress near the weld, which gradually decreases and transforms into compressive stress as the distance increases. In addition, the WRS of the roof surface and the U-rib surface increases slightly with the increase in the roof thickness and the welding speed. The research results are of great significance to optimize the welding process, improve the fatigue performance, and prolong the service life of steel bridge decks, providing a new technical method for bridge engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 6637 KiB  
Article
Monitoring Fatigue Damage of Orthotropic Steel Decks Using Nonlinear Ultrasonic Waves
by Jiahe Liu, Fangtong Zheng, Wei Shen and Dongsheng Li
Materials 2024, 17(12), 2792; https://doi.org/10.3390/ma17122792 - 7 Jun 2024
Cited by 1 | Viewed by 1335
Abstract
Orthotropic steel decks (OSDs) are commonly used in the construction of bridges due to their load-bearing capabilities. However, they are prone to fatigue damage over time due to the cyclic loads from vehicles. Therefore, the early structural health monitoring of fatigue damage in [...] Read more.
Orthotropic steel decks (OSDs) are commonly used in the construction of bridges due to their load-bearing capabilities. However, they are prone to fatigue damage over time due to the cyclic loads from vehicles. Therefore, the early structural health monitoring of fatigue damage in OSDs is crucial for ensuring bridge safety. Moreover, Lamb waves, as elastic waves propagating in OSD plate-like structures, are characterized by their long propagation distances and minimal attenuation. This paper introduces a method of emitting high-energy ultrasonic waves onto the OSD surface to capture the nonlinear Lamb waves formed, thereby calculating the nonlinear parameters. These parameters are then correlated with the fatigue damage endured, forming a damage index (DI) for monitoring the fatigue life of OSDs. Experimental results indicate that as fatigue damage increases, the nonlinear parameters exhibit a significant initial increase followed by a decrease. The behavior is distinct from the characteristic parameters of linear ultrasound (velocity and energy), which also exhibit changes but to a relatively smaller extent. The proposed DI and fatigue life based on nonlinear parameters can be fitted with a Gaussian curve, with the R-squared value of the fitting curve being close to 1. Additionally, this paper discusses the influence of rib welds within the OSDs on the DI, whereby as fatigue damage increases, it enlarges the value of the nonlinear parameters without altering their trend. The proposed method provides a more effective approach for monitoring early fatigue damage in OSDs. Full article
Show Figures

Figure 1

19 pages, 4663 KiB  
Article
Methods to Increase Fatigue Life at Rib to Deck Connection in Orthotropic Steel Bridge Decks
by Diwakar KC, Bhim Kumar Dahal and Harish Dangi
CivilEng 2024, 5(1), 288-306; https://doi.org/10.3390/civileng5010015 - 20 Mar 2024
Viewed by 2972
Abstract
Orthotropic steel bridge decks (OSDs) are very popular all over the world because of the low dead load, high stiffness in the longitudinal direction, high strength ratio to weight, and can be used in various types of bridges. The life of these bridges [...] Read more.
Orthotropic steel bridge decks (OSDs) are very popular all over the world because of the low dead load, high stiffness in the longitudinal direction, high strength ratio to weight, and can be used in various types of bridges. The life of these bridges is affected by fatigue cracks in different portions. One of major areas where the fatigue cracks appear in these bridges is rib-to-deck connection. In this research finite element analysis is carried out by using ABAQUS/CAE 2022 software to determine the ways to increase the fatigue life at rib to deck connection in OSDs. In the first part, smaller models are simulated; stress concentration is analyzed and hot spot stress (HSS) is calculated according to International Institute of Welding (IIW) and Det Norske Veritas (DNV) recommendations. In the second part, a parametric analysis is carried out to analyze the effect of weld penetration, thickness of deck, thickness of rib and rib to deck connection type. In the third part, simulation of models similar to the real field is carried out to determine whether the double welded connections are better than single welded connections. Different models are analyzed for different load cases like single wheel load, double wheel load and also the position of the wheels is changed. The boundary conditions are changed to analyze whether the boundary condition has any significant effect on the result obtained. It is found that thicker decks, thinner ribs, and low penetrated welded connections reduce the stress concentrations at rib to deck connections which ultimately increase fatigue life. Among the parameters examined, deck thickness is the most important parameter. It is found that the percentage of stress increase with percentage decrease in deck thickness follows a power relation. The overall fatigue life of double welded connection is excepted to be lower since the stress concentration is maximum at the weld toe at deck on the outer side of the closed stiffener; however, if the cracks initiate on the inner side of closed stiffener, the cracks at the weld root of single welded connection can propagate much rapidly than the cracks initiating on the inner side of the closed stiffener at the weld toe, thereby reducing the fatigue life of the single-welded specimen significantly. Full article
(This article belongs to the Special Issue Feature Papers in CivilEng)
Show Figures

Figure 1

11 pages, 3118 KiB  
Article
Effective Notch-Stress-Based Stress Concentration Factors of the Rib–Deck Weld in Orthotropic Steel Decks Considering the Effect of Asphalt Surfacing
by Qiudong Wang, Shanchun Shi, Yue Yao, Zhiqiang Wang and Zhongqiu Fu
Materials 2023, 16(20), 6760; https://doi.org/10.3390/ma16206760 - 19 Oct 2023
Cited by 2 | Viewed by 1421
Abstract
Effective notch stress (ENS) approaches have many application prospects in fatigue damage assessments; however, an ENS can only be obtained by conducting complex and time-consuming numerical analyses, deterring many engineers from applying such an approach. In terms of the rib–deck weld in orthotropic [...] Read more.
Effective notch stress (ENS) approaches have many application prospects in fatigue damage assessments; however, an ENS can only be obtained by conducting complex and time-consuming numerical analyses, deterring many engineers from applying such an approach. In terms of the rib–deck weld in orthotropic steel decks (OSDs), predictive formulae for determining the ENS concentration factors (ENS-based SCFs) have been proposed; however, the effect of asphalt surfacing is not involved, which limits their applications in practical engineering. In the present study, refined finite element (FE) models, including asphalt surfacing, were developed to obtain the ENS-based SCFs which could be applied to practical engineering. Parametric analyses were conducted to investigate the effect of the transverse loading position, the combined effect of the transverse loading position and asphalt surfacing, and the effect of the temperature of the asphalt surfacing. The amplification coefficients (kSCF, kSCF1, and kSCF2) were introduced to determine the ENS-based SCFs on the basis of the predictive formulae without considering the effect of asphalt surfacing. Results show that the ENS-based SCFs of the rib–deck weld is considerably affected by the transverse position of wheel loading and the asphalt surfacing. The cubic polynomial function could be employed to fit the numerical results of the ENS-based SCFs and amplification coefficients (kSCF, kSCF1, and kSCF2) with high fitting precision. Predictive formulae for determining the ENS-based SCFs corresponding to arbitrary transverse loading position and temperature of asphalt surfacing are proposed. The validation investigation turns out that the relative error of the proposed formulae is within 10%, indicating the feasibility of using this approach for engineering applications. Full article
(This article belongs to the Special Issue Sustainable Recycling Techniques of Pavement Materials II)
Show Figures

Figure 1

25 pages, 10850 KiB  
Article
Design and Optimization of the Bi-Directional U-Ribbed Stiffening Plate–Concrete Composite Bridge Deck Structure
by Dingchao Wei, Jingwen Liao, Jianjun Liu, Yingjie Gao and Fanglin Huang
Appl. Sci. 2023, 13(16), 9340; https://doi.org/10.3390/app13169340 - 17 Aug 2023
Cited by 2 | Viewed by 1656
Abstract
The steel–concrete composite structure is widely used in civil engineering for large-span bridges. Orthotropic steel bridge decks (OSDs) have particularly gained popularity due to their excellent mechanical performance. To address cracking issues in OSDs and concrete in negative moment regions, a novel bi-directional [...] Read more.
The steel–concrete composite structure is widely used in civil engineering for large-span bridges. Orthotropic steel bridge decks (OSDs) have particularly gained popularity due to their excellent mechanical performance. To address cracking issues in OSDs and concrete in negative moment regions, a novel bi-directional U-ribbed stiffening plate (BUSP)–concrete composite bridge deck is proposed. By using finite element analysis, the mechanical performance is evaluated based on maximum tensile stress and vertical displacement of concrete overlays. Results show that the BUSP–concrete deck outperformed conventional flat decks. It is also found that increasing the height, thickness, and opening width of U-ribs reduced tensile stress and maximum displacement. Adjusting height had the most significant effect on displacement while opening width affected tensile stress the most. Considering material usage, optimizing height is proved to be more effective than adjusting thickness and opening width. Decreasing spacing parameters improved performance but added complexity and reduced construction convenience. These findings will guide the design and optimization of steel–concrete composite bridge deck structures. Full article
Show Figures

Figure 1

17 pages, 6179 KiB  
Article
Numerical Simulation on Crack–Inclusion Interaction for Rib-to-Deck Welded Joints in Orthotropic Steel Deck
by Yuan Luo, Xiaofan Liu, Fanghuai Chen, Haiping Zhang and Xinhui Xiao
Metals 2023, 13(8), 1402; https://doi.org/10.3390/met13081402 - 5 Aug 2023
Cited by 108 | Viewed by 2552
Abstract
Weld defects such as porosity, inclusion, burn-through, and lack of penetration are difficult to detect and control effectively in an orthotropic steel deck (OSD), which will be a fatigue crack initiation site and lead to several fatigue cracking. The crack growth behavior in [...] Read more.
Weld defects such as porosity, inclusion, burn-through, and lack of penetration are difficult to detect and control effectively in an orthotropic steel deck (OSD), which will be a fatigue crack initiation site and lead to several fatigue cracking. The crack growth behavior in defective welded joints is different from that of defect-free joints. This study investigates crack–inclusion interaction for rib-to-deck welded joints in OSDs based on numerical simulation and linear elastic fracture mechanics (LEFM). A refined finite element model of a half U-rib with cracks and inclusions was established by using the FRANC3D-ABAQUS interactive technology. The full processes of the crack–inclusion interaction from approaching and penetrating were accurately simulated. Critical parameters, including the stress intensity factor (SIF), the shape factor, the growth rate, and the growth direction were analyzed. The stiff and soft inclusions amplify and shield the SIF of cracks when the crack grows to the local area of inclusions. During the entire process of crack growth, the soft and stiff inclusion accelerate and inhibit the crack growth, respectively. The stiff inclusion will lead to asymmetric growth of the crack shape, where the portion of the crack away from the inclusions has a higher growth rate. The soft and stiff inclusions will attract and repel the direction of crack growth at the proximal point, respectively. Full article
Show Figures

Figure 1

24 pages, 2829 KiB  
Review
A Review on Behavior and Fatigue Performance of Orthotropic Steel–UHPC Composite Deck
by Zhiwen Zhu, Ruixu Zhu and Ze Xiang
Buildings 2023, 13(8), 1906; https://doi.org/10.3390/buildings13081906 - 26 Jul 2023
Cited by 6 | Viewed by 2622
Abstract
Although orthotropic steel decks (OSDs) have been widely used in the construction of long-span bridges, there are frequently reported fatigue cracks after years of operation, and the bridge deck overlay also presents severe damage due to OSD crack-induced stiffness reduction. Ultra-high performance concrete [...] Read more.
Although orthotropic steel decks (OSDs) have been widely used in the construction of long-span bridges, there are frequently reported fatigue cracks after years of operation, and the bridge deck overlay also presents severe damage due to OSD crack-induced stiffness reduction. Ultra-high performance concrete (UHPC), recognized as the most innovative cementitious composites and the next generation of high-performance materials, shows high strength, ductility, toughness, and good performance on durability. After its first application to the OSD bridge in the early 2000s, the orthotropic steel–UHPC composite deck has been comprehensively studied worldwide. This review will summarize some important studies and findings on the behavior and fatigue performance of the orthotropic steel–UHPC composite deck. The existing studies and engineering applications indicate that such a deck system presents good bending behavior and high fatigue performance. The failure mode of shear studs in the UHPC layer is dominated by shear fractures. The cracking of the UHPC layer shall consider the superposition effect of stress from both the whole bridge structure and local decks. While some reasonable structural details in the traditional OSD may not work for the orthotropic steel–UHPC composite deck, this paper has shown that the steel–UHPC composite deck has excellent performance in bearing capacity, stiffness, and fatigue resistance. However, the fatigue performance of the steel–UHPC composite deck and its evaluation method still need validation from engineering applications. It is recommended to evaluate the stress behavior and structural parameters, as well as fatigue life by conducting the field test under in-service traffic conditions. Full article
(This article belongs to the Special Issue Brittle Behaviour of High-Performance Concrete Structures)
Show Figures

Figure 1

34 pages, 10339 KiB  
Article
Study on Fatigue Cracking of Diaphragm’s Arc Opening of OSD in Steel Bridges by Using Biaxial Stress Method
by Yong Zeng, Hongtao Kang, Xueqin Li, Zhijie Li, Yunchuan Xiao and Jianting Zhou
Materials 2023, 16(15), 5217; https://doi.org/10.3390/ma16155217 - 25 Jul 2023
Cited by 3 | Viewed by 1685
Abstract
Changes in loading position have a significant impact on the stress field of each vulnerable area of an orthotropic steel deck (OSD). The arc opening area of the diaphragm and the connecting area between the U-rib and the diaphragm under the moving load [...] Read more.
Changes in loading position have a significant impact on the stress field of each vulnerable area of an orthotropic steel deck (OSD). The arc opening area of the diaphragm and the connecting area between the U-rib and the diaphragm under the moving load are prone to fatigue cracking. By comparing the stress responses under different methods, the hot spot stress (HSS) method is used as the main stress extraction method in fatigue performance evaluation. The control stress of fatigue cracking was analyzed by comparing the direction of the principal stress field with the crack direction in this experiment. According to the stress amplitude deviation under the biaxial stress state, a set of methods for evaluating the effects of in-plane biaxial fatigue was developed. An improved luffing fatigue assessment S–N curve was applied to analyze the fatigue life of the diaphragm’s arc opening area. The results show that when the moving load is exactly above the connection of the deck and the web of the U-rib on one side, it is in the most unfavorable position in the transverse direction, and the diaphragm is mainly under the in-plane stress state. The longitudinal range of the stress influence line of the arc opening is approximately twice the diaphragm spacing. Two to three stress cycles are caused by one fatigue load. Fatigue crack control stress is the principal stress tangential to the arc opening’s edge in this area. The normal direction of the principal stress in the model test is roughly consistent with the crack initiation direction. The variation in the stress amplitude deviation in this area is caused by changes in the action position of the moving load. When the moving load is at a certain distance from the involved diaphragm, it is reduced to zero, implying that the in-plane fatigue effect is the greatest in this area. Full article
Show Figures

Figure 1

19 pages, 7674 KiB  
Article
The Multi-Scale Model Method for U-Ribs Temperature-Induced Stress Analysis in Long-Span Cable-Stayed Bridges through Monitoring Data
by Fengqi Zhu, Yinquan Yu, Panjie Li and Jian Zhang
Sustainability 2023, 15(12), 9149; https://doi.org/10.3390/su15129149 - 6 Jun 2023
Cited by 2 | Viewed by 1663
Abstract
Temperature is one of the important factors that affect the fatigue failure of the welds in orthotropic steel desks (OSD) between U-ribs and bridge decks. In this study, a new analysis method for temperature-induced stress in U-ribs is proposed based on multi-scale finite [...] Read more.
Temperature is one of the important factors that affect the fatigue failure of the welds in orthotropic steel desks (OSD) between U-ribs and bridge decks. In this study, a new analysis method for temperature-induced stress in U-ribs is proposed based on multi-scale finite element (FE) models and monitoring data First, the long-term temperature data of a long-span cable-stayed bridge is processed. This research reveals that a vertical temperature gradient is observed rather than a transverse temperature gradient on the long-span steel box girder bridge with tuyere components. There is a linear relationship between temperature and temperature-induced displacement, taking into account the time delay effect (approximately one hour). Then, a multi-scale FE model is established using the substructure method to condense each segment of the steel girder into a super-element, and the overall bridge temperature-induced displacement and temperature-induced stress of the local U-rib on the OSD are analyzed. The agreement between the calculated temperature-induced stresses and measured values demonstrates the effectiveness of the multi-scale modeling strategy. This approach provides a valuable reference for the evaluation and management of bridge safety. Finally, based on the multi-scale FE model, the temperature-induced strain distribution of components on the OSD is studied. This research reveals that the deflection of the girder continually changes with the temperature variation, and the temperature-induced strain of the girder exhibits a variation range of approximately 100 με. Full article
(This article belongs to the Special Issue Sustainable Structures and Construction in Civil Engineering)
Show Figures

Figure 1

23 pages, 11585 KiB  
Article
Stochastic Propagation of Fatigue Cracks in Welded Joints of Steel Bridge Decks under Simulated Traffic Loading
by Naiwei Lu, Jing Liu, Honghao Wang, Heping Yuan and Yuan Luo
Sensors 2023, 23(11), 5067; https://doi.org/10.3390/s23115067 - 25 May 2023
Cited by 8 | Viewed by 2248
Abstract
The fatigue cracking of orthotropic steel bridge decks (OSDs) is a difficult problem that hinders the development of steel structures. The most important reasons for the occurrence of fatigue cracking are steadily growing traffic loads and unavoidable truck overloading. Stochastic traffic loading leads [...] Read more.
The fatigue cracking of orthotropic steel bridge decks (OSDs) is a difficult problem that hinders the development of steel structures. The most important reasons for the occurrence of fatigue cracking are steadily growing traffic loads and unavoidable truck overloading. Stochastic traffic loading leads to the random propagation behavior of fatigue cracks, which increases the difficulty of the fatigue life evaluations of OSDs. This study developed a computational framework for the fatigue crack propagation of OSDs under stochastic traffic loads based on traffic data and finite element methods. Stochastic traffic load models were established based on site-specific, weigh-in-motion measurements to simulate fatigue stress spectra of welded joints. The influence of the transverse loading positions of the wheel tracks on the stress intensity factor of the crack tip was investigated. The random propagation paths of the crack under stochastic traffic loads were evaluated. Both ascending and descending load spectra were considered in the traffic loading pattern. The numerical results indicated that the maximum value of KI was 568.18 (MPa·mm1/2) under the most critical transversal condition of the wheel load. However, the maximum value decreased by 66.4% under the condition of transversal moving by 450 mm. In addition, the propagation angle of the crack tip increased from 0.24° to 0.34°—an increase ratio of 42%. Under the three stochastic load spectra and the simulated wheel loading distributions, the crack propagation range was almost limited to within 10 mm. The migration effect was the most obvious under the descending load spectrum. The research results of this study can provide theoretical and technical support for the fatigue and fatigue reliability evaluation of existing steel bridge decks. Full article
Show Figures

Figure 1

24 pages, 12153 KiB  
Article
Fatigue Life Evaluation of Orthotropic Steel Deck of Steel Bridges Using Experimental and Numerical Methods
by Yong Zeng, Shenxu Wang, Xiaofang Xue, Hongmei Tan and Jianting Zhou
Sustainability 2023, 15(7), 5945; https://doi.org/10.3390/su15075945 - 29 Mar 2023
Cited by 8 | Viewed by 2455
Abstract
Orthotropic steel deck (OSD) structures are widely used in the bridge deck system of rail transit bridges. Reducing the amplitude of the stress intensity factor is the most effective method to improve the fatigue life of OSD structures. In order to explore the [...] Read more.
Orthotropic steel deck (OSD) structures are widely used in the bridge deck system of rail transit bridges. Reducing the amplitude of the stress intensity factor is the most effective method to improve the fatigue life of OSD structures. In order to explore the fatigue crack propagation of the OSD structure and the factors affecting the amplitude of the structural stress intensity factor, linear elastic fracture mechanics and Paris’ law is used for theoretical support in this paper. Firstly, a cable-stayed bridge of urban rail transit is taken as the research object, a full-scale segment model of the OSD structure is designed and static and fatigue tests are carried out. Based on the test data, the fatigue life of the structure is simulated and predicted. Finally, ABAQUS and Franc3D are used to analyze the influence of parameters, such as U-rib thickness, roof thickness and diaphragm thickness, of the OSD structure on the amplitude of the stress intensity factor. The test and FEM analysis results show that the thickness of diaphragm and the height of the U-rib have little effect on the fatigue life of the OSD structure, appropriately increasing the thickness of the top plate and U-rib has a positive significance for prolonging the fatigue life of the structure. In addition, it is also of reference value to the application of sustainability and the science of sustainable development. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

14 pages, 3949 KiB  
Article
Numerical Simulation of Fatigue Cracking of Diaphragm Notch in Orthotropic Steel Deck Model
by Yong Zeng, Hongwei He, Yu Qu, Xudong Sun, Hongmei Tan and Jianting Zhou
Materials 2023, 16(2), 467; https://doi.org/10.3390/ma16020467 - 4 Jan 2023
Cited by 24 | Viewed by 4181
Abstract
Orthotropic steel deck (OSD) are widely used in steel bridges because of their many advantages, but the structures and stresses of OSD are complex and sensitive to fatigue. Based on the model test, the structural fatigue analysis of OSD is carried out by [...] Read more.
Orthotropic steel deck (OSD) are widely used in steel bridges because of their many advantages, but the structures and stresses of OSD are complex and sensitive to fatigue. Based on the model test, the structural fatigue analysis of OSD is carried out by using the extended finite element method (XFEM) to understand and reveal the causes of fatigue detail cracks and the generation and propagation of fatigue cracks at the welding ends of diaphragms, U-ribs, and diaphragms, which are the main structural fatigue details of the deck. The results show that: the fatigue crack at the diaphragm opening is not caused by a single factor, but the horizontal relative displacement is the root-cause of the fatigue crack; the contribution of out-of-plane displacement to the fatigue crack is more significant than that of vertical displacement or in-plane stress, which often leads to the initiation and propagation of the fatigue crack; the crack-propagation direction is perpendicular to the contour of principal stress, and the crack propagates into the plate along the high-stress area in the horizontal direction, which is in accordance with the basic theory of crack propagation. The research methods can provide technical support for the design of similar structures. Full article
Show Figures

Figure 1

19 pages, 7174 KiB  
Article
Effect of Autonomous Vehicles on Fatigue Life of Orthotropic Steel Decks
by Shengquan Zou, Dayong Han, Wei Wang and Ran Cao
Sensors 2022, 22(23), 9353; https://doi.org/10.3390/s22239353 - 1 Dec 2022
Cited by 2 | Viewed by 1746
Abstract
The fatigue life of orthotropic steel decks (OSDs) is significantly affected by vehicle loads, and the local stress response of OSDs is sensitive to the transverse position of vehicle loads. However, the presence of autonomous vehicles is likely to change the transverse distribution [...] Read more.
The fatigue life of orthotropic steel decks (OSDs) is significantly affected by vehicle loads, and the local stress response of OSDs is sensitive to the transverse position of vehicle loads. However, the presence of autonomous vehicles is likely to change the transverse distribution of vehicles within the lane, thereby affecting vehicle-induced fatigue damage to OSDs. Therefore, it is necessary to evaluate the potential effect of autonomous vehicles on the fatigue life of OSDs so that appropriate strategies can be implemented to control the transverse positions of autonomous vehicles passing the bridge deck. To this end, fatigue damages of several typical fatigue details in a conventional OSD (COSD) and a lightweight composite OSD (LWCD) induced by vehicle loads were calculated based on finite element analysis, and their fatigue lives were evaluated based on Miner’s Rule, in which different transverse distribution patterns of autonomous vehicles and their proportions in the mixed traffic flow were considered. The results indicate that fatigue lives of both the COSD and the LWCD can be negatively affected by autonomous vehicles traveling across the bridge without any constraints on the transverse distribution, especially when their proportion in the mixed traffic flow exceeds 30%. Compared to the scenario without autonomous vehicles, the fatigue damage of most fatigue details in OSDs may increase by 51% to 210% in the most unfavorable case due to the presence of autonomous vehicles. Nevertheless, it is feasible to extend the fatigue life of OSDs by optimizing the transverse distribution of autonomous vehicles. Specifically, the fatigue life of most fatigue details in the COSD could be extended by more than 86% in the most favorable case when a bimodal Gaussian distribution is adopted as the transverse distribution pattern of autonomous vehicles. Moreover, both the negative and positive effects of autonomous vehicles on the fatigue life of the COSD are more significant than those of the LWCD in most cases. The results can provide references for the maintenance of OSDs under the action of autonomous vehicles. Full article
Show Figures

Figure 1

Back to TopTop