Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,831)

Search Parameters:
Keywords = origin food

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3465 KB  
Review
Advances in Proteomics and Functional Foods from Fermentation and Bioencapsulation of Andean Grains and Tubers: Applications and Perspectives
by Wendy Akemmy Castañeda-Rodríguez, Abel José Rodríguez-Yparraguirre, Carlos Diego Rodríguez-Yparraguirre, Wilson Arcenio Maco-Vásquez, Iván Martín Olivares-Espino, Andrés D. Epifanía-Huerta, Oswaldo Lara-Rivera, Elías Guarniz-Vásquez, César Moreno-Rojo and Elza Aguirre
Foods 2026, 15(3), 425; https://doi.org/10.3390/foods15030425 (registering DOI) - 24 Jan 2026
Abstract
The transformation of Andean grains and tubers through fermentation and bioencapsulation has emerged as a key strategy to enhance their nutritional, functional, and biotechnological value, driven by advances in proteomic and metabolomic techniques. This study aimed to systematize recent evidence on the biochemical [...] Read more.
The transformation of Andean grains and tubers through fermentation and bioencapsulation has emerged as a key strategy to enhance their nutritional, functional, and biotechnological value, driven by advances in proteomic and metabolomic techniques. This study aimed to systematize recent evidence on the biochemical and functional modifications induced by these processes and their potential application in the development of functional foods. The methodology integrated 67 studies analyzed using tools such as R 4.5.1 with the JupyterLab interface 4.5.2, SCImago Graphica Beta 1.0.53, and VOSviewer 1.6.20, incorporating data generated through LC-MS/MS, UHPLC-QTOF, Orbitrap platforms, transcriptomics, and combined omics approaches, considering original studies published between 2020 and 2025. The main findings indicate substantial increases in free amino acids (up to 64.8%), phenolic compounds (2.9–5.2%), and antioxidant activity (up to 45%), along with the identification of 430 polyphenols, 90 flavonoids, 14 novel oxindole acetates, and bioactive peptides with IC50 values ranging from 0.51 to 0.78 mg/mL. Bioencapsulation showed controlled release of bioactive compounds, highlighting nanocapsules of 133–165 nm with a maximum release of 9.86 mg GAE/g. In conclusion, the combination of fermentation and encapsulation enhances the stability, bioavailability, and functionality of Andean crops, supporting their industrial adoption for the development of sustainable nutraceutical foods that improve health and promote the valorization of traditional resources. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

19 pages, 883 KB  
Article
Smokers, a Way of Harnessing Broadleaf Wood as a Non-Standard Biofuel
by Alessio Ilari, Davide Di Giacinto, Ester Foppa Pedretti, Daniele Duca, Elena Leoni, Thomas Gasperini, Lucia Olivi and Kofi Armah Boakye-Yiadom
Appl. Sci. 2026, 16(3), 1200; https://doi.org/10.3390/app16031200 - 23 Jan 2026
Abstract
Residential barbecuing is becoming increasingly popular worldwide, especially in cities, where it is not only a leisure activity but also an important social and cultural practice. Consequently, the number of grills and smokers in use continues to grow. This study evaluated the environmental [...] Read more.
Residential barbecuing is becoming increasingly popular worldwide, especially in cities, where it is not only a leisure activity but also an important social and cultural practice. Consequently, the number of grills and smokers in use continues to grow. This study evaluated the environmental performance of a household wood-pellet barbecue dual-function smoker/grill using a life cycle assessment (LCA) approach. The functional units selected were per cooking time (1 h) and per unit of energy delivered (1 kWh) at different cooking settings on the smoker. The results show that most of the impacts, including global warming potential (GWP) and resource use, originate from the production of the smoker itself, whereas emissions released during combustion, especially NOx, are the main contributors to impacts such as acidification and smog formation. The GWP per hour of operation ranged from 0.44 to 0.63 kg CO2 eq. From an operational perspective, cooking at intermediate temperatures (between 110 and 175 °C) generally leads to lower impacts per hour than very low-temperature smoking. When considering entire meals, meat typically accounts for most of the total impact, with the smoker’s contribution comparatively small. Overall, the study provides a useful reference and shows that both equipment design and food choices play a role in barbecue sustainability. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
11 pages, 2533 KB  
Article
Characterization of Pimpinella anisum Germplasm: Diversity Available for Agronomic Performance and Essential Oil Content and Composition
by Pierluigi Reveglia, Eleonora Barilli, María José Cobos, Maria Claudia López-Orozco and Diego Rubiales
Agronomy 2026, 16(3), 285; https://doi.org/10.3390/agronomy16030285 - 23 Jan 2026
Abstract
Anise (Pimpinella anisum L.) is one of the most important annual herbs of the Apiaceae family, widely cultivated in southern Spain. Their seeds are highly valued for culinary uses and for producing quality essential oils widely used in food and beverage products, [...] Read more.
Anise (Pimpinella anisum L.) is one of the most important annual herbs of the Apiaceae family, widely cultivated in southern Spain. Their seeds are highly valued for culinary uses and for producing quality essential oils widely used in food and beverage products, as well as for industry, medicinal, and cosmetics applications. This study investigates the seed yield and essential oil content within a set of 50 anise accessions from worldwide origin, as well as their composition by GC–MS and GC–FID analysis. Accessions showed significant differences in the agronomic parameters measured, including plant height (cm), seed yield (kg ha−1), and the Harvest Index (%), with accessions PA_87 (Spain), PA_47 (Greece), and PA_21 (unknown origin) being the most performant. Essential oil (EO) content varied between 0.8% and 5.7% across different genotypes, resulting in EO production values ranging from 0.1 to 300 kg ha−1. Trans-anethole was identified as the dominant terpene, comprising 84.4% to 94.4% of the content, followed by eugenol (1.4% to 5.5%) and α-muurolene (1.4% to 7.2%). PCA analysis identified five distinct groups and one outlier, influenced by minor terpenes. Indeed, there was a strong negative correlation between estragole and pseudoisoeugenyl 2-methylbutyrate. This study underscores the significance of minor terpenes, which play crucial roles in defining unique aniseed chemotypes, allowing for the selection of cultivars optimized for specific uses in food, cosmetics, and pharmaceuticals. Additionally, these findings emphasize the impact of cultivar genetics on agronomic traits and EO profiles, suggesting the need for further research to optimize plant growth and yield and EO quality. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

16 pages, 2538 KB  
Article
Natural Oleosomes from Nuts and Seeds: Structural Function and Potential for Pharmaceutical Applications
by Marlon C. Mallillin, Maryam Salami, Omar A. Villalobos, Shengnan Zhao, Sara R. El-Mahrouk, Kirtypal Singh, Michael J. Serpe, Arno G. Siraki, Ayman O. S. El-Kadi, Nadia Bou-Chacra, Raimar Loebenberg and Neal M. Davies
Pharmaceutics 2026, 18(2), 144; https://doi.org/10.3390/pharmaceutics18020144 - 23 Jan 2026
Abstract
Background/Objectives: Oleosomes, plant-derived lipid nanostructures comprising a triacylglycerol core surrounded by a phospholipid monolayer and interfacial proteins, provide sustainable alternatives to synthetic lipid vesicles. This study compares solvent-free aqueous extractions of oleosomes from five nuts (almond, macadamia, walnut, hazelnut, pine) and five [...] Read more.
Background/Objectives: Oleosomes, plant-derived lipid nanostructures comprising a triacylglycerol core surrounded by a phospholipid monolayer and interfacial proteins, provide sustainable alternatives to synthetic lipid vesicles. This study compares solvent-free aqueous extractions of oleosomes from five nuts (almond, macadamia, walnut, hazelnut, pine) and five seeds (flaxseed, sunflower, hemp, sesame, canola/rapeseed) to understand how botanical origin influences composition and physicochemical behavior. Methods: Oleosomes were isolated using solvent-free aqueous extraction. Extraction yield, lipid content, protein content, particle size, polydispersity, and zeta potential were determined using standard analytical assays and dynamic light scattering techniques. SDS–PAGE was performed to evaluate interfacial protein profiles and oleosin abundance. Results: Extraction yields ranged from 8.4% (flaxseed) to 59.5% (walnut). Oleosome diameters spanned 424 nm to 3.9 µm, and all oleosome dispersions exhibited negative zeta potentials (–26 to –57 mV). SDS–PAGE revealed abundant 15–25 kDa oleosins in seed oleosomes but relatively sparse proteins in nut oleosomes. Seed oleosomes were smaller and exhibited stronger electrostatic stabilization, while nut oleosomes formed larger droplets stabilized primarily through steric interactions due to lower oleosin content. Conclusions: Variation in oleosin abundance and interfacial composition leads to distinct stabilization mechanisms in nut and seed oleosomes. These findings establish a predictive basis for tailoring oleosome size, stability, and functionality, and highlight their potential as natural nanocarriers for food, cosmetic, and pharmaceutical formulations. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

15 pages, 1676 KB  
Article
Non-Destructive Geographical Traceability and Quality Control of Glycyrrhiza uralensis Using Near-Infrared Spectroscopy Combined with Support Vector Machine Model
by Anqi Liu, Zibo Meng, Jiayi Ma, Jinfeng Liu, Haonan Wang, Yingbo Li, Yu Yang, Na Liu, Ming Hui, Dandan Zhai and Peng Li
Foods 2026, 15(3), 411; https://doi.org/10.3390/foods15030411 - 23 Jan 2026
Abstract
Licorice (Glycyrrhiza uralensis Fisch.) is a widely used natural sweetener and functional food ingredient. Its sensory profile, nutritional value, and bioactive composition are strongly affected by geographical origin and cultivation mode, particularly the distinction between wild and cultivated resources. Consequently, developing a [...] Read more.
Licorice (Glycyrrhiza uralensis Fisch.) is a widely used natural sweetener and functional food ingredient. Its sensory profile, nutritional value, and bioactive composition are strongly affected by geographical origin and cultivation mode, particularly the distinction between wild and cultivated resources. Consequently, developing a rapid and robust method for origin traceability is imperative for rigorous quality control and product standardization. This study proposes a non-destructive traceability framework integrating near-infrared (NIR) spectroscopy with a Support Vector Machine (SVM). The method’s validity was rigorously evaluated using a comprehensive dataset collected from China’s three primary production regions—Gansu Province, the Inner Mongolia Autonomous Region, and the Xinjiang Uygur Autonomous Region, encompassing both wild and cultivated resources. Experimental results demonstrated that the proposed framework achieved an overall classification accuracy exceeding 99%. The results show that the proposed method offers a rapid, efficient, and environmentally friendly analytical tool for the quality assessment of licorice, providing a scientific basis for rigorous quality control and standardization in the functional food industry. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

22 pages, 3511 KB  
Article
Untargeted Metabolomics Reveals Raw Material Geographic Origin as a Key Factor Shaping the Quality of Ginger-Derived Exosome-like Nanovesicles
by Zhuo Chen, Xinyi Zhang, Liuliu Luo, Qiang Liu, Pingduo Chen, Jinnian Peng, Fangfang Min, Yunpeng Shen, Jingjing Li, Yongning Wu and Hongbing Chen
Foods 2026, 15(2), 408; https://doi.org/10.3390/foods15020408 - 22 Jan 2026
Abstract
A major challenge for food-derived bio-nanomaterials is achieving consistent and predictable functional properties to ensure their quality. Ginger-derived exosome-like nanovesicles (GELNs) serve as an ideal model for this challenge, yet the impact of ginger geographical origin on GELNs remains unknown. This study aims [...] Read more.
A major challenge for food-derived bio-nanomaterials is achieving consistent and predictable functional properties to ensure their quality. Ginger-derived exosome-like nanovesicles (GELNs) serve as an ideal model for this challenge, yet the impact of ginger geographical origin on GELNs remains unknown. This study aims to establish a quality control framework for food-derived bio-nanomaterials. GELNs were comprehensively analyzed. Untargeted metabolomics identified differential metabolites, which were then screened for correlation with antioxidant capacity. Machine learning was employed to pinpoint potential quality markers, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis highlighted key metabolic pathways. Significant variations in physicochemical properties and bioactivities were observed. We identified 190 differential compounds and established a panel of 6 potential quality markers. Enrichment analysis revealed eight key pathways, with “microbial metabolism in diverse environments” and “galactose metabolism” being most prominent. The quality marker mollicellin I (derived from Chaetomium brasiliense) provided empirical support linking GELNs quality to geography-specific microbiota. Our findings provide evidence that the geographic origin of raw materials is a primary determinant of GELNs quality, based on a systematic analysis of their chemical and functional properties. We develop a transferable quality control framework, laying the groundwork for producing superior natural food-derived nanomaterials. Full article
Show Figures

Graphical abstract

13 pages, 530 KB  
Article
A Noisy Signal? Geographic Bias in FAERS Reports Linking Paracetamol to Autism Spectrum Disorder
by Hülya Tezel Yalçın, Nadir Yalçın, Karel Allegaert and Pınar Erkekoğlu
J. Clin. Med. 2026, 15(2), 902; https://doi.org/10.3390/jcm15020902 (registering DOI) - 22 Jan 2026
Abstract
Background/Objectives: Recent public and scientific discussions have raised concerns about a possible link between prenatal paracetamol exposure and autism spectrum disorder (ASD). However, pharmacovigilance-based evidence remains scarce, and the role of reporting bias has not been systematically assessed. This study aimed to characterize [...] Read more.
Background/Objectives: Recent public and scientific discussions have raised concerns about a possible link between prenatal paracetamol exposure and autism spectrum disorder (ASD). However, pharmacovigilance-based evidence remains scarce, and the role of reporting bias has not been systematically assessed. This study aimed to characterize ASD-related adverse event reports involving paracetamol in the U.S. Food and Drug Administration’s Adverse Event Reporting System (FAERS) and to evaluate potential disproportionality signals, considering demographic, temporal, and geographic patterns. Methods: FAERS data from January 2010 to September 2025 were screened for reports listing paracetamol as the suspect drug and ASD-related Preferred Terms. After excluding duplicates and concomitant drugs, 1776 unique cases were analyzed. Patient demographics, reporter type, and country of origin were summarized descriptively. Disproportionality was calculated using four algorithms: Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Information Component (IC), and Empirical Bayes Geometric Mean (EBGM). Results: Among 172,129 paracetamol-associated reports, 1776 (1.03%) included ASD-related terms. All were classified as serious and mostly submitted by consumers (98.6%). Gender was available in 47.7% of cases, showing male predominance (68.8%). Most reports referred to fetal exposure during pregnancy. Nearly all originated from the United States (98.4%). A marked rise was observed after 2022, with 562 reports in 2023 and 1051 in 2025. Disproportionality analyses revealed consistently elevated signals (ROR = 69.8, PRR = 69.2, IC025 = 5.60, EB05 = 48.3). Conclusions: The strong disproportionality signal likely reflects increased public attention and reporting dynamics rather than a causal association. Further integration of pharmacovigilance and epidemiologic data is warranted to clarify the clinical significance of these findings. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

29 pages, 2317 KB  
Article
Enhancing the Sustainability of Food Supply Chains: Insights from Inspectors and Official Controls in Greece
by Christos Roukos, Dimitrios Kafetzopoulos, Alexandra Pavloudi, Fotios Chatzitheodoridis and Achilleas Kontogeorgos
Sustainability 2026, 18(2), 1101; https://doi.org/10.3390/su18021101 - 21 Jan 2026
Viewed by 68
Abstract
Food fraud represents a growing global challenge with significant implications for public health, market integrity, sustainability, and consumer trust. Beyond economic losses, fraudulent practices undermine the environmental and social sustainability of food systems by distorting markets, misusing natural resources, and weakening incentives for [...] Read more.
Food fraud represents a growing global challenge with significant implications for public health, market integrity, sustainability, and consumer trust. Beyond economic losses, fraudulent practices undermine the environmental and social sustainability of food systems by distorting markets, misusing natural resources, and weakening incentives for authentic and responsible production. Despite the establishment of harmonized frameworks of the European Union for official controls, the increasing complexity of food supply chains has exposed persistent gaps in fraud detection, particularly for high-value products such as those with PDO (Protected Designation of Origin) and PGI (Protected Geographical Ιndication) Certification. This study investigates the perceptions, attitudes, and experiences of frontline inspectors in Greece to assess current challenges and opportunities for strengthening official food fraud controls. Data were collected through a structured questionnaire, validated by experts and administered nationwide, involving 122 participants representing all major national food inspection authorities. Statistical analysis revealed significant institutional differences in perceptions of fraud prevalence, with mislabeling of origin, misleading organic claims, ingredient substitution, and documentation irregularities identified as the most common fraudulent practices. Olive oil, honey, meat, and dairy emerged as the most vulnerable product categories. Inspectors reported relying primarily on consumer complaints and institutional databases as key tools for identifying fraud risks. Food fraud was perceived to contribute strongly to losses in consumer trust in food safety and product authenticity, as well as to the erosion of sustainable production models that depend on transparency, fair competition, and responsible resource use. Overall, the findings highlight detection gaps, uneven resources across authorities, and the need for improved coordination and capacity-building to support more efficient, transparent, and sustainability-oriented food fraud control in Greece. Full article
Show Figures

Figure 1

17 pages, 3525 KB  
Article
Bat Colony and Cave Zone Shape Arthropod Assemblages in Levantine Caves
by Zeana Ganem, Shlomi Aharon, Dror Hawlena and Efrat Gavish-Regev
Insects 2026, 17(1), 118; https://doi.org/10.3390/insects17010118 - 21 Jan 2026
Viewed by 108
Abstract
Caves are characterized by unique abiotic conditions such as limited light, and they therefore support distinct faunal assemblages that often include endemic species. Due to light limitations, photoautotrophic organisms are absent from many subterranean food-webs, which therefore predominantly rely on allochthonous nutrient sources. [...] Read more.
Caves are characterized by unique abiotic conditions such as limited light, and they therefore support distinct faunal assemblages that often include endemic species. Due to light limitations, photoautotrophic organisms are absent from many subterranean food-webs, which therefore predominantly rely on allochthonous nutrient sources. For this reason, hypogean habitats are expected to display lower assemblage diversity than that seen in epigean ecosystems. Bat guano, a major source of allochthonous nutrients in caves, varies substantially in composition based on its origin—whether it is produced by frugivorous or by insectivorous bats—and on its deposition site within the cave. This study examines how allochthonous nutrient sources and zones within caves influence arthropod diversity and assemblage composition. We found that both the type of allochthonous nutrient source and cave characteristics strongly affect the composition of arthropod assemblages. Our results show that caves harboring frugivorous bat colonies have a lower abundance of flies than caves with either insectivorous bat colonies or no bat colonies. Moreover, caves without bat colonies were seen to have low species richness of both detritivores and predators compared to caves housing either frugivorous or insectivorous bats. Additionally, species diversity and assemblage composition differed substantially between the twilight and dark zones of the caves. These findings demonstrate that allochthonous nutrient sources, the ecological zone, and the microhabitat within the cave are key drivers of arthropod assemblage composition and diversity. This study advances our understanding of cave ecology and underscores the importance of conserving diverse cave types for protecting their unique arthropod diversity. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Graphical abstract

17 pages, 1195 KB  
Review
Meat Analog Products: Current Worldwide Scenario and Future Perspectives in Consumption and Regulation
by Tatiana Barbieri Cochlar, Ziane da Conceição das Mercês, Natalia Maldaner Salvadori, Sabrina Melo Evangelista, Virgílio José Strasburg and Viviani Ruffo de Oliveira
Foods 2026, 15(2), 376; https://doi.org/10.3390/foods15020376 - 20 Jan 2026
Viewed by 131
Abstract
Interest in plant-based diets has grown expressively in different regions of the world. However, the missing regulation for meat analogs may mislead consumers by suggesting that these products are the same as the meat they are replacing. Therefore, this study aims to analyze [...] Read more.
Interest in plant-based diets has grown expressively in different regions of the world. However, the missing regulation for meat analogs may mislead consumers by suggesting that these products are the same as the meat they are replacing. Therefore, this study aims to analyze the current global scenario of meat analogs, discuss consumption changes and their regulation, as well as pointing out future perspectives for the sector. A narrative literature review was performed using scientific papers from the Virtual Health Library (BVS), LILACS, PubMed (NIH), Embase, Web of Science, Scopus, and official documents. Included studies were aligned with the research theme, concentrating on countries with regulations for plant-based analog products and those lacking or pursuing such regulations. Additionally, studies were selected based on the following criteria: original or review studies from different countries, papers discussing meat analogs in terms of consumption, sensory attributes, market dynamics, sustainability, regulation, food safety; availability of full text; and publication dates ranging from 2015 to 2025. The data reveals that most of the assessed nations still lack specific regulations for meat analog products, adopting general labeling and naming standards that range from flexible approaches to strict restrictions. To conclude, the article highlights that meat substitutes are emerging as promising and sustainable options; however, their true consolidation is conditioned on the existence of more defined regulatory frameworks, increased consumer confidence, and market conditions that favor their large-scale adoption. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

20 pages, 660 KB  
Article
Relationships Among Milk Lactoferrin Content, Metabolic Profiles and Milk Composition During Early Lactation in Holstein Cows
by Roman Konečný, Michaela Horčičková, Martin Kváč, Lucie Hasoňová, Eva Samková, Hana Nejeschlebová, Oto Hanuš and Klára Bartáková
Dairy 2026, 7(1), 9; https://doi.org/10.3390/dairy7010009 - 20 Jan 2026
Viewed by 63
Abstract
Lactoferrin (LF) is an iron-binding immunoprotein of the mammary gland whose levels increase during mastitis and may be influenced by the metabolic status of the cow. During early lactation, dairy cows are exposed to a negative energy balance (NEB) and the associated increase [...] Read more.
Lactoferrin (LF) is an iron-binding immunoprotein of the mammary gland whose levels increase during mastitis and may be influenced by the metabolic status of the cow. During early lactation, dairy cows are exposed to a negative energy balance (NEB) and the associated increase in susceptibility to mastitis. However, the extent to which the metabolic profile influences LF secretion in milk during the postpartum period remains unclear. The objective of this study was to assess the associations between metabolic status and milk LF contents in Holstein cows (n = 122) in the first twenty days of lactation. Based on the milk LF contents, the cows were categorized into two groups: LF-LOW (≤123 mg/L; n = 81) and LF-HIGH (>123 mg/L; n = 41). Serum indicators of energy and nitrogen metabolism, hepatic function, and selected macro-/microelements were measured; urine electrolytes and net acid–base excretion (U-ABB) were assessed; and milk composition, including somatic cell count (SCC), was determined. LF-HIGH cows showed higher SCC (p = 0.0516) and serum glucose (p < 0.001), together with lower serum triglycerides (p = 0.0101) versus LF-LOW cows. Milk beta-hydroxybutyric acid (BHB) content was lower in the LF-HIGH group (trend, p ≈ 0.062). LF-HIGH also exhibited significantly greater natriuresis (p = 0.0078) and a more negative U-ABB (p < 0.001), indicating higher acid–base load. In conclusion, elevated LF contents during the postpartum period were associated with the activation of local mammary gland immune defence and concurrent compensatory metabolic processes related to NEB, rather than with pronounced alterations in basic milk composition. Milk LF content may therefore be considered as a specific indicator of immunometabolic compensation during the early postpartum period, rather than as a general marker of overall cow health. Full article
(This article belongs to the Special Issue Farm Management Practices to Improve Milk Quality and Yield)
17 pages, 2380 KB  
Article
Photosynthetic Performance and Physiological Assessment of Young Citrus limon L. Trees Grown After Seed Priming
by Valentina Ancuța Stoian, Ștefania Gâdea, Florina Copaciu, Anamaria Vâtcă, Vlad Stoian, Melinda Horvat, Alina Toșa and Sorin Daniel Vâtcă
Horticulturae 2026, 12(1), 99; https://doi.org/10.3390/horticulturae12010099 - 17 Jan 2026
Viewed by 117
Abstract
In the current context of climate change, special attention should be paid to assuring the security of food and fruits. Lemon trees struggle to keep their physiological traits stable in the context of all the cumulated challenges originating from climate stress. Therefore, our [...] Read more.
In the current context of climate change, special attention should be paid to assuring the security of food and fruits. Lemon trees struggle to keep their physiological traits stable in the context of all the cumulated challenges originating from climate stress. Therefore, our aim was to assess two seed priming methods’ long-term effects on some physiological parameters of young lemon trees. The relative chlorophyll content reveals that hydropriming shows 26% increases from E1 to E6, similar to the control, while osmopriming has a 31% higher value at the beginning and after three years. Leaf stomatal density has 80% lower values due to osmopriming compared to the control, while hydropriming show 15% lower values. Leaf area development was slightly similar between treatments, with more leaves being developed after hydropriming treatments. Guard cell width has similar values for priming, with both being with 40% higher than that of the control. Lemon trees grown after osmotic stress have the highest mass percentages of magnesium and potassium in the leaves. Hydropriming promotes calcium oxalate accumulation and a high mass percentage of phosphorus. The percentage allocation of carbon as dry matter is 32% for osmopriming, significantly higher than for the other treatments. The quantum yield of photosynthetic electron transport is the only significant photosynthetic parameter for osmoprimed lemon young trees. Physiological techniques successfully enhanced the overall growth of three-year-old lemon trees, especially osmopriming treatment. Full article
(This article belongs to the Special Issue Emerging Insights into Horticultural Crop Ecophysiology)
Show Figures

Figure 1

11 pages, 3186 KB  
Article
Whole-Genome Sequencing Reveals Genetic Diversity and Structure of Taiwan Commercial Red-Feathered Country Chickens
by Ya-Wen Hsiao, Kang-Yi Su and Chi-Sheng Chang
Animals 2026, 16(2), 286; https://doi.org/10.3390/ani16020286 - 16 Jan 2026
Viewed by 141
Abstract
Whole-genome sequencing is a powerful approach for exploring genomic diversity in livestock species. Chickens (Gallus gallus) are an important food source worldwide, and in Taiwan, poultry production contributes substantially to the livestock industry. Taiwan’s commercial red- and black-feathered country chickens dominate [...] Read more.
Whole-genome sequencing is a powerful approach for exploring genomic diversity in livestock species. Chickens (Gallus gallus) are an important food source worldwide, and in Taiwan, poultry production contributes substantially to the livestock industry. Taiwan’s commercial red- and black-feathered country chickens dominate this category and play a crucial role in local poultry production. However, fundamental genomic information on their population structure remains limited. To address this gap, this study generated whole-genome sequencing data from red-feathered country chickens originating from four major breeding farms. Genetic diversity analyses revealed uniformly low genetic diversity across all farms. Runs of homozygosity (ROH) analyses indicated predominantly historical inbreeding, with farm-specific differences in recent inbreeding patterns. Population structure analyses revealed clear clustering of individuals according to farm origin, indicating distinct line structures among breeding farms. These results provide the first comprehensive genomic overview of Taiwan’s commercial red-feather country chickens and offer valuable reference information for future breeding strategies and the development of new lines. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

25 pages, 7696 KB  
Article
Thermoplastic Starch Composites with Highly Exfoliated Nano-Clay Fillers and Excellent Barrier Properties
by Veronika Gajdosova, Beata Strachota, Vaclav Pokorny, Libuse Brozova, Jan Kozisek, Ewa Pavlova, Zdenek Stary, Miroslav Slouf and Adam Strachota
Materials 2026, 19(2), 347; https://doi.org/10.3390/ma19020347 - 15 Jan 2026
Viewed by 256
Abstract
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step [...] Read more.
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step TPS preparation protocol. In both the TPS/LAP and TPS/MMT composites, we achieved perfect dispersion and extensive exfoliation of the nano-clays, resulting in pronounced improvements in mechanical performance (modulus increased up to one order of magnitude) and in excellent gas-barrier properties (extremely small permeabilities for O2, CO2, and even H2). MMT, owing to its larger platelet size and to the formation of partially exfoliated multi-layer structures, generated a percolating filler network that provided particularly strong reinforcement, especially at 15 wt.% loading. LAP, though more completely exfoliated, generated a somewhat smaller mechanical reinforcement, but it more strongly increased processing viscosity due to its high specific surface area, which generated highly stable physical crosslinking that persisted even at processing temperatures of T ≥ 120 °C. Efficient matrix–filler interactions were confirmed by thermogravimetric analysis, where the better-exfoliated LAP generated a higher stabilization. The combination of strong mechanical reinforcement with outstanding gas-barrier properties makes the TPS/MMT and TPS/LAP nanocomposites attractive for food-packaging applications, where their natural origin, non-toxicity, bio-degradability, and abundance of nanocomposite components are an additional bonus. Full article
Show Figures

Graphical abstract

40 pages, 1326 KB  
Review
Synergistic Effects of Plant Polysaccharides and Probiotics: A Novel Dietary Approach for Parkinson’s Disease Intervention
by Ye Jin, Lu Wang, Ruiting Lin, Jing He, Da Liu, Yang Liu and Yongzhi Deng
Pharmaceuticals 2026, 19(1), 157; https://doi.org/10.3390/ph19010157 - 15 Jan 2026
Viewed by 179
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disorder globally, relies primarily on dopamine replacement therapy for conventional treatment. This approach fails to reverse core pathological processes and is associated with long-term side effects. Recent research on the microbiota-gut-brain axis (MGBA) has revealed [...] Read more.
Parkinson’s disease (PD), the second most common neurodegenerative disorder globally, relies primarily on dopamine replacement therapy for conventional treatment. This approach fails to reverse core pathological processes and is associated with long-term side effects. Recent research on the microbiota-gut-brain axis (MGBA) has revealed that PD pathology may originate in the gut, forming a vicious cycle from the gut to brain through α-synuclein propagation, gut dysbiosis, intestinal barrier disruption, and neuroinflammation. This offers a novel perspective for managing PD through dietary interventions that modulate the gut microbiome. However, single probiotic or prebiotic interventions show limited efficacy. This review systematically introduces the novel concept of “synbiotics combining medicinal plant polysaccharides with probiotics,” aiming to integrate traditional “medicinal food” wisdom with modern microbiome science. The article systematically elucidates the pathological mechanisms of MGBA dysfunction in PD and the intervention mechanisms of probiotics and emphasizes the structural and functional advantages of medicinal plant polysaccharide as superior prebiotics. The core section delves into the multifaceted synergistic mechanisms between these two components: enhancing probiotic colonization and vitality, optimizing microbial metabolic output, synergistically reinforcing the intestinal and blood-brain barriers, and jointly regulating immune and neuroinflammation. This approach targets the MGBA to achieve multi-level intervention for PD. Full article
Show Figures

Figure 1

Back to TopTop