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Abstract: Orthotropic steel deck (OSD) structures are widely used in the bridge deck system of rail
transit bridges. Reducing the amplitude of the stress intensity factor is the most effective method to
improve the fatigue life of OSD structures. In order to explore the fatigue crack propagation of the
OSD structure and the factors affecting the amplitude of the structural stress intensity factor, linear
elastic fracture mechanics and Paris’ law is used for theoretical support in this paper. Firstly, a cable‑
stayed bridge of urban rail transit is taken as the research object, a full‑scale segment model of the
OSD structure is designed and static and fatigue tests are carried out. Based on the test data, the
fatigue life of the structure is simulated and predicted. Finally, ABAQUS and Franc3D are used to
analyze the influence of parameters, such asU‑rib thickness, roof thickness and diaphragm thickness,
of the OSD structure on the amplitude of the stress intensity factor. The test and FEM analysis results
show that the thickness of diaphragm and the height of the U‑rib have little effect on the fatigue life
of the OSD structure, appropriately increasing the thickness of the top plate and U‑rib has a positive
significance for prolonging the fatigue life of the structure. In addition, it is also of reference value
to the application of sustainability and the science of sustainable development.

Keywords: urban rail transit; orthotropic steel deck; fatigue testing; fatigue residual life; fatigue
cracking; finite element method (FEM)

1. Introduction
Nowadays, environmental protection and energy saving have become really impor‑

tant, and urban rail transit has the advantages of being efficient, convenient, green and
has the ability to relieve traffic congestion, etc. It has become one of the preferred modes
of transport for most people. The deck plates of such structures are subjected to com‑
plex forces and are susceptible to fatigue cracking damage under high frequency fatigue
cyclic loading. Moreover, the fatigue cracking of steel bridge deck has the characteristics
of widespread, early and frequent occurrence. Once it occurs, the structure will be dam‑
aged before reaching the service life, resulting in huge economic losses. Therefore, it is
necessary to discuss and study the fatigue cracking of the orthotropic steel bridge deck of
urban rail transit bridges, and improve the bearing capacity of the structure and the safety
performance of use.

Wu et al. [1] used a road rail dual‑purpose arch bridge as a research object, deter‑
mined the fatigue load spectrum parameters of the light rail support based on the actual
light rail traffic, calculated the internal force history, and determined the constant fatigue
load amplitude required for the fatigue test of three million cycles by using the linear cu‑
mulative damage criterion. Baietto et al. [2] proposed a method to predict crack expansion
by cross‑validating themeasured test values with the calculated values from finite element
software analysis. Baietto et al. [3] conducted fatigue tests on two sets of RD joint speci‑
menswith 15%and 75%weld penetration in order to research the fatigue resistance around
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the rib plate (RD) weld in orthotropic steel bridge deck. Kainuma et al. [4] monitored the
structural health of the Manhattan Bridge in real time based on FBG sensors, using de‑
terministic and probabilistic methods to predict the remaining fatigue life of typical crack
details. These studies are focused on the fatigue performance of the orthotropic bridge
deck of highway or railway steel bridges, while there is less research on the orthotropic
bridge deck of urban rail steel bridges, especially on the uniqueness of the urban rail steel
bridge structure and load.

In order to better understand the fatigue problems of orthotropic anisotropic plate
structures for urban rail transit, a rail transit cable‑stayed bridge is used as the background
to study the fatigue design and cracking problems of this structure. Relying on the design
model dimensions of an orthotropic anisotropic steel bridge deck structure for an urban
rail transit cable‑stayed bridge, fatigue tests are carried out. Based on the fatigue cracking
conditions of the tests, the finite element expansion simulations of the cracks are carried
out, and the remaining fatigue life of the structure is predicted based on the simulation
results and compared with the results of the tests. In the simulation of the crack test, the
method combining ABAQUS and Franc3D is accurate and effective, which is conducive
to the study of fatigue crack parameterization. The influence degree of the initial crack
size, U‑rib thickness, U‑rib height, top plate thickness and cross partition thickness on the
magnitude of the stress intensity factor at the leading edge of the cracks and the remaining
fatigue life of the structure are investigated.

2. Fatigue Crack Expansion and Analysis of Calculation Results
2.1. Calculation of the Stress Intensity Factor

The cross‑integration method (M‑integration) is used to calculate the stress intensity
factors. The cross‑integration method enables the calculation of stress intensity factors for
isotropic materials and generally anisotropic materials with Type I, II and III cracks (KI,
KII and KIII). The calculation principle of interactive integration is as follows.

Based on the fracture mechanics, it can be integrated as

J = lim
Γs→0

∫
Γs
(wδij − σijuij)njdΓ (1)

where nj is the vector of the outer normal, Γs is the crack tip perimeter, and Γs is shown in
Figure 1.
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w is expressed as the strain energy density with the following expression [5,6]:

w =
1
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σijε
m
ij (2)
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where εm
ij indicates partial strain.

J =
∫
A

(σij
∂ui
∂x1

− wδ1j)
∂q
∂xj

dA +
∫
A

(σij
∂ui
∂x1

− wδ1j)qdA (3)

where q indicates the crack expansion vector.
Superimposing the real stress field around the crack with the auxiliary fields (uaux,

σaux, εaux) on each other to obtain [7–9]

JS =
∫
A

{
(σij + σaux

ij ) ( ∂ui
x1

+
∂uaux

i
x1

)− 1
2 (σik + σaux

ik )(εik + εaux
ik ) δ1j

} ∂q
∂x1

dA

+
∫
A

{
(σij + σaux

ij ) ( ∂ui
x1

+
∂uaux

i
x1

)− 1
2 (σik + σaux

ik )(εik + εaux
ik ) δ1j

}
qdA

(4)

M can be rewritten as the interaction credit

M =
∫
A

{
σijuaux

i,1 + ui,1σaux
ij − 1

2 (σikεaux
ik + σaux

ik εm
ik)δ1j

}
q,jdA

+
∫
A

{
σijuaux

i,1 + ui,1σaux
ij − 1

2 (σikεaux
ik + σaux

ik εm
ik)δ1j

}
qdA

(5)

Substituting the split‑tip Auxiliary Field A into the above equation, then [10–12]

M =
∫
A

{
σijuaux

i,1 + ui,1σaux
ij − σikεaux

ik

}
q,jdA

+
∫
A

{
σijuaux

i,1 + ui,1σaux
ij − σikεaux

ik

}
qdA

(6)

According to Equations (1) and (3), Equation (6) can be expressed as

JS = J + Jaux + M (7)

For open cracks, the relationship between the M integral and the Type I stress, the
intensity factor is:

M = 2
E∗ KIKaux

I

KI =
E∗
2 M

(8)

where Kaux
I = 1.

For plane strain state, E∗ = E/(1 − v2), where ν indicates the Possion ratio.
The normalized stress intensity factor (KI, KII and KIII) calculation results of the initial

crack front are shown in Figure 2. The calculation at the position 0.5 corresponds to the
calculated value of the stress intensity factor at the deepest point in the short semi−axis of
the semi−elliptical crack, and SIF represents the stress intensity factor value.
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As can be seen in Figure 2, the initial crack Type I stress intensity factor is symmetri‑
cally distributed, with larger values at the middle of the crack leading edge (short
semi−axial crack tip) and at the ends of the long semi−axis, with a maximum value of
up to 77.67 MPa·m1/2, which shows that the initial crack expands relatively quickly at the
ends of the long and short semi−axes; the stress intensity factors of Type II and Type III
fluctuate around 0 MPa·m1/2, which is much smaller than the stress intensity factors for
Type II and Type III, which fluctuate around 0 MPa.mm and are much smaller than those
for Type I. It shows that the crack is a composite crack dominated by Type I cracks.

2.2. Fatigue Life Assessment Method Based on Fracture Mechanics
In the assessment of the fatigue life ofmetallic structures, many studies have been con‑

ducted and a many achievements have been made. Based on the fatigue crack expansion
of metallic materials, the mathematical model of the fatigue crack expansion, as shown in
Figure 3, was obtained [13,14].
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As can be seen in Figure 3, crack expansion can be divided into three stages. When
the crack tip’s stress intensity factor amplitude value, ∆K, is less than the threshold value,
∆Kth, the crack is in the first stage, and the crack does not expand. When the crack tip’s
∆K is higher than ∆Kth, the crack is in the second stage, and the crack will gradually and
smoothly expand, which is currently described by the Paris law for this stage of crack
expansion. When the crack tip’s, ∆K, is close to ∆KIC, the crack is in the third stage, and it
expands rapidly and fractures unsteadily.

In this paper, the Paris lawwill be used to estimate the fatigue life of components; the
Paris law is as follows [15]:

da
dN

= C(∆K)m (9)

where N is the number of stress cycles; ∆K = Kmax − Kmin is the amplitude value of the
stress intensity factor; Kmax
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Kmin are the maximum and minimum values of K under
cyclic loading, respectively; C and m represent the material parameters associated with
the test conditions.

Integrating Equation (9) over the crack length, a, an expression for the remaining fa‑
tigue life of the member can be obtained [16–18].

N =
∫ acr

a0

1
C(∆K)m da (10)

where a0 is the initial crack length, and acr is the critical crack length.
When m = 2, the expression for calculating the remaining life of a fatigue crack is

N =
1

C(∆K)m ln(
acr

a0
) (11)
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When m ̸= 2, the expression for calculating the remaining life of a fatigue crack is

N =
1

C(∆K)m(0.5m − 1)
(a1−0.5m

0 − a1−0.5m
cr ) (12)

The Paris law is simple and has a small margin of error, and is one of the most com‑
monly used formulas for predicting the remaining fatigue life of a steel component [19–21].

2.3. Simulation of Crack Extension
A three‑dimensional crack growth is predicted in the following steps:

(1) The local torsion angle can be calculated based on the stress at the leading edge of
the local crack in the local co‑ordinate system, shown in Figure 4, where the stress is
determined by the local stress intensity factor.

(2) Solve for the length of the local extension at each point.
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The leading edge of the new crack after extension is smoothed, and the leading edge
of the crack is externally inserted outside the free surface of the structure.

A schematic diagram of the predicted crack front in Franc3D is shown in Figure 5.
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2.4. The Steps of Calculating Fracture Parameters by Finite Element Method
Fatigue crack growth and fracture parameters are conducted by the finite element

method as follows [22–24]:
(1) Building the finite element model

In finite element software (e.g., ABAQUS), the whole model without cracks is created.
To increase the speed of calculation, the elements in the crack extension area are usually
set as a group defined as a sub‑model, and the non‑crack extension area is defined as the
key pattern;

(2) Introduction of initial cracking

The shape and size of the initial crack are inserted into the sub‑model according to
the operation flow of the new defect wizard, and the mesh is regenerated.

(3) Finite element calculation
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The cracked sub‑model is reassembled with the master pattern as a whole model
containing the cracks, and it is automatically submitted to the finite element software
for calculation;

(4) Prediction of crack growth

The stress results and the stress intensity factors of each node at the crack front are
read, the expansion step or the number of cyclic load actions are set, the position of the
crack front are updated, and the mesh of the sub‑model is remeshed;

(5) Performing new finite element calculations

When the obtained results do not meet the user‑defined stop conditions, the crack
front position will continue to be updated and calculated. If the obtained results meet the
user‑defined stop conditions, the propagation analysis will be completed.

3. Model Design of Fatigue Test
3.1. Model Design

The test is based on an urban rail transit cable‑stayed bridge with a main span of
340 m. The size of the model is designed according to the structural size of the steel deck
of the bridge, and the model is simplified according to the actual situation. The Q345qD
steel material is used as the model material. Three U‑ribs with a spacing of 600 mm are set
in the transverse bridge direction, and three diaphragm plates with a spacing of 827 mm
are set in the longitudinal bridge direction. The 12‑mm‑thick steel plates are used at both
ends for heads, and the size is 1800mm× 121mm× 281mm. The steel box is placed at the
lower part of both ends of the bridge deck andused as a support to keep the deck horizontal.
The overall dimension of the model is 3000 mm × 1800 mm, and the thickness of the deck,
diaphragm and U‑shaped longitudinal rib is 16 mm, 12 mm and 8 mm, respectively. Since
the restraints between the diaphragm and theU‑ribwill produce secondary bending stress,
in order to reduce this stress, appropriate notches are usually made at the intersection
between the lower part of the U‑rib and the diaphragm, and the notch radius of the model
designed for this fatigue test is 25 mm. The front view and three‑dimensional view of the
model are shown in Figures 6 and 7, respectively.
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3.2. Layout of Measuring Points
In order to investigate the stress and fatigue performance of the OSD of the test model,

strain measuring points are arranged at the joint of longitudinal ribs and diaphragms, the
joint of longitudinal ribs and top plates and the edges of diaphragm openings. The mea‑
suring point numbers of the middle diaphragm, side diaphragms, longitudinal ribs and
top plates are ZHGB1‑1 to ZHGB1‑35, BHGB1‑1 to BHGB1‑19, BHGB2‑1 to BHGB2‑5, U1
to U6, and P1 to P6, respectively. The strain gauges used in this test were BX120‑3CA, with
a sensitive grid size of 3 mm × 2 mm and a resistance of 120 Ω ± 0.1%. A total of 71 strain
gauges were laid out for the test, of which 35 were laid out in the middle cross partition,
19 in Side Cross Partition 1 (BHGB1), five in Side Cross Partition 2 (BHGB2), which was
symmetrical to BHGB1, six in the U‑rib, and six in the top plate. The specific location of
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the measurement points is shown in Figure 8, where the black numbers in Figure 8a indi‑
cate the location of the intermediate measurement points, the red numbers in the brackets
indicate the location of the Side Bulkhead 1 (BHGB1) measurement points, and the blue
numbers indicate the location of the Side Bulkhead 2 (BHGB2) measurement points.
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4. Fatigue Test Results
4.1. Static Load Test Results

Before the static load test, the strain gauges are checked for adhesion and whether
they are in good condition, after which at least three preloads are carried out and data are
collected. The loading principle of the static load test is to load step by step from zero to the
maximum static load value, and then all loads are removed symmetrically. After each load,
a three‑minute pause was taken to collect strain and displacement data. The maximum
value of the static load for this test is 131.6 kN and thewhole loading process is 0 kN, 10 kN,
30 kN, 70 kN, 110 kN, 131.6 kN, 110 kN, 70 kN, 30 kN, 10 kN and 0 kN, respectively. The
above steps are operated at least twice, and the average values are calculated in order to
reduce the dispersion of the test data.

The comparison results between the measured values and the calculated values of
some key test points are listed in Table 1.

Table 1. Comparison of measured and calculated values at selected measurement points under
static load.

Location Measurement Points Measured Values/MPa Calculated Values/MPa

Roof plates
P2 56.6 55.5
P3 156.6 160.1
P4 112.7 113.3

U‑ribs
U2 53.4 55.0
U3 64.7 63.9
U4 36.6 35.2

Side dividers 1

BHGB1‑6 9.3 9.6
BHGB1‑8 12.4 11.9
BHGB1‑10 14.2 14.5
BHGB1‑12 11.5 12.6
BHGB1‑14 6.3 6.8

Mid‑transom bulkhead

ZHGB1‑7 29.0 29.3
ZHGB1‑9 39.8 40.2
ZHGB 1‑10 89.3 90.0
ZHGB 1‑19 21.6 21.9
ZHGB 1‑22 50.9 51.2
ZHGB 1‑31 19.3 18.7
ZHGB 1‑33 29.1 30.3
ZHGB1‑35 11.1 10.9

4.2. Fatigue Test Process
The fatigue load range for this test is from 10 kN to 131.6 kN. When the cyclic load‑

ing times reach 50,000 times, 250,000 times, 500,000 times, 750,000 times, 1,000,000 times,
1,250,000 times, 150,000 times, 750,000 times and 2,000,000 times themachine is stopped for
a static load test, the strain values and displacement values are measured, and the model
is checked [25–27].

If the test specimen is still in good condition when the number of loadings reaches
two million, the load amplitude is increased and the fatigue test is continued. When the
loading times reach 2.25 million times, 2.5 million times, 2.75 million times, 3.0 million
times, 3.25 million times, and 3.5 million times the test is stopped and the strain, displace‑
ment values are measured and the condition of the model is checked. If the specimen has
not been damaged after 3.5 million cycles of loading, the test is stopped. The fatigue load
test process is shown in Figure 9.
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4.3. Fatigue Cracking’s Location
At the completion of 2 million cycles of loading, the fatigue load amplitude was

121.6 kN, and no fatigue crack was found after careful observation. At 2 million to
2.5 million and 2.5 million to 3 million cycles, the fatigue load amplitude was increased
to 1.25 and 1.5 times the original one, respectively, and no crack that was visible to the
naked eye appeared on the test model. At 3 million to 3.25 million cycles, the fatigue load
amplitudewent up by 1.75 times the original one, and a crack of 15.1 cm in length appeared
near the boundary of the loading location. At 3.25 million to 3.5 million cycles, a crack of
18.6 cm appeared. The fatigue cracks in the test model are shown in Figure 10.
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5. Fatigue Crack Life Prediction
5.1. Fatigue Cracking’s Location

From the test results, it can be seen that the cracks appear at the junction of the top
plate–U‑rib–middle diaphragm and crack downwards from the top surface of the top plate,
so this section is devoted to an extended analysis of the cracks at this point. According to
the study of fatigue cracking by Ya et al. [28] and Chen Chuanyao, Liu Yanping et al. [29],
the shape of the fatigue crack can usually be approximated as a semi‑ellipse, and it is as‑
sumed in this section that the initial half short axis of the crack is 0.1 mm and the half long
axis is 0.15mm; the structure is considered to be damagedwhen the depth of the crack pen‑
etrates the top plate, and the corresponding number of cyclic loads is the fatigue residual
life of the OSD model structure.

ABAQUS modelling software is used to build a whole model without an initial crack,
and the load and boundary conditions of the whole model are the same as the test model.
The model and calculation results are shown in Figures 11–14. The elements in the crack
extension area are set into a group and defined into a sub‑model; then, the model is im‑
ported into Franc3D, so an initial crack is inserted into the sub‑model and the mesh is
regenerated [30,31].
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Figure 14. Finite element vertical displacement nephogram/mGeometric model.

At this time, the leading edge of the crack is divided into three rings of elements
with a radius of one tenth of the short semi−axis of the crack. The initial crack front
mesh division is shown in Figure 15. Finally, the sub‑model and the key pattern are re‑
assembled into a model with the crack, and are submitted together to ABAQUS for finite
element calculations.
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Typically, the extension step for each node on the leading edge of the crack is different.
Two methods of calculating the extension step are provided in Franc3D software. One is
to specify the extension step for the node located at the median value of the stress intensity
factor; the extension step for all other nodes is obtained by appropriate scaling, and the
other is to specify the number of cycles of the load and solve directly for the extension
step for each node according to the Paris law [32–34]. In this section, the former method
was used to calculate the expansion step for the nodes on the leading edge of the crack,
specifying the expansion step at the median stress intensity factor to be less than or equal
to fifteen percent of the characteristic size of the crack for a total of 37 expansion steps.

The specific extension step lengths for each step are shown in Table 2, and the crack
changes throughout the extension process are shown in Figures 16–22. Due to the relatively
large number of extension steps, only the crack changes for some key extension steps are
shown [35,36].

Table 2. Crack extension sizes per step.

Extension Steps Current Size/mm Extended Step
Size/mm Extension Steps Current Size/mm Extended Step

Size/mm

0 0.100 0.015 19 1.424 0.213
1 0.115 0.017 20 1.637 0.245
2 0.132 0.020 21 1.882 0.282
3 0.152 0.023 22 2.164 0.325
4 0.175 0.026 23 2.489 0.373
5 0.201 0.030 24 2.863 0.429
6 0.231 0.035 25 3.292 0.494
7 0.266 0.040 26 3.786 0.568
8 0.306 0.046 27 4.354 0.653
9 0.352 0.053 28 5.007 0.751
10 0.405 0.061 29 5.758 0.864
11 0.465 0.070 30 6.621 0.993
12 0.535 0.080 31 7.614 1.142
13 0.615 0.092 32 8.757 1.313
14 0.708 0.106 33 10.070 1.510
15 0.814 0.122 34 11.580 1.737
16 0.936 0.140 35 13.318 1.341
17 1.076 0.161 36 14.659 1.341
18 1.238 0.186 37 16.000 /

Figures 16–22 are shown below.
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Figure 17. Crack shape simulation in Step 6: (a) Side view of the crack; (b) Front view of the crack.
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Figure 22. Crack shape simulation in Step 36: (a) Side view of the crack; (b) Top view of the crack;
(c) Front view of the crack.

The stress intensity factor for each key extension stepwas calculated using themethod
of calculating the stress intensity factors for the initial crack, and the results are shown in
Figure 23. Due to the large number of extension steps, only some of the extension steps
are listed in Figure 23.
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According to Figure 23, the stress intensity factor at the middle point of the leading
edge of the crack is larger than the other points when the crack is first expanded, so the
expansion rate at this point is relatively large. With the increases of the expansion steps,
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the stress intensity factors at about 5–10% from the two end points of the long half‑axis are
obviously larger than the stress intensity factors at other points, so the expansion rate of
the crack along the long half‑axis is larger than the expansion rate along the short half‑axis.
At the same time, as the crack expands, the stress intensity factor at the middle point of
the leading edge of the crack shows a trend of firstly increasing and then decreasing. The
reason for this phenomenonmay be the fact that the crack expansion in the length direction
is based on the expansion fitting in the depth direction, which makes the expansion rate in
both directions slightly different, which in turn may lead to an increase in the ratio of the
long semi axis to the short semi axis in the expansion process, and the gradual flattening of
the crack shape, which is no longer stable, also causes a change in the stress intensity factor
at the mid‑point of the leading edge of the crack [37–39]. The observation of the model test
shows that the cracks are indeed very flat and long semi‑elliptical in shape, which shows
that the expansion of the fatigue cracks is objective and inevitably related to the special
stress pattern of the OSD structure. The variation in the length and direction of the crack’s
long and short semi‑axes during the whole expansion process are shown in Figure 24.

Sustainability 2023, 15, x FOR PEER REVIEW 17 of 26 
 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-100
-50

0
50

100
150
200
250
300
350
400
450
500

K
I/M

Pa
.m

m
1/

2

Normalised crack leading edge length

 Extension step 1
 Extension step  6
 Extension step  12
 Extension step  18
 Extension step  24
 Extension step 30
 Extension step 36

 
Figure 24. Calculation of stress intensity factors for the leading edge of some extended−step 
cracks. 

According to Figure 24, the stress intensity factor at the middle point of the leading 
edge of the crack is larger than the other points when the crack is first expanded, so the 
expansion rate at this point is relatively large. With the increases of the expansion steps, 
the stress intensity factors at about 5–10% from the two end points of the long half-axis 
are obviously larger than the stress intensity factors at other points, so the expansion rate 
of the crack along the long half-axis is larger than the expansion rate along the short half-
axis. At the same time, as the crack expands, the stress intensity factor at the middle point 
of the leading edge of the crack shows a trend of firstly increasing and then decreasing. 
The reason for this phenomenon may be the fact that the crack expansion in the length 
direction is based on the expansion fitting in the depth direction, which makes the expan-
sion rate in both directions slightly different, which in turn may lead to an increase in the 
ratio of the long semi axis to the short semi axis in the expansion process, and the gradual 
flattening of the crack shape, which is no longer stable, also causes a change in the stress 
intensity factor at the mid-point of the leading edge of the crack [37–39]. The observation 
of the model test shows that the cracks are indeed very flat and long semi-elliptical in 
shape, which shows that the expansion of the fatigue cracks is objective and inevitably 
related to the special stress pattern of the OSD structure. The variation in the length and 
direction of the crack’s long and short semi-axes during the whole expansion process are 
shown in Figure 25. 

  
(a) (b) 

Figure 25. Crack growth changes of long and short half axes: (a) Crack growth variation of long half-
axis; (b) Crack growth change of short half-axis. 

5.2. Life Expectancy 
The relationship between the number of cyclic loads and the size of the crack in the 

short half-axis is calculated and shown in Figure 26. According to IIW (International Weld-
ing Association) recommendations, when the structural material is steel, the values of fa-
tigue crack growth parameters C and m  in the Paris formula are as shown in Table 3. 

  

Figure 24. Crack growth changes of long and short half axes: (a) Crack growth variation of long
half‑axis; (b) Crack growth change of short half‑axis.

5.2. Life Expectancy
The relationship between the number of cyclic loads and the size of the crack in the

short half‑axis is calculated and shown in Figure 25. According to IIW (InternationalWeld‑
ing Association) recommendations, when the structural material is steel, the values of fa‑
tigue crack growth parameters C and m in the Paris formula are as shown in Table 3.

Sustainability 2023, 15, x FOR PEER REVIEW 18 of 26 
 

 

Table 3. Parameter value of steel Paris formula. 

Kunit C  m  
N∙mm−3/2 5.21 × 10−13 3 
MPa∙m1/2 1.65 × 10−11 3 

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

H
al

f s
ho

rt 
sh

af
t c

ra
ck

 ti
p 

siz
e/

m
m

Number of cycles / ten thousand
 

Figure 26. Relationship between cyclic load times and crack size of short half-axis. 

As can be seen in Figure 26, when the crack short half-axis size reaches 16 mm, the 
number of load cycles is nearly 3.9 million. That is, the fatigue life of the OSD model struc-
ture is about 3.9 million, while the number of fatigue cycle loads obtained from the test is 
nearly 3.5 million, with a relative error of 11.4%, which is within an acceptable range. The 
relative error between the model test and the FEM simulation results is inevitable as the 
effects of objective factors because crack closure effects are not taken into account in the 
simulation of crack expansion, and the expansion parameters C and m  are estimated, 
whereas in practice, the values of C and m  are different for different materials, differ-
ent crack shapes and different stress ratios [40,41]. 

6. Influences of Different Parameters on Residual Life of Structure 
The crack fatigue life of OSD may be affected by the initial defect size, the thickness 

and height of the U-rib, the thickness of the top plate and the thickness of the diaphragm 
[42,43]. Therefore, the method combining ABAQUS and Franc3D is used to analyze the 
influence of various parameters on the crack life, providing a reference for the future de-
sign of this kind of OSD structure. 

6.1. Initial Crack Size 
Because the OSD structure is very complex, coupled with environmental and manu-

facturing factors, it is inevitable to produce initial defects. Generally, the initial crack size 
can be obtained by a nondestructive evaluation method or an equivalent initial defect size 
method. In order to investigate the effect of the initial crack size on the remaining fatigue 
life of the OSD structure, the stress intensity factor amplitude IKΔ  at the midpoint of the 
leading edge of the initial crack (tip of the short semi-axis) and the number of cyclic loads 
required to damage the structure (remaining fatigue life of the structure) are calculated 
for different sizes at a ratio of 3/2 between the long and short semi-axes. The relationship 
between the propagation depth of the middle point of the crack front and the amplitude 
of the stress intensity factor ( IKΔ ) is shown in Figure 27, and the relationship between the 
propagation depth of the middle point of the crack front and the number of cyclic loads is 
shown in Figure 28. 

Figure 25. Relationship between cyclic load times and crack size of short half‑axis.

Table 3. Parameter value of steel Paris formula.

Kunit C m

N·mm−3/2 5.21 × 10−13 3
MPa·m1/2 1.65 × 10−11 3



Sustainability 2023, 15, 5945 17 of 24

As can be seen in Figure 25, when the crack short half‑axis size reaches 16 mm, the
number of load cycles is nearly 3.9 million. That is, the fatigue life of the OSD model
structure is about 3.9 million, while the number of fatigue cycle loads obtained from the
test is nearly 3.5 million, with a relative error of 11.4%, which is within an acceptable range.
The relative error between the model test and the FEM simulation results is inevitable as
the effects of objective factors because crack closure effects are not taken into account in
the simulation of crack expansion, and the expansion parameters C and m are estimated,
whereas in practice, the values of C and m are different for different materials, different
crack shapes and different stress ratios [40,41].

6. Influences of Different Parameters on Residual Life of Structure
The crack fatigue life of OSD may be affected by the initial defect size, the thick‑

ness and height of the U‑rib, the thickness of the top plate and the thickness of the di‑
aphragm [42,43]. Therefore, the method combining ABAQUS and Franc3D is used to an‑
alyze the influence of various parameters on the crack life, providing a reference for the
future design of this kind of OSD structure.

6.1. Initial Crack Size
Because the OSD structure is very complex, coupled with environmental and manu‑

facturing factors, it is inevitable to produce initial defects. Generally, the initial crack size
can be obtained by a nondestructive evaluation method or an equivalent initial defect size
method. In order to investigate the effect of the initial crack size on the remaining fatigue
life of the OSD structure, the stress intensity factor amplitude ∆KI at the midpoint of the
leading edge of the initial crack (tip of the short semi‑axis) and the number of cyclic loads
required to damage the structure (remaining fatigue life of the structure) are calculated
for different sizes at a ratio of 3/2 between the long and short semi‑axes. The relationship
between the propagation depth of the middle point of the crack front and the amplitude
of the stress intensity factor (∆KI) is shown in Figure 26, and the relationship between the
propagation depth of the middle point of the crack front and the number of cyclic loads is
shown in Figure 27.
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From the above two figures, it can be seen that the amplitudes of the stress intensity 
factor at the middle point of the crack front during the propagation of the initial cracks 
have the same shape, showing a trend of first increasing and then decreasing. The smaller 
the initial crack size is, the smaller the stress intensity factor amplitude at the crack front 
is, and the larger the residual fatigue life is. 

6.2. Thickness of U-Rib 
The different thicknesses of the U-rib and all other constant parameters are studied. 

The relationship between the propagation depth of the middle point of the crack front and 
the amplitude of the stress intensity factor ( IKΔ ) is shown in Figure 29, and the relation-
ship between the propagation depth of the middle point of the crack front and the number 
of cyclic loads is shown in Figure 30.  

Figure 26. The relationship between the propagation depth at the middle point of crack front and
the amplitude of the stress intensity factor.
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Figure 27. The relationship between the propagation depth at the middle point of the crack front
and the number of cyclic loadings.

From the above two figures, it can be seen that the amplitudes of the stress intensity
factor at the middle point of the crack front during the propagation of the initial cracks
have the same shape, showing a trend of first increasing and then decreasing. The smaller
the initial crack size is, the smaller the stress intensity factor amplitude at the crack front
is, and the larger the residual fatigue life is.

6.2. Thickness of U‑Rib
The different thicknesses of the U‑rib and all other constant parameters are studied.

The relationship between the propagation depth of the middle point of the crack front and
the amplitude of the stress intensity factor (∆KI) is shown in Figure 28, and the relationship
between the propagation depth of the middle point of the crack front and the number of
cyclic loads is shown in Figure 29.
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Figure 30. The relationship between the propagation depth at the middle point of the crack front 
and the number of cyclic loadings. 

It can be seen from the above two figures that the thickness of the U-rib has a certain 
impact on the service life of the OSD structure. That is, with the increase in the thickness 
of U-rib, the amplitude of stress intensity factor at the middle point of the crack front 
decreases, and the fatigue life of the structure increases. This is probably due to the fact 
that the increase in U-rib thickness increases the stiffness of the structure as well as the 
load-carrying capacity; therefore, an appropriate increase in U-rib thickness can improve 
the service life of the structure while taking into account economic factors. 

6.3. U-Rib Height 
A simulation of the test model by the different heights of the U-rib and other constant 

parameters are performed [44]. The relationship between the propagation depth of the 
middle point of the crack front and the amplitude of the stress intensity factor ( IKΔ ) is 
shown in Figure 31, and the relationship between the propagation depth of the middle 
point of the crack front and the number of cyclic loads is shown in Figure 32. 

Figure 28. The relationship between the propagation depth at the middle point of the crack front
and the amplitude of the stress intensity factor.
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Figure 30. The relationship between the propagation depth at the middle point of the crack front 
and the number of cyclic loadings. 

It can be seen from the above two figures that the thickness of the U-rib has a certain 
impact on the service life of the OSD structure. That is, with the increase in the thickness 
of U-rib, the amplitude of stress intensity factor at the middle point of the crack front 
decreases, and the fatigue life of the structure increases. This is probably due to the fact 
that the increase in U-rib thickness increases the stiffness of the structure as well as the 
load-carrying capacity; therefore, an appropriate increase in U-rib thickness can improve 
the service life of the structure while taking into account economic factors. 
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parameters are performed [44]. The relationship between the propagation depth of the 
middle point of the crack front and the amplitude of the stress intensity factor ( IKΔ ) is 
shown in Figure 31, and the relationship between the propagation depth of the middle 
point of the crack front and the number of cyclic loads is shown in Figure 32. 

Figure 29. The relationship between the propagation depth at the middle point of the crack front
and the number of cyclic loadings.

It can be seen from the above two figures that the thickness of the U‑rib has a certain
impact on the service life of the OSD structure. That is, with the increase in the thickness
of U‑rib, the amplitude of stress intensity factor at the middle point of the crack front de‑
creases, and the fatigue life of the structure increases. This is probably due to the fact that
the increase in U‑rib thickness increases the stiffness of the structure as well as the load‑
carrying capacity; therefore, an appropriate increase in U‑rib thickness can improve the
service life of the structure while taking into account economic factors.

6.3. U‑Rib Height
A simulation of the test model by the different heights of the U‑rib and other constant

parameters are performed [44]. The relationship between the propagation depth of the
middle point of the crack front and the amplitude of the stress intensity factor (∆KI) is
shown in Figure 30, and the relationship between the propagation depth of the middle
point of the crack front and the number of cyclic loads is shown in Figure 31.
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Figure 32. The relationship between the propagation depth at the middle point of the crack front 
and the number of cyclic loadings. 

6.4. Thickness of Top Plate 
The simulation of the test model by the different thicknesses of the top plate and all 

other constant parameters are conducted. The relationship between the propagation 
depth of the middle point of the crack front and the amplitude of the stress intensity factor 
( IKΔ ) is shown in Figure 33, and the relationship between the propagation depth of the 
middle point of the crack front and the number of cyclic loads is shown in Figure 34. 

Figure 30. The relationship between the propagation depth at the middle point of the crack front
and the amplitude of the stress intensity factor.
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6.4. Thickness of Top Plate
The simulation of the test model by the different thicknesses of the top plate and all

other constant parameters are conducted. The relationship between the propagation depth
of the middle point of the crack front and the amplitude of the stress intensity factor (∆KI)
is shown in Figure 32, and the relationship between the propagation depth of the middle
point of the crack front and the number of cyclic loads is shown in Figure 33.
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Figure 33. The relationship between the propagation depth at the middle point of the crack front 
and the amplitude of the stress intensity factor. 
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Figure 34. The relationship between the propagation depth at the middle point of the crack front 
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As can be seen from the above two figures, with the increase in the top plate thickness,
the stress intensity factor amplitude at themiddle point of the crack leading edge decreases
significantly, and the stress intensity factor amplitude decreases by about 70% when the
top plate thickness increases from 10 mm to 18 mm; with the increase in the top plate
thickness the remaining life of the structure becomes longer and longer. An increase in
plate thickness, while taking into account economic factors, will greatly help to improve
the fatigue life of the structure.
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6.5. Thickness of the Horizontal Partition
The simulation analysis of the test structure is carried out by changing the diaphragm

thickness without changing other parameters. The relationship between the propagation
depth of the middle point of the crack front and the amplitude of the stress intensity factor
(∆KI) is shown in Figure 34, and the relationship between the propagation depth of the
middle point of the crack front and the number of cyclic loads is shown in Figure 35.
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It can be seen from the above two figures that when the thickness of the diaphragm
increases from 8 mm to 16 mm, the amplitude of the stress intensity factor at the middle
point of the crack front does not decrease, but increases because the change amplitude
is relatively small. Therefore, it can be seen that the thickness of the diaphragm has less
impact on the service life of the structure.
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Figure 35. The relationship between the propagation depth at the middle point of the crack front 
and the amplitude of the stress intensity factor. 
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7. Conclusions
More and more steel bridges for urban rail transport are being built. However, be‑

cause the vehicle load of a rail transit bridge is different from that of highways and rail‑
ways, the stress characteristics and stress distribution of its OSD structure are also differ‑
ent. Therefore, the research on the fatigue of urban rail transit bridges has a certain degree
of practical and theoretical significance.

In this paper, based on the OSD structure of an urban rail transit cable‑stayed bridge,
the fatigue test model is designed and carried out. The combination of ABAQUS and
Franc3D is used to simulate the fatigue crack growth of the test, the law of the crack growth
is studied, and the residual life of the structure is predicted according to the linear elastic
fracture mechanics. The main conclusions are the following:
(1) A crack with a length of 15.1 cm appears near the boundary of the loading position

for the first time after 3 million~3.25 million cycles of loading. After 3.25 million~
3.5 million cycles of cyclic loading, the crack expanded to 18.6 cm in the model test;

(2) The finite element calculation results and the test results are basically the same, so the
test can reflect the real state of the model force, and the test data have real reliability;

(3) TheMode I stress intensity factor of the initial crack is symmetrically distributed, and
the value is large, reaching 77.67 MPa. The stress intensity factors of Type II and III
fluctuate around 0 MPa·mm1/2, which belongs to the crack type dominated by the
Mode I crack;

(4) With the expansion of the crack, the stress intensity factor at the middle point of
the leading edge of the crack tends to increase and then decrease. When the size
of the short semi‑axis of the crack reaches 16 mm, the number of load cycles is nearly
3.9million, while the number of fatigue cycle loads tested is 3.5million, with a relative
error of 11.4%, which is within an acceptable range.

(5) The increases of U‑rib thickness and roof thickness have the positive effect of prolong‑
ing the fatigue life of OSD. The influence of roof thickness is particularly significant.
When the roof thickness increases from 10 mm to 18 mm, the amplitude of the stress
intensity factor decreases by about 70%, which is more helpful in increasing the fa‑
tigue life.
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