Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (451)

Search Parameters:
Keywords = orthogonal frequency-division multiplexing (OFDM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2005 KiB  
Article
Automatic Classification of 5G Waveform-Modulated Signals Using Deep Residual Networks
by Haithem Ben Chikha, Alaa Alaerjan and Randa Jabeur
Sensors 2025, 25(15), 4682; https://doi.org/10.3390/s25154682 - 29 Jul 2025
Viewed by 153
Abstract
Modulation identification plays a crucial role in contemporary wireless communication systems, especially within 5G and future-generation networks that utilize a variety of multicarrier waveforms. This study introduces an innovative algorithm for automatic modulation classification (AMC) built on a deep residual network (DRN) architecture. [...] Read more.
Modulation identification plays a crucial role in contemporary wireless communication systems, especially within 5G and future-generation networks that utilize a variety of multicarrier waveforms. This study introduces an innovative algorithm for automatic modulation classification (AMC) built on a deep residual network (DRN) architecture. The approach is tailored to accurately identify advanced 5G waveform types such as Orthogonal Frequency-Division Multiplexing (OFDM), Filtered OFDM (FOFDM), Filter Bank Multicarrier (FBMC), Universal Filtered Multicarrier (UFMC), and Weighted Overlap and Add OFDM (WOLA), using both 16-QAM and 64-QAM modulation schemes. To our knowledge, this is the first application of deep learning in the classification of such a diverse set of complex 5G waveforms. The proposed model combines the deep learning capabilities of DRNs for feature extraction with Principal Component Analysis (PCA) for dimensionality reduction and feature refinement. A detailed performance evaluation is conducted using metrics like classification recall, precision, accuracy, and F-measure. When compared with traditional machine learning approaches reported in recent studies, our DRN-based method shows significantly improved classification accuracy and robustness. These results highlight the effectiveness of deep residual networks in improving adaptive signal processing and enabling automatic modulation recognition in future wireless communication technologies. Full article
(This article belongs to the Special Issue AI-Based 5G/6G Communications)
Show Figures

Figure 1

16 pages, 2137 KiB  
Article
Constellation-Optimized IM-OFDM: Joint Subcarrier Activation and Mapping via Deep Learning for Low-PAPR ISAC
by Li Li, Jiying Lin, Jianguo Li and Xiangyuan Bu
Electronics 2025, 14(15), 3007; https://doi.org/10.3390/electronics14153007 - 28 Jul 2025
Viewed by 144
Abstract
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is [...] Read more.
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is limited. Against this background, this paper proposes a constellation-optimized index-modulated OFDM (CO-IM-OFDM) framework that leverages neural networks to design a constellation suitable for subcarrier activation patterns. A correlation model between index modulation and constellation is established, enabling adaptive constellation mapping in IM-OFDM. Then, Adam optimizer is employed to train the constellation tailored for ISAC, enhancing spectral efficiency under PN and PAPR constraints. Furthermore, a weighting factor is defined to characterize the joint communication–sensing performance, thus optimizing the overall system performance. Simulation results demonstrate that the proposed method can achieve improvements in bit error rate (BER) by over 4 dB and in Cramér–Rao bound (CRB) by 2% to 8% compared to traditional IM-OFDM constellation mapping. It overcomes fixed constellation constraints of conventional IM-OFDM systems, offering theoretical innovation waveform design for low-power communication–sensing systems in highly dynamic environments. Full article
(This article belongs to the Special Issue Integrated Sensing and Communications for 6G)
Show Figures

Figure 1

15 pages, 541 KiB  
Article
Joint Optimization and Performance Analysis of Analog Shannon–Kotel’nikov Mapping for OFDM with Carrier Frequency Offset
by Jingwen Lin, Qiwang Chen, Yu Hua and Chen Chen
Entropy 2025, 27(8), 778; https://doi.org/10.3390/e27080778 - 23 Jul 2025
Viewed by 159
Abstract
An analog joint source-channel coding (AJSCC) based on Shannon–Kotel’nikov (S-K) mapping transmitting discrete-time encoded samples in orthogonal frequency division multiplexing (OFDM) systems over wireless channel has exhibited excellent performance. However, the phenomenon of carrier frequency offset (CFO) caused by the frequency mismatch between [...] Read more.
An analog joint source-channel coding (AJSCC) based on Shannon–Kotel’nikov (S-K) mapping transmitting discrete-time encoded samples in orthogonal frequency division multiplexing (OFDM) systems over wireless channel has exhibited excellent performance. However, the phenomenon of carrier frequency offset (CFO) caused by the frequency mismatch between the transmitter’s and receiver’s local oscillators often exists in actual scenarios; thus, in this paper the performance of AJSCC-OFDM with CFO is analyzed and the S-K mapping is optimized. A joint optimization strategy is developed to maximize the signal-to-distortion ratio (SDR) subject to CFO constraints. Considering that the optimized AJSCC-OFDM strategies will change the amplitude distribution of encoded symbol, the peak-to-average power ratio (PAPR) characteristics under different AJSCC parameters are also analyzed. Full article
(This article belongs to the Special Issue Next-Generation Channel Coding: Theory and Applications)
Show Figures

Figure 1

19 pages, 1116 KiB  
Article
Long-Range Sensing with CP-OFDM Waveform: Sensing Algorithm and Sequence Design
by Boyu Yao, Jiahao Bai, Jingxuan Huang, Xinyi Wang, Chenhao Yin and Zesong Fei
Electronics 2025, 14(15), 2928; https://doi.org/10.3390/electronics14152928 - 22 Jul 2025
Viewed by 145
Abstract
Integrated sensing and communication (ISAC) has become a key enabler in 5G-Advanced (5G-A) and future 6G systems, with Orthogonal Frequency Division Multiplexing (OFDM) widely adopted as the underlying waveform. However, due to the inherent structure of OFDM signals, traditional sensing algorithms often suffer [...] Read more.
Integrated sensing and communication (ISAC) has become a key enabler in 5G-Advanced (5G-A) and future 6G systems, with Orthogonal Frequency Division Multiplexing (OFDM) widely adopted as the underlying waveform. However, due to the inherent structure of OFDM signals, traditional sensing algorithms often suffer from a limited sensing range in practical applications. To address this issue, we propose a delay compensation algorithm that mitigates the impact of delay and ensures the gain of range-Doppler processing. Furthermore, we analyze the issue of ambiguous targets in CP-OFDM systems, considering both single-target and multi-target scenarios. To improve the detection probability and suppress the accumulated echo energy corresponding to ambiguous targets, we propose a sequence design criterion, in which part of the original signal is replaced with a designed sequence. Simulation results demonstrate that the proposed algorithm effectively improves detection range and ensures unambiguous target identification, while achieving effective suppression of ambiguous target energy. Compared with a conventional algorithm, it achieves a processing gain of up to 20 dB. Moreover, the results show that different redundancy ratios can be selected in varying scenarios to balance communication and sensing performance in ISAC systems. Full article
(This article belongs to the Special Issue Integration of Communication, Sensing and Computing for 6G)
Show Figures

Figure 1

14 pages, 1981 KiB  
Article
A Sparse Bayesian Technique to Learn the Frequency-Domain Active Regressors in OFDM Wireless Systems
by Carlos Crespo-Cadenas, María José Madero-Ayora, Juan A. Becerra, Elías Marqués-Valderrama and Sergio Cruces
Sensors 2025, 25(14), 4266; https://doi.org/10.3390/s25144266 - 9 Jul 2025
Viewed by 266
Abstract
Digital predistortion and nonlinear behavioral modeling of power amplifiers (PA) have been the subject of intensive research in the time domain (TD), in contrast with the limited number of works conducted in the frequency domain (FD). However, the adoption of orthogonal frequency division [...] Read more.
Digital predistortion and nonlinear behavioral modeling of power amplifiers (PA) have been the subject of intensive research in the time domain (TD), in contrast with the limited number of works conducted in the frequency domain (FD). However, the adoption of orthogonal frequency division multiplexing (OFDM) as a prevalent modulation scheme in current wireless communication standards provides a promising avenue for employing an FD approach. In this work, a procedure to model nonlinear distortion in wireless OFDM systems in the frequency domain is demonstrated for general model structures based on a sparse Bayesian learning (SBL) algorithm to identify a reduced set of regressors capable of an efficient and accurate prediction. The FD-SBL algorithm is proposed to first identify the active FD regressors and estimate the coefficients of the PA model using a given symbol, and then, the coefficients are employed to predict the distortion of successive OFDM symbols. The performance of this proposed FD-SBL with a validation NMSE of 47 dB for a signal of 30 MHz bandwidth is comparable to 46.6 dB of the previously proposed implementation of the TD-SBL. In terms of execution time, the TD-SBL fails due to excessive processing time and numerical problems for a 100 MHz bandwidth signal, whereas the FD-SBL yields an adequate validation NMSE of −38.6 dB. Full article
Show Figures

Figure 1

29 pages, 3101 KiB  
Article
Off-Grid Sparse Bayesian Learning for Channel Estimation and Localization in RIS-Assisted MIMO-OFDM Under NLoS
by Ural Mutlu and Yasin Kabalci
Sensors 2025, 25(13), 4140; https://doi.org/10.3390/s25134140 - 2 Jul 2025
Viewed by 387
Abstract
Reconfigurable Intelligent Surfaces (RISs) are among the key technologies envisaged for sixth-generation (6G) multiple-input multiple-output (MIMO)–orthogonal frequency division multiplexing (OFDM) wireless systems. However, their passive nature and the frequent absence of a line-of-sight (LoS) path in dense urban environments make uplink channel estimation [...] Read more.
Reconfigurable Intelligent Surfaces (RISs) are among the key technologies envisaged for sixth-generation (6G) multiple-input multiple-output (MIMO)–orthogonal frequency division multiplexing (OFDM) wireless systems. However, their passive nature and the frequent absence of a line-of-sight (LoS) path in dense urban environments make uplink channel estimation and localization challenging tasks. Therefore, to achieve channel estimation and localization, this study models the RIS-mobile station (MS) channel as a double-sparse angular structure and proposes a hybrid channel parameter estimation framework for RIS-assisted MIMO-OFDM systems. In the hybrid framework, Simultaneous Orthogonal Matching Pursuit (SOMP) first estimates coarse angular supports. The coarse estimates are refined by a novel refinement stage employing a Variational Bayesian Expectation Maximization (VBEM)-based Off-Grid Sparse Bayesian Learning (OG-SBL) algorithm, which jointly updates azimuth and elevation offsets via Newton-style iterations. An Angle of Arrival (AoA)–Angle of Departure (AoD) matching algorithm is introduced to associate angular components, followed by a 3D localization procedure based on non-LoS (NLoS) multipath geometry. Simulation results show that the proposed framework achieves high angular resolution; high localization accuracy, with 97% of the results within 0.01 m; and a channel estimation error of 0.0046% at 40 dB signal-to-noise ratio (SNR). Full article
(This article belongs to the Special Issue Communication, Sensing and Localization in 6G Systems)
Show Figures

Figure 1

21 pages, 1204 KiB  
Article
Multi-Task Learning for Joint Indoor Localization and Blind Channel Estimation in OFDM Systems
by Maria Camila Molina, Iness Ahriz, Lounis Zerioul and Michel Terré
Sensors 2025, 25(13), 4095; https://doi.org/10.3390/s25134095 - 30 Jun 2025
Viewed by 376
Abstract
In contemporary wireless communication systems, achieving precise localization of communicating devices and accurate channel estimation is crucial for enhancing operational efficiency and reliability. This study introduces a novel approach that integrates the localization task and channel estimation into a single framework. We present [...] Read more.
In contemporary wireless communication systems, achieving precise localization of communicating devices and accurate channel estimation is crucial for enhancing operational efficiency and reliability. This study introduces a novel approach that integrates the localization task and channel estimation into a single framework. We present a multi-task neural network architecture capable of simultaneously estimating channels from multiple base stations in a blind manner while estimating user terminal coordinates in given indoor environments. This approach exploits the relationship between channel characteristics and spatial information, using the same channel state information (CSI) data to perform both tasks with a single model. We evaluate the proposed solution, assessing its effectiveness across differing antenna spacing configurations and indoor test environments using both WiFi and 5G orthogonal frequency-division multiplexing (OFDM) systems. The results show performance benefits, achieving comparable channel estimation results to other studies while simultaneously providing a localization estimate, resulting in reduced model overhead while leveraging spatial context. The presented system demonstrates potential to improve the efficiency of communication systems in real-world applications, aligning with the goals of emerging integrated sensing and communication (ISAC) systems. Results based on experimental data using the proposed solution show a 50th percentile localization error of 1.62 m for 3-tap channels and 0.89 m for 10-tap channels. Full article
Show Figures

Figure 1

36 pages, 8664 KiB  
Article
A Novel Transfer Learning-Based OFDM Receiver Design for Enhanced Underwater Acoustic Communication
by Muhammad Adil, Songzuo Liu, Suleman Mazhar, Ayman Alharbi, Honglu Yan and Muhammad Muzzammil
J. Mar. Sci. Eng. 2025, 13(7), 1284; https://doi.org/10.3390/jmse13071284 - 30 Jun 2025
Viewed by 268
Abstract
The underwater acoustic (UWA) communication system faces challenges due to environmental factors, extensive multipath spread, and rapidly changing propagation conditions. Deep learning based solutions, especially for orthogonal frequency division multiplexing (OFDM) receivers, have been shown to improve performance. However, the UWA channel characteristics [...] Read more.
The underwater acoustic (UWA) communication system faces challenges due to environmental factors, extensive multipath spread, and rapidly changing propagation conditions. Deep learning based solutions, especially for orthogonal frequency division multiplexing (OFDM) receivers, have been shown to improve performance. However, the UWA channel characteristics are highly dynamic and depend on the specific underwater conditions. Therefore, these models suffer from model mismatch when deployed in environments different from those used for training, leading to performance degradation and requiring costly, time-consuming retraining. To address these issues, we propose a transfer learning (TL)-based pre-trained model for OFDM based UWA communication. Rather than training separate models for each underwater channel, we aggregate received signals from five distinct WATERMARK channels, across varying signal to noise ratios (SNRs), into a unified dataset. This diverse training set enables the model to generalize across various underwater conditions, ensuring robust performance without extensive retraining. We evaluate the pre-trained model using real-world data from Qingdao Lake in Hangzhou, China, which serves as the target environment. Our experiments show that the model adapts well to these challenging environment, overcoming model mismatch and minimizing computational costs. The proposed TL-based OFDM receiver outperforms traditional methods in terms of bit error rate (BER) and other evaluation metrics. It demonstrates strong adaptability to varying channel conditions. This includes scenarios where training and testing occur on the same channel, under channel mismatch, and with or without fine-tuning on target data. At 10 dB SNR, it achieves an approximately 80% improvement in BER compared to other methods. Full article
Show Figures

Figure 1

31 pages, 1336 KiB  
Article
Breaking the Cyclic Prefix Barrier: Zero-Padding Correlation Enables Centimeter-Accurate LEO Navigation via 5G NR Signals
by Lingyu Deng, Yikang Yang, Jiangang Ma, Tao Wu, Xingyou Qian and Hengnian Li
Remote Sens. 2025, 17(13), 2116; https://doi.org/10.3390/rs17132116 - 20 Jun 2025
Viewed by 381
Abstract
Low Earth orbit (LEO) satellites offer a revolutionary potential for positioning, navigation, and timing (PNT) services due to their stronger signal power and rapid geometric changes compared to traditional global navigation satellite systems (GNSS). However, dedicated LEO navigation systems face high costs, so [...] Read more.
Low Earth orbit (LEO) satellites offer a revolutionary potential for positioning, navigation, and timing (PNT) services due to their stronger signal power and rapid geometric changes compared to traditional global navigation satellite systems (GNSS). However, dedicated LEO navigation systems face high costs, so opportunity navigation based on LEO satellites is a potential solution. This paper presents an orthogonal frequency division multiplexing (OFDM)-based LEO navigation system and analyzes its navigation performance. We use 5G new radio (NR) as the satellite transmitting signal and introduce the NR signal components that can be used for navigation services. The LEO NR system and a novel zero-padding correlation (ZPC) are introduced. This ZPC receiver can eliminate cyclic prefix (CP) and inter-carrier interference, thereby improving tracking accuracy. The power spectral density (PSD) for the NR navigation signal is derived, followed by a comprehensive analysis of tracking accuracy under different NR configurations (bandwidth, spectral allocation, and signal components). An extended Kalman filter (EKF) is proposed to fuse pseudorange and pseudorange rate measurements for real-time positioning. The simulations demonstrate an 80% improvement in ranging precision (3.0–4.5 cm) and 88.3% enhancement in positioning accuracy (5.61 cm) compared to conventional receivers. The proposed ZPC receiver can achieve centimeter-level navigation accuracy. This work comprehensively analyzes the navigation performance of the LEO NR system and provides a reference for LEO PNT design. Full article
Show Figures

Figure 1

20 pages, 4062 KiB  
Article
Design and Experimental Demonstration of an Integrated Sensing and Communication System for Vital Sign Detection
by Chi Zhang, Jinyuan Duan, Shuai Lu, Duojun Zhang, Murat Temiz, Yongwei Zhang and Zhaozong Meng
Sensors 2025, 25(12), 3766; https://doi.org/10.3390/s25123766 - 16 Jun 2025
Viewed by 419
Abstract
The identification of vital signs is becoming increasingly important in various applications, including healthcare monitoring, security, smart homes, and locating entrapped persons after disastrous events, most of which are achieved using continuous-wave radars and ultra-wideband systems. Operating frequency and transmission power are important [...] Read more.
The identification of vital signs is becoming increasingly important in various applications, including healthcare monitoring, security, smart homes, and locating entrapped persons after disastrous events, most of which are achieved using continuous-wave radars and ultra-wideband systems. Operating frequency and transmission power are important factors to consider when conducting earthquake search and rescue (SAR) operations in urban regions. Poor communication infrastructure can also impede SAR operations. This study proposes a method for vital sign detection using an integrated sensing and communication (ISAC) system where a unified orthogonal frequency division multiplexing (OFDM) signal was adopted, and it is capable of sensing life signs and carrying out communication simultaneously. An ISAC demonstration system based on software-defined radios (SDRs) was initiated to detect respiratory and heartbeat rates while maintaining communication capability in a typical office environment. The specially designed OFDM signals were transmitted, reflected from a human subject, received, and processed to estimate the micro-Doppler effect induced by the breathing and heartbeat of the human in the environment. According to the results, vital signs, including respiration and heartbeat rates, have been accurately detected by post-processing the reflected OFDM signals with a 1 MHz bandwidth, confirmed with conventional contact-based detection approaches. The potential of dual-function capability of OFDM signals for sensing purposes has been verified. The principle and method developed can be applied in wider ISAC systems for search and rescue purposes while maintaining communication links. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

31 pages, 6761 KiB  
Article
Improved Modulation Classification Based on Hough Transforms of Constellation Diagrams Using CNN for the UWA-OFDM Communication System
by Mohamed A. Abdel-Moneim, Mohamed K. M. Gerwash, El-Sayed M. El-Rabaie, Fathi E. Abd El-Samie, Khalil F. Ramadan and Nariman Abdel-Salam
Eng 2025, 6(6), 127; https://doi.org/10.3390/eng6060127 - 14 Jun 2025
Viewed by 415
Abstract
The Automatic Modulation Classification (AMC) for underwater acoustic signals enables more efficient utilization of the acoustic spectrum. Deep learning techniques significantly improve classification performance. Hence, they can be applied in AMC work to improve the underwater acoustic (UWA) communication. This paper is based [...] Read more.
The Automatic Modulation Classification (AMC) for underwater acoustic signals enables more efficient utilization of the acoustic spectrum. Deep learning techniques significantly improve classification performance. Hence, they can be applied in AMC work to improve the underwater acoustic (UWA) communication. This paper is based on the adoption of Hough Transform (HT) and Edge Detection (ED) to enhance modulation classification, especially for a small dataset. Deep neural models based on basic Convolutional Neural Network (CNN), Visual Geometry Group-16 (VGG-16), and VGG-19 trained on constellation diagrams transformed using HT are adopted. The objective is to extract features from constellation diagrams projected onto the Hough space. In addition, we use Orthogonal Frequency Division Multiplexing (OFDM) technology, which is frequently utilized in UWA systems because of its ability to avoid multipath fading and enhance spectrum utilization. We use an OFDM system with the Discrete Cosine Transform (DCT), Cyclic Prefix (CP), and equalization over the UWA communication channel under the effect of estimation errors. Seven modulation types are considered for classification, including Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) (2/8/16-PSK and 4/8/16/32-QAM), with a Signal-to-Noise Ratio (SNR) ranging from −5 to 25 dB. Simulation results indicate that our CNN model with HT and ED at perfect channel estimation, achieves a 94% classification accuracy at 10 dB SNR, outperforming benchmark models by approximately 40%. Full article
Show Figures

Figure 1

38 pages, 15283 KiB  
Article
A Fast Convergence Scheme Using Chebyshev Iteration Based on SOR and Applied to Uplink M-MIMO B5G Systems for Multi-User Detection
by Yung-Ping Tu and Guan-Hong Liu
Appl. Sci. 2025, 15(12), 6658; https://doi.org/10.3390/app15126658 - 13 Jun 2025
Viewed by 381
Abstract
Massive multiple input–multiple output (M-MIMO) is a promising and pivotal technology in contemporary wireless communication systems that can effectively enhance link reliability and data throughput, especially in uplink scenarios. Even so, the receiving end requires more computational complexity to reconstitute the signal. This [...] Read more.
Massive multiple input–multiple output (M-MIMO) is a promising and pivotal technology in contemporary wireless communication systems that can effectively enhance link reliability and data throughput, especially in uplink scenarios. Even so, the receiving end requires more computational complexity to reconstitute the signal. This problem has emerged in fourth-generation (4G) MIMO system; with the dramatic increase in demand for devices and data in beyond-5G (B5G) systems, this issue will become yet more obvious. To take into account both complexity and signal-revested capability at the receiver, this study uses the matrix iteration method to avoid the staggering amount of operations produced by the inverse matrix. Then, we propose a highly efficient multi-user detector (MUD) named hybrid SOR-based Chebyshev acceleration (CHSOR) for the uplink of M-MIMO orthogonal frequency-division multiplexing (OFDM) and universal filtered multi-carrier (UFMC) waveforms, which can be promoted to B5G developments. The proposed CHSOR scheme includes two stages: the first consists of successive over-relaxation (SOR) and modified successive over-relaxation (MSOR), combining the advantages of low complexity of both and generating a better initial transmission symbol, iteration matrix, and parameters for the next stage; sequentially, the second stage adopts the low-cost iterative Chebyshev acceleration method for performance refinement to obtain a lower bit error rate (BER). Under constrained evaluation settings, Section (Simulation Results and Discussion) presents the results of simulations performed in MATLAB version R2022a. Results show that the proposed detector can achieve a 91.624% improvement in BER performance compared with Chebyshev successive over-relaxation (CSOR). This is very near to the performance of the minimum mean square error (MMSE) detector and is achieved in only a few iterations. In summary, our proposed CHSOR scheme demonstrates fast convergence compared to previous works and as such possesses excellent BER and complexity performance, making it a competitive solution for uplink M-MIMO B5G systems. Full article
Show Figures

Figure 1

28 pages, 39576 KiB  
Article
Generalized Maximum Delay Estimation for Enhanced Channel Estimation in IEEE 802.11p/OFDM Systems
by Kyunbyoung Ko and Sungmook Lim
Electronics 2025, 14(12), 2404; https://doi.org/10.3390/electronics14122404 - 12 Jun 2025
Viewed by 251
Abstract
This paper proposes a generalized maximum access delay time (MADT) estimation method for orthogonal frequency division multiplexing (OFDM) systems operating over multipath fading channels. The proposed approach derives a novel log-likelihood ratio (LLR) formulation by exploiting the correlation characteristics introduced by the cyclic [...] Read more.
This paper proposes a generalized maximum access delay time (MADT) estimation method for orthogonal frequency division multiplexing (OFDM) systems operating over multipath fading channels. The proposed approach derives a novel log-likelihood ratio (LLR) formulation by exploiting the correlation characteristics introduced by the cyclic prefix (CP) in received OFDM symbols, thereby enabling the efficient approximation of the maximum likelihood (ML) MADT estimation. A key contribution of this study is represented by the unification and generalization of existing MADT estimation methods by explicitly formulating the bias term associated with the geometric mean. Within this framework, a previously reported scheme is shown to be a special case of the proposed method. The effectiveness of the proposed MADT estimator is evaluated in terms of correct and good detection probabilities, illustrating not only improved detection accuracy but also robustness across varying channel conditions, in comparison with existing methods. Furthermore, the estimator is applied to both noise-canceling channel estimation (NCCE) and time-domain least squares (TDLS) methods, and its practical effectiveness is verified in IEEE 802.11p/OFDM system scenarios relevant to vehicle-to-everything (V2X) communications. Simulation results confirm that when integrated with NCCE and TDLS, the proposed estimator closely approaches the performance bound of ideal MADT estimation. Full article
Show Figures

Figure 1

21 pages, 4987 KiB  
Article
Sea Clutter Suppression for Shipborne DRM-Based Passive Radar via Carrier Domain STAP
by Yijia Guo, Jun Geng, Xun Zhang and Haiyu Dong
Remote Sens. 2025, 17(12), 1985; https://doi.org/10.3390/rs17121985 - 8 Jun 2025
Viewed by 447
Abstract
This paper proposes a new carrier domain approach to suppress spreading first-order sea clutter in shipborne passive radar systems using Digital Radio Mondiale (DRM) signals as illuminators. The DRM signal is a broadcast signal that operates in the high-frequency (HF) band and employs [...] Read more.
This paper proposes a new carrier domain approach to suppress spreading first-order sea clutter in shipborne passive radar systems using Digital Radio Mondiale (DRM) signals as illuminators. The DRM signal is a broadcast signal that operates in the high-frequency (HF) band and employs orthogonal frequency-division multiplexing (OFDM) modulation. In shipborne DRM-based passive radar, sea clutter sidelobes elevate the noise level of the clutter-plus-noise covariance matrix, thereby degrading the target signal-to-interference-plus-noise ratio (SINR) in traditional space–time adaptive processing (STAP). Moreover, the limited number of space–time snapshots in traditional STAP algorithms further degrades clutter suppression performance. By exploiting the multi-carrier characteristics of OFDM, this paper proposes a novel algorithm, termed Space Time Adaptive Processing by Carrier (STAP-C), to enhance clutter suppression performance. The proposed method improves the clutter suppression performance from two aspects. The first is removing the transmitted symbol information from the space–time snapshots, which significantly reduces the effect of the sea clutter sidelobes. The other is using the space–time snapshots obtained from all subcarriers, which substantially increases the number of available snapshots and thereby improves the clutter suppression performance. In addition, we combine the proposed algorithm with the dimensionality reduction algorithm to develop the Joint Domain Localized-Space Time Adaptive Processing by Carrier (JDL-STAP-C) algorithm. JDL-STAP-C algorithm transforms space–time data into the angle–Doppler domain for clutter suppression, which reduces the computational complexity. Simulation results show the effectiveness of the proposed algorithm in providing a high improvement factor (IF) and less computational time. Full article
(This article belongs to the Special Issue Array and Signal Processing for Radar)
Show Figures

Figure 1

17 pages, 1021 KiB  
Article
Compressive Sensing-Based Coding Iterative Channel Estimation Method for TDS-OFDM System
by Yuxiao Yang, Xinyue Zhao and Hui Wang
Electronics 2025, 14(12), 2338; https://doi.org/10.3390/electronics14122338 - 7 Jun 2025
Viewed by 322
Abstract
Satellite Internet is the key to integrated air–space–ground communication, while the design of waveforms with high spectrum efficiency is an intrinsic requirement for high-speed data transmission in satellite Internet. Time-domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) technology can significantly improve spectrum utilization efficiency [...] Read more.
Satellite Internet is the key to integrated air–space–ground communication, while the design of waveforms with high spectrum efficiency is an intrinsic requirement for high-speed data transmission in satellite Internet. Time-domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) technology can significantly improve spectrum utilization efficiency by using PN sequences instead of traditional CP cyclic prefixes. However, it also leads to time-domain aliasing between PN sequences and data symbols, posing a serious challenge to channel estimation. To solve this problem, a compressive sensing-based coding iterative channel estimation method for the TDS-OFDM system is proposed in this paper. This method innovatively combines compressive sensing channel estimation technology with the Reed–Solomon low-density parity-check cascade coding (RS-LDPC) scheme, and achieves performance improvements as follows: (1) Construct the iterative optimization mechanism for the compressive sensing algorithm and equalization feedback loop. (2) RS-LDPC cascaded coding is employed to enhance the anti-interference and error correction capability of system. (3) Design the recoding link of error-corrected data to improve the accuracy of sensing matrix. The simulation results demonstrate that compared with conventional methods, the proposed method can obviously converge on the mean squared errors (MSEs) of channel estimation and significantly reduce the bit error rate (BER) of the system. Full article
Show Figures

Graphical abstract

Back to TopTop