Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (371)

Search Parameters:
Keywords = organic mulch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2656 KiB  
Article
Plastic Film Mulching Regulates Soil Respiration and Temperature Sensitivity in Maize Farming Across Diverse Hydrothermal Conditions
by Jianjun Yang, Rui Wang, Xiaopeng Shi, Yufei Li, Rafi Ullah and Feng Zhang
Agriculture 2025, 15(15), 1667; https://doi.org/10.3390/agriculture15151667 - 1 Aug 2025
Viewed by 179
Abstract
Soil respiration (Rt), consisting of heterotrophic (Rh) and autotrophic respiration (Ra), plays a vital role in terrestrial carbon cycling and is sensitive to soil temperature and moisture. In dryland agriculture, plastic film mulching (PM) is widely used to regulate soil hydrothermal conditions, but [...] Read more.
Soil respiration (Rt), consisting of heterotrophic (Rh) and autotrophic respiration (Ra), plays a vital role in terrestrial carbon cycling and is sensitive to soil temperature and moisture. In dryland agriculture, plastic film mulching (PM) is widely used to regulate soil hydrothermal conditions, but its effects on Rt components and their temperature sensitivity (Q10) across regions remain unclear. A two-year field study was conducted at two rain-fed maize sites: Anding (warmer, semi-arid) and Yuzhong (colder, drier). PM significantly increased Rt, Rh, and Ra, especially Ra, due to enhanced root biomass and improved microclimate. Yield increased by 33.6–165%. Peak respiration occurred earlier in Anding, aligned with maize growth and soil temperature. PM reduced Q10 of Rt and Ra in Anding, but only Ra in Yuzhong. Rh Q10 remained stable, indicating microbial respiration was less sensitive to temperature changes. Structural equation modeling revealed that Rt and Ra were mainly driven by soil temperature and root biomass, while Rh was more influenced by microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Despite increased CO2 emissions, PM improved carbon emission efficiency (CEE), particularly in Yuzhong (+67%). The application of PM is recommended to enhance yield while optimizing carbon efficiency in dryland farming systems. Full article
Show Figures

Figure 1

21 pages, 2522 KiB  
Article
Long-Term Flat-Film Hole-Sowing Increases Soil Organic Carbon Stocks and Resilience Under Future Climate Change Scenarios
by Hanbing Cao, Xinru Chen, Yunqi Luo, Zhanxiang Wu, Chengjiao Duan, Mengru Cao, Jorge L. Mazza Rodrigues, Junyu Xie and Tingliang Li
Agronomy 2025, 15(8), 1808; https://doi.org/10.3390/agronomy15081808 - 26 Jul 2025
Viewed by 296
Abstract
Analyzing the soil organic carbon (SOC) stock in dryland areas of southern Shanxi, particularly under the influence of fertilization and mulching conditions, is crucial for enhancing soil fertility and crop productivity and understanding the SOC pool’s resilience to future climate change scenarios in [...] Read more.
Analyzing the soil organic carbon (SOC) stock in dryland areas of southern Shanxi, particularly under the influence of fertilization and mulching conditions, is crucial for enhancing soil fertility and crop productivity and understanding the SOC pool’s resilience to future climate change scenarios in the region. In a long-term experimental site located in Hongtong County, Shanxi Province, soil samples were collected from the 0–100 cm depth over a nine-year period. These samples were analyzed to evaluate the impact of five treatments: no fertilization and no mulching (CK), conventional farming practices (FP), nitrogen reduction and controlled fertilization (MF), nitrogen reduction and controlled fertilization with ridge-film furrow-sowing (RF), and nitrogen reduction and controlled fertilization with flat-film hole-sowing (FH). The average annual yield of wheat grain, SOC stock, water-soluble organic carbon (WSOC), particulate organic carbon (POC), light fraction organic carbon (LFOC), mineral-associated organic carbon (MOC), and heavy fraction organic carbon (HFOC) stocks were measured. The results revealed that the FH treatment not only significantly increased wheat grain yield but also significantly elevated the SOC stock by 23.71% at the 0–100 cm depth compared to CK. Furthermore, this treatment significantly enhanced the POC, LFOC, and MOC stocks by 106.43–292.98%, 36.93–158.73%, and 17.83–81.55%, respectively, within 0–80 cm. However, it also significantly decreased the WSOC stock by 34.32–42.81% within the same soil layer and the HFOC stock by 72.05–101.51% between the 20 and 100 cm depth. Notably, the SOC stock at the 0–100 cm depth was primarily influenced by the HFOC. Utilizing the DNDC (denitrification–decomposition) model, we found that future temperature increases are detrimental to SOC sequestration in dryland areas, whereas reduced rainfall is beneficial. The simulation results indicated that in a warmer climate, a 2 °C temperature increase would result in a SOC stock decrease of 0.77 to 1.01 t·ha−1 compared to a 1 °C increase scenario. Conversely, under conditions of reduced precipitation, a 20% rainfall reduction would lead to a SOC stock increase of 1.53% to 3.42% compared to a 10% decrease scenario. In conclusion, the nitrogen reduction and controlled fertilization with flat-film hole-sowing (FH) treatment emerged as the most effective practice for increasing SOC sequestration in dryland areas by enhancing the HFOC stock. This treatment also fortified the SOC pool’s capacity to withstand future climate change, thereby serving as the optimal approach for concurrently enhancing production and fertility in this region. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

13 pages, 1373 KiB  
Article
A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches
by Cuyler Borrowman, Karen Little, Raju Adhikari, Kei Saito, Stuart Gordon and Antonio F. Patti
Agriculture 2025, 15(15), 1581; https://doi.org/10.3390/agriculture15151581 - 23 Jul 2025
Viewed by 331
Abstract
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for [...] Read more.
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for a single growing season, and thus, their use and non-biodegradability come with some serious environmental consequences due to their persistence in the soil and potential for microplastic pollution, particularly when retrieval and disposal options are poor. On the microscale, particles < 5 mm from degraded films have been observed to disrupt soil structure, impede water and nutrient cycling, and affect soil organisms and plant health. On the macroscale, there are obvious and serious environmental consequences associated with the burning of plastic film and its leakage from poorly managed landfills. To maintain the crop productivity afforded by mulching with PE film while avoiding the environmental downsides, the development and use of biodegradable polymer technologies is being explored. Here, the efficacy of a newly developed, water-dispersible, sprayable, and biodegradable polyester–urethane–urea (PEUU)-based polymer was compared with two commercial PE mulches, non-degradable polyethylene (NPE) and OPE (ox-degradable polyethylene), in a greenhouse tomato growth trial. Water savings and the effects on plant growth and soil characteristics were studied. It was found that PEUU provided similar water savings to the commercial PE-based mulches, up to 30–35%, while showing no deleterious effects on plant growth. The results should be taken as preliminary indications that the sprayable, biodegradable PEUU shows promise as a replacement for PE mulch, with further studies under outside field conditions warranted to assess its cost effectiveness in improving crop yields and, importantly, its longer-term impacts on soil and terrestrial fauna. Full article
Show Figures

Figure 1

26 pages, 3919 KiB  
Article
Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems
by Chaoyu Liao, Min Tang, Chao Zhang, Meihua Deng, Yan Li and Shaoyuan Feng
Plants 2025, 14(14), 2233; https://doi.org/10.3390/plants14142233 - 19 Jul 2025
Viewed by 336
Abstract
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In [...] Read more.
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In this study, we systematically examined the combined effects of straw mulching at the seedling and jointing stages of winter wheat, as well as varying mulching thicknesses and soybean planting densities, on soil properties and crop yields through field experiments. The experimental design included straw mulching treatments during the seedling stage (T1) and the jointing stage (T2) of winter wheat, with soybean planting densities classified as low (D1, 1.8 × 105 plants·ha−1) and high (D2, 3.6 × 105 plants·ha−1). Mulching thicknesses were set at low (S1, 2830.19 kg·ha−1), medium (S2, 8490.57 kg·ha−1), and high (S3, 14,150.95 kg·ha−1), in addition to a no-mulch control (CK) for each treatment. The results demonstrated that (1) straw mulching significantly increased soil water content in the order S3 > S2 > S1 > CK and exerted a temperature-buffering effect. This resulted in increases in soil organic carbon, available phosphorus, and available potassium by 1.88−71.95%, 1.36−165.8%, and 1.92−36.34%, respectively, while decreasing available nitrogen content by 1.42−17.98%. (2) The T1 treatments increased wheat yields by 1.22% compared to the control, while the T2 treatments resulted in a 23.83% yield increase. Soybean yields increased by 23.99% under D1 and by 36.22% under D2 treatments. (3) Structural equation modeling indicated that straw mulching influenced yields by modifying interactions among soil organic carbon, available nitrogen, available phosphorus, available potassium, bulk density, soil temperature, and soil water content. Wheat yields were primarily regulated by the synergistic effects of soil temperature, water content, and available potassium, whereas soybean yields were determined by the dynamic balance between organic carbon and available potassium. This study provides empirical evidence to inform the optimization of straw return practices in wheat–soybean rotation systems. Full article
Show Figures

Figure 1

13 pages, 4134 KiB  
Article
Use of Biodried Organic Waste as a Soil Amendment: Positive Effects on Germination and Growth of Lettuce (Lactuca sativa L., var. Buttercrunch) as a Model Crop
by Rosa María Contreras-Cisneros, Fabián Robles-Martínez, Marina Olivia Franco-Hernández and Ana Belem Piña-Guzmán
Processes 2025, 13(7), 2285; https://doi.org/10.3390/pr13072285 - 17 Jul 2025
Viewed by 307
Abstract
Biodrying and composting are aerobic processes to treat and stabilize organic solid waste, but biodrying involves a shorter process time and does not require the addition of water. The resulting biodried material (BM) is mainly used as an energy source in cement production [...] Read more.
Biodrying and composting are aerobic processes to treat and stabilize organic solid waste, but biodrying involves a shorter process time and does not require the addition of water. The resulting biodried material (BM) is mainly used as an energy source in cement production or in municipal solid waste incineration with energy recovery, but when obtained from agricultural or agroindustrial organic waste, it could also be used as a soil amendment, such as compost (CO). In this study, the phytotoxicity of BM compared to CO, both made from organic wastes (orange peel, mulch and grass), was evaluated on seed germination and growth (for 90 days) of lettuce (Lactuca sativa L.) seedlings on treatments prepared from mixtures of BM and soil, soil (100%) and a mixture of CO and soil. The germination index (GI%) was higher for BM extracts (200 g/L) than for CO extracts (68% vs. 53%, respectively). According to their dry weight, lettuce grew more on the CO mixture (16.5 g) than on the BM (5.4–7.4 g), but both materials far exceeded the soil values (0.15 g). The absence of phytotoxicity suggests that BM acts as a soil amendment, improving soil structure and providing nutrients to the soil. Therefore, biodrying is a quick and low-cost bioprocess to obtain a soil improver. Full article
Show Figures

Figure 1

21 pages, 3275 KiB  
Article
Bioaccumulation, Ecotoxicity, and Microbial Responses in Hoplobatrachus rugulosus Tadpoles Following Co-Exposure to Imidacloprid and Microplastics
by Xinyu Hu, Sipu Zhu, Yiru Chen, Linxia Zhang, Huadong Tan, Chunyuan Wu, Xiaoying Zhang, Xiao Deng and Yi Li
Animals 2025, 15(13), 1928; https://doi.org/10.3390/ani15131928 - 30 Jun 2025
Viewed by 277
Abstract
Agricultural organic pollutants have been identified as a key factor contributing to amphibian population decline, particularly during early developmental stages when tadpoles are frequently exposed to neonicotinoids (NEOs) and microplastics (MPs). In this study, Hoplobatrachus rugulosus tadpoles were exposed to imidacloprid (IMI: 0.045, [...] Read more.
Agricultural organic pollutants have been identified as a key factor contributing to amphibian population decline, particularly during early developmental stages when tadpoles are frequently exposed to neonicotinoids (NEOs) and microplastics (MPs). In this study, Hoplobatrachus rugulosus tadpoles were exposed to imidacloprid (IMI: 0.045, 0.45, and 4.5 mg L−1) and polyethylene-derived MPs (10 mg L−1) from agricultural mulch films, both individually and in combination. We systematically evaluated acute toxicity, bioaccumulation, developmental and oxidative stress responses, and changes in the skin and gut microbiota. The results showed that the 96 h median lethal concentration (LC50) of IMI was 44.8 mg L−1 in the IMI-only group and was 40.5 mg L−1 in the IMI + MPs group, indicating the negligible impact of MPs on acute toxicity. However, in the highest co-exposure group (IMI4.5 + MPs), tadpole body length and weight decreased by 14.7% and 22.6%, respectively, alongside marked changes in oxidative stress, whereby catalase (CAT) and superoxide dismutase (SOD) activities were suppressed, while malondialdehyde (MDA) levels increased by 35%, indicating elevated lipid peroxidation. Furthermore, the micronucleus frequency in erythrocytes was significantly elevated, suggesting genotoxic effects. Microbial community analysis revealed significant shifts in the relative abundance of gut and skin microbiota under IMI + MPs exposure, with a notable enrichment of Proteobacteria, Fusarium, Actinomycetota, and Bacteroidota, indicating the disruption of host–microbiome interactions. This study proposes a comprehensive multi-tiered assessment framework encompassing environmental exposure, bioaccumulation, toxicological endpoints, oxidative stress biomarkers, and microbiome shifts. Our findings provide new mechanistic insights and quantitative evidence on the compound threats posed by IMI and MPs to amphibians in aquatic environments. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Graphical abstract

17 pages, 2081 KiB  
Article
The Role of Grassland Land Use in Enhancing Soil Resilience and Climate Adaptation in Periurban Landscapes
by Igor Bogunovic, Marija Galic, Aleksandra Percin, Sun Geng and Paulo Pereira
Agronomy 2025, 15(7), 1589; https://doi.org/10.3390/agronomy15071589 - 29 Jun 2025
Viewed by 320
Abstract
Urbanisation and land-use change are among the main pressures on soil health in periurban areas, but the multifunctionality of grassland soils is still not sufficiently recognised. In this study, the physical and chemical properties of soils under grassland, forest and croplands in the [...] Read more.
Urbanisation and land-use change are among the main pressures on soil health in periurban areas, but the multifunctionality of grassland soils is still not sufficiently recognised. In this study, the physical and chemical properties of soils under grassland, forest and croplands in the periurban area of Zagreb were investigated in a two-year period. Grasslands consistently exhibited multifunctional benefits, including high organic matter content (4.68% vs. 2.24% in cropland), improved bulk density (1.14 vs. 1.24 g cm−3) and an active carbon cycle indicated by increased CO2 emissions (up to 1403 kg ha−1 day−1 in 2021). Forest soils showed the highest aggregate stability (91.4%) and infiltration (0.0006 cm s−1), while croplands showed signs of structural degradation with the highest bulk density and lowest water retention (39.9%). Temporal variation showed that grassland was particularly responsive to favourable climatic conditions, with soil porosity and water content improving yearly. Principal component analysis showed that soil structure, biological activity and moisture regulation were linked, with grassland plots favourably positioned along the axes of resilience. The absence of tillage and the presence of permanent vegetation cover contributed to their high capacity for climate and water regulation and carbon sequestration. These results emphasise the importance of protecting and managing grasslands as an important component of urban green areas. Practices such as mulching, minimal disturbance and continuous cover can maximise the ecosystem services of grassland soils. In addition, the results highlight the potential risk of trace metal accumulation in cropland and grassland soils located near urban and farming infrastructure, underlining the need for regular monitoring in periurban environments. Integrating grassland functions into urban planning and policy is essential for improving the sustainability and resilience of periurban landscapes. Full article
(This article belongs to the Special Issue Multifunctionality of Grassland Soils: Opportunities and Challenges)
Show Figures

Figure 1

17 pages, 2039 KiB  
Article
Long-Term Conservation Tillage Increases Soil Organic Carbon Stability by Modulating Microbial Nutrient Limitations and Aggregate Protection
by Zixuan Han, Xueping Wu, Huizhou Gao, Angyuan Jia and Qiqi Gao
Agronomy 2025, 15(7), 1571; https://doi.org/10.3390/agronomy15071571 - 27 Jun 2025
Viewed by 469
Abstract
Increasing soil organic carbon (SOC) storage is essential for improving soil fertility and mitigating climate change. The priming effect, which is regulated by physical, chemical and microbial interactions, plays a pivotal role in SOC turnover. However, the fate of both native and newly [...] Read more.
Increasing soil organic carbon (SOC) storage is essential for improving soil fertility and mitigating climate change. The priming effect, which is regulated by physical, chemical and microbial interactions, plays a pivotal role in SOC turnover. However, the fate of both native and newly added carbon under different tillage regimes remains unclear. To address this gap, a 13C-glucose labelling incubation experiment was conducted to assess SOC mineralization and priming effects under long-term tillage practices, including subsoiling with straw mulching (ST), no tillage with straw mulching (NT), and conventional tillage with straw removal (CT). The results demonstrated that conservation tillage (NT and ST) significantly reduced total SOC mineralization and glucose-derived CO2 release compared to CT. Notably, the priming effect under CT was 19.5% and 24.7% higher than under NT and ST, respectively. In the early incubation stage, positive priming was primarily driven by microbial co-metabolism, while during days 1–31, microbial stoichiometric decomposition dominated the process. In addition, NT and ST treatments significantly increased the proportion of >250 μm aggregates and their associated carbon and nitrogen contents, thereby enhancing aggregate stability and physical protection of SOC. The priming effect observed under conservation tillage was strongly negatively related to aggregate stability and aggregate associated carbon content, whereas it was positively related to the β-glucosidase/Peroxidase ratio (BG/PER) and the subtraction value between carbon/nitrogen (RC:N) and the carbon–nitrogen imbalance of the available resources (TERC:N). Overall, our findings highlight that conservation tillage enhances SOC stability not only by improving soil physical structure but also by alleviating microbial stoichiometric constraints, offering a synergistic pathway for carbon retention and climate-resilient soil management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 2621 KiB  
Article
The Effects of Different Plastic Film Mulches on the Physicochemical and Microbiological Properties of Soils for Protected Pepper Cultivation
by Guiliang Wang, Nannan He, Yulin Li, Wen Huang, Yifan Cao, Juanjuan Wang, Xiaoqing Qian, Li Yin and Xiaoping Zeng
Horticulturae 2025, 11(6), 710; https://doi.org/10.3390/horticulturae11060710 - 19 Jun 2025
Viewed by 380
Abstract
Plastic film mulching is widely used in protected agriculture. However, the residues of various types of plastic films, as a consequence, severely affect soil quality. The most widely promoted alternative strategy is the use of biodegradable plastic films. Nevertheless, the research on the [...] Read more.
Plastic film mulching is widely used in protected agriculture. However, the residues of various types of plastic films, as a consequence, severely affect soil quality. The most widely promoted alternative strategy is the use of biodegradable plastic films. Nevertheless, the research on the effects of different types of plastic films on soil properties remains insufficient. This study explored the impacts of different plastic film mulching on the physicochemical properties and microbial communities of soils for pepper cultivation, with three treatments: traditional polyethylene film (PE-Ctr), PBAT biodegradable film (PBAT bio), and reinforced polyethylene film (RPE). The results showed that the soil pH value was the highest in PE-Ctr treatment, and the soil organic matter content was higher in the biodegradable film treatment, while the electrical conductivity (EC), nitrate, and some cations (Ca2+, Mg2+) were higher in the RPE treatment. The contents of available trace element Zn, Fe, and Mn increased in the PBAT bio treatment. The bacterial richness and evenness indices were higher in PBAT bio treatment than those of other treatments. The fungal community had a relatively high richness, but a lower evenness, compared to the PE-Ctr and PBAT bio treatments. The use of different plastic films significantly affected the composition of soil bacteria, while differences in the composition of soil fungi were only observed between the PBAT bio and RPE treatments. Proteobacteria, Acidobacteriota, and Actinobacteriota were the most dominant bacterial phyla, and Ascomycota and Mortierellomycota were the dominant fungal phylum across all treatments. FAPROTAX functional prediction showed that the abundances of multiple functions of soil bacteria were higher in the RPE treatment, and the chemoheterotrophy function was higher in the PE treatment. FUNGuild analysis indicated that the trophic types and ecological function groups of soil fungi were more abundant in the PBAT bio treatment. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

15 pages, 917 KiB  
Article
Effects of Cover Crop Mixtures on Soil Health and Spring Oat Productivity
by Aušra Marcinkevičienė, Lina Marija Butkevičienė, Lina Skinulienė and Aušra Rudinskienė
Sustainability 2025, 17(12), 5566; https://doi.org/10.3390/su17125566 - 17 Jun 2025
Viewed by 397
Abstract
Growing cover crop mixtures is a sustainable agriculture tool that helps to reduce fertilizer use and, at the same time, ensures lower environmental pollution. The aim of this research is to assess the biomass of the aboveground part of cover crop mixtures and [...] Read more.
Growing cover crop mixtures is a sustainable agriculture tool that helps to reduce fertilizer use and, at the same time, ensures lower environmental pollution. The aim of this research is to assess the biomass of the aboveground part of cover crop mixtures and the nutrients accumulated in it and to determine their influence on the soil properties and productivity of spring oats (Avena sativa L.). The biomass of the aboveground part of cover crop mixtures of different botanical compositions varied from 2.33 to 2.67 Mg ha−1. As the diversity of plant species in cover crop mixtures increased, the accumulation of nutrients in the aboveground part biomass increased, and the risk of nutrient leaching was reduced. The post-harvest cover crop mixture TGS GYVA 365, consisting of eight short-lived and two perennial plant species, significantly reduced the mineral nitrogen content in the soil in spring and had the strongest positive effect on organic carbon content. Post-harvest cover crop mixtures TGS GYVA 365 and TGS D STRUKT 1 did not affect the content of available potassium in the soil but significantly reduced the content of available phosphorus. All tested cover crop mixtures, including the undersown TGS BIOM 1 and the post-harvest mixtures TGS D STRUKT 1 and TGS GYVA 365, reduced soil shear strength and improved soil structure, although the reduction was not statistically significant for TGS D STRUKT 1. Cover crop mixtures left on the soil surface as mulch had a positive effect on the chlorophyll concentration in oat leaves, number of grains per panicle, and oat grain yield. A significant positive correlation was found between oat grain yield and several yield components, including crop density, plant height, number of grains per panicle, and grain mass per panicle. These findings highlight the potential of diverse cover crop mixtures to reduce fertilizer dependency and improve oat productivity under temperate climate conditions. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

13 pages, 1707 KiB  
Article
The Impact of Different Almond Orchard Management Practices in Hyper-Arid Ecosystems on Soil Microbial Communities
by Itaii Applebaum, Gil Eshel, Tirza Doniger and Yosef Steinberger
Land 2025, 14(6), 1281; https://doi.org/10.3390/land14061281 - 15 Jun 2025
Viewed by 398
Abstract
The use of service (cover) crops is widely practiced in soil agriculture due to their many benefits, including enhanced nutrient supply and improved soil health. Bacteria, as major decomposers of plant residues in the soil, play essential roles in nutrient cycling. This study [...] Read more.
The use of service (cover) crops is widely practiced in soil agriculture due to their many benefits, including enhanced nutrient supply and improved soil health. Bacteria, as major decomposers of plant residues in the soil, play essential roles in nutrient cycling. This study examined the impact of various almond orchard management practices on the soil microbial community composition in a hyper-arid ecosystem. High-throughput sequencing was used to compare the microbial communities in two adjacent almond orchards managed with either organic (ORG) or regenerative agriculture (RA) practices, alongside an uncultivated (UC) site. Notably, little is known about the responses of soil bacterial communities in hyper-arid regions to intercrop mulch from service crops. This study may offer insights into the ecological limits of the benefits of service crops in promoting soil health under extreme conditions. Our findings demonstrate that RA management can alter soil organic carbon levels and reshape microbial communities by increasing overall bacterial abundance and enriching specific keystone taxa. These changes may have significant implications for nutrient cycling processes in hyper-arid agroecosystems. Full article
Show Figures

Figure 1

16 pages, 266 KiB  
Review
Roles of Organic Agriculture for Water Optimization in Arid and Semi-Arid Regions
by Shikha Sharma, Matt A. Yost and Jennifer R. Reeve
Sustainability 2025, 17(12), 5452; https://doi.org/10.3390/su17125452 - 13 Jun 2025
Viewed by 985
Abstract
Water scarcity is a critical challenge in arid and semi-arid regions, where agricultural water consumption accounts for a significant portion of freshwater use. Conventional agriculture (CA) methods with high reliance on chemical and mechanical inputs often exacerbate this issue through soil degradation and [...] Read more.
Water scarcity is a critical challenge in arid and semi-arid regions, where agricultural water consumption accounts for a significant portion of freshwater use. Conventional agriculture (CA) methods with high reliance on chemical and mechanical inputs often exacerbate this issue through soil degradation and water loss. This review aims to examine how different organic practices, such as mulching, cover cropping, composting, crop rotation, and no-till (NT) in combination with precision technologies, can contribute to water optimization, and it discusses the opportunities and challenges for the adoption and implementation of those practices. Previous findings show that organic agriculture (OA) may outperform CA in drought conditions. However, the problems of weed management in organic NT, trade-offs in cover crop biomass and moisture conservation, limited access to irrigation technologies, lack of awareness, and certification barriers challenge agricultural resilience and sustainability. Since the outcomes of OA practices depend on the crop type, local environment, and accessibility of knowledge and inputs, further context-specific research is needed to refine a scalable solution that maintains both productivity and resilience. Full article
(This article belongs to the Special Issue Effects of Soil and Water Conservation on Sustainable Agriculture)
20 pages, 3069 KiB  
Article
Assessing the Synergy of Spring Strip Tillage and Straw Mulching to Mitigate Soil Degradation and Enhance Productivity in Black Soils
by Zhihong Yang, Lanfang Bai, Tianhao Wang, Zhipeng Cheng, Zhen Wang, Yongqiang Wang, Fugui Wang, Fang Luo and Zhigang Wang
Agronomy 2025, 15(6), 1415; https://doi.org/10.3390/agronomy15061415 - 9 Jun 2025
Viewed by 436
Abstract
To address the critical challenges of wind erosion mitigation and sustainable soil management in the fragile agroecosystem of the black soil region in the foothills of the Daxing’anling Mountains, this study evaluated five tillage practices—conventional ridge tillage (CP), no tillage with straw removal [...] Read more.
To address the critical challenges of wind erosion mitigation and sustainable soil management in the fragile agroecosystem of the black soil region in the foothills of the Daxing’anling Mountains, this study evaluated five tillage practices—conventional ridge tillage (CP), no tillage with straw removal (NT), no tillage with straw mulching (R+NT), autumn strip tillage with straw mulching (R+STA), and spring strip tillage with straw mulching (R+STS)—across two landforms: gently sloped uplands and flat depressions. The results demonstrated that R+STS achieved superior performance across both landscapes, exhibiting a 42.99% reduction in the wind erosion rate, a 48.88% decrease in soil sediment discharge, and a 52.26% reduction in the soil creep amount compared to CP. These improvements were mechanistically linked to the enhanced surface microtopography (aerodynamic roughness increased by 1.8–2.3 fold) and optimized straw coverage (68–72%). R+STS also enhanced the topsoil fertility, increasing the total nitrogen (TN), soil organic carbon (SOC), alkaline nitrogen (AN), available phosphorus (AP), and rapidly available potassium (AK) by 22.07%, 12.94%, 14.92%, 32.94%, and 9.52%, respectively. Furthermore, it improved maize emergence and its yield by 10.04% and 9.99% compared to R+NT. Mantel tests and SEM revealed strong negative correlations between erosion and nutrients, identifying nitrogen availability as the key yield driver. R+STS offers a sustainable strategy for erosion control and productivity improvement in the black soil region. Full article
Show Figures

Figure 1

27 pages, 5053 KiB  
Article
Microbially Mediated Carbon Regulation by Straw Mulching in Rainfed Maize Rhizosphere
by Lei Pang, Haimei Wu, Jianlong Lu, Haofei Zheng, Xiaohua Wang, Muhammad Zahid Mumtaz and Yanli Zhou
Agronomy 2025, 15(6), 1412; https://doi.org/10.3390/agronomy15061412 - 8 Jun 2025
Viewed by 500
Abstract
Soil carbon dynamics and microbial communities are critical to soil health. However, the specific effects of mulching on soil microbial community and carbon dynamics in semi-arid rainfed regions remain insufficiently understood. This study aims to identify optimal mulching practices that promote soil carbon [...] Read more.
Soil carbon dynamics and microbial communities are critical to soil health. However, the specific effects of mulching on soil microbial community and carbon dynamics in semi-arid rainfed regions remain insufficiently understood. This study aims to identify optimal mulching practices that promote soil carbon sequestration and enhance soil microbial functionality. Mulching treatments were applied in furrows before maize sowing, including black plastic film (TB), white plastic film (TW), straw mulching without sowing (TC), and straw mulching with sowing (TG), and were compared with flat sowing without mulching (TN). Results revealed that TG treatment promoted soil carbon dynamics by increasing total carbon (9%), organic carbon (19%), microbial biomass carbon (100%), easily oxidized carbon (10%), particulate-associated carbon (77%), carbon stability index (7%), active carbon fraction (45%), dissolved carbon proportion (30%), and microbial quotient (34%) compared to TN. A higher abundance and composition of bacterial communities were observed compared to fungal communities. The highest bacterial abundance of Kaistobacter, iii1_15, Sinobacteraceae, and Xanthomonadaceae, and fungal abundance of unspecified fungi, Laiosphaeriaceae, and Sordariomycetes, with the dominant aerobic respiration metabolic pathway involved in organic matter decomposition, were observed in TG and TC. The results indicated that TG treatment most effectively promoted carbon fractions and microbial activity that could strengthen soil health. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

13 pages, 1072 KiB  
Article
Exploitation of the Herbicide Effect of Compost for Vineyard Soil Management
by Piergiorgio Romano, Lorenzo Samuil Mordos, Marcello Stifani, Francesco Mello, Corrado Domanda, Daniel Grigorie Dinu, Concetta Eliana Gattullo, Gianluca Pappaccogli, Gianni Zorzi, Rita Annunziata Accogli and Laura Rustioni
Environments 2025, 12(6), 190; https://doi.org/10.3390/environments12060190 - 5 Jun 2025
Viewed by 1052
Abstract
Soil management in vineyards is a crucial component of sustainable viticulture. Weed control under the row has traditionally been addressed using mechanical, physical, and chemical techniques, but herbicides pose environmental and health risks. The circular economy offers an alternative approach by converting organic [...] Read more.
Soil management in vineyards is a crucial component of sustainable viticulture. Weed control under the row has traditionally been addressed using mechanical, physical, and chemical techniques, but herbicides pose environmental and health risks. The circular economy offers an alternative approach by converting organic waste into a resource, such as compost. This study explores the effectiveness of compost derived from the organic fraction of municipal solid waste (MSW) not only as a mulching technique but also as a potential biological agent for weed control through allelopathic mechanisms in vineyards. Experiments were conducted both in the field and under controlled conditions. In the field, compost was applied under the vine row as mulch and incorporated into the soil. Under controlled conditions, germination tests were performed to assess weed inhibition at different compost concentrations. Field results demonstrated that compost applications, both as mulch and incorporated into the soil, significantly inhibited weed growth during the first period after application compared to the tilled control without compost. Thus, this inhibition is not limited to physical mulching; it also applies to the release of allelopathic compounds from compost. Controlled condition experiments showed strong inhibition of germination in Cichorium intybus and Foeniculum vulgare seeds, confirming the anti-germinative effects of compost, particularly on small-seeded weed species. Compost is a promising tool for sustainable vineyard management, offering fertilization and weed-suppression benefits while reducing herbicide use. Full article
(This article belongs to the Special Issue New Insights in Soil Quality and Management, 2nd Edition)
Show Figures

Figure 1

Back to TopTop