Roles of Organic Agriculture for Water Optimization in Arid and Semi-Arid Regions
Abstract
:1. Introduction
2. Reviewing Methodology
3. Water Management Strategies and Barriers to Adoption
4. Organic Practices for Water Management
4.1. Principles of OA and Water Use
4.2. Organic Practices to Improve Resiliency to Water Scarcity
4.2.1. Soil Conservation Practices
4.2.2. Water-Efficient Irrigation Techniques
4.2.3. Water-Efficient Crops
5. Applicability of Water-Saving Organic Practices in the Arid and Semi-Arid Western U.S.
6. Opportunities and Challenges
6.1. Yield Performance and Resilience
6.2. Agronomic and Operational Challenges
6.3. Environmental Trade-Offs and Climate Adaptation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CA | Conventional agriculture |
OA | Organic agriculture |
NT | No-tillage |
USDA | United States Department of Agriculture |
NOP | National organic program |
WUE | Water use efficiency |
CWP | Crop water productivity |
WP | Water productivity |
OCCSP | Organic certification cost-sharing program |
EQIP | Environmental quality incentive program |
TOPP | Transition to organic partnership program |
SWC | Soil water content |
CI | Confidence interval |
NRCS | Natural Resources Conservation Service |
RWH | Rainwater harvesting |
TR | Tied ridging |
FD | Furrow diking |
GHG | Greenhouse gas |
USU | Utah State University |
UAES | Utah Agricultural Experimental Station |
References
- United Nations. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 24 May 2025).
- Suweis, S.; Carr, J.A.; Maritan, A.; Rinaldo, A.; D’Odorico, P. Resilience and Reactivity of Global Food Security. Proc. Natl. Acad. Sci. USA 2015, 112, 6902–6907. [Google Scholar] [CrossRef] [PubMed]
- Merem, E.C.; Twumasi, Y.; Wesley, J.; Alsarari, M.; Fageir, S.; Crisler, M.; Romorno, C.; Olagbegi, D.; Hines, A.; Ochai, G.S.; et al. Assessing Water Resource Issues in the US Pacific North West Region. Int. J. Min. Eng. Miner. Process. 2019, 8, 1–19. [Google Scholar] [CrossRef]
- Seager, R.; Ting, M.; Alexander, P.; Nakamura, J.; Liu, H.; Li, C.; Simpson, I.R. Mechanisms of a Meteorological Drought Onset: Summer 2020 to Spring 2021 in Southwestern North America. J. Clim. 2022, 35, 7367–7385. [Google Scholar] [CrossRef]
- Williams, A.P.; Cook, B.I.; Smerdon, J.E. Rapid Intensification of the Emerging Southwestern North American Megadrought in 2020–2021. Nat. Clim. Chang. 2022, 12, 232–234. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Is There a Need for a More Sustainable Agriculture? Crit. Rev. Plant Sci. 2011, 30, 6–23. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of Organic Farming for Achieving Sustainability in Agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N. Many Shades of Gray—The Context-Dependent Performance of Organic Agriculture. Sci. Adv. 2017, 3, e1602638. [Google Scholar] [CrossRef]
- Lotter, D.W. Organic Agriculture. J. Sustain. Agric. 2003, 21, 59–128. [Google Scholar] [CrossRef]
- Lotter, D.W.; Seidel, R.; Liebhardt, W. The Performance of Organic and Conventional Cropping Systems in an Extreme Climate Year. Am. J. Altern. Agric. 2003, 18, 146–154. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Coulter, J.A.; Xie, J.; Luo, Z.; Zhang, R.; Deng, X.; Li, L. Winter Wheat Yield and Water Use Efficiency Response to Organic Fertilization in Northern China: A Meta-Analysis. Agric. Water Manag. 2020, 229, 105934. [Google Scholar] [CrossRef]
- Hammad, H.M.; Khaliq, A.; Abbas, F.; Farhad, W.; Fahad, S.; Aslam, M.; Shah, G.M.; Nasim, W.; Mubeen, M.; Bakhat, H.F. Comparative Effects of Organic and Inorganic Fertilizers on Soil Organic Carbon and Wheat Productivity under Arid Region. Commun. Soil Sci. Plant Anal. 2020, 51, 1406–1422. [Google Scholar] [CrossRef]
- Huebner, L. Long-Term Control of Desertification: Is Organic Farming Superior to Conventional? Soil and Established Arid Cultivation Practices at SEKEM, Egypt. In Egypt’s Strategy to Meet the Sustainable Development Goals and Agenda 2030: Researchers’ Contributions; Omran, E.-S.E., Negm, A.M., Eds.; Sustainable Development Goals Series; Springer International Publishing: Cham, Switzerland, 2022; pp. 27–42. ISBN 978-3-031-10675-0. [Google Scholar]
- Wang, J.; Baranski, M.; Korkut, R.; Kalee, H.A.; Wood, L.; Bilsborrow, P.; Janovska, D.; Leifert, A.; Winter, S.; Willson, A.; et al. Performance of Modern and Traditional Spelt Wheat (Triticum spelta) Varieties in Rain-Fed and Irrigated, Organic and Conventional Production Systems in a Semi-Arid Environment; Results from Exploratory Field Experiments in Crete, Greece. Agronomy 2021, 11, 890. [Google Scholar] [CrossRef]
- Wheeler, S.A.; Zuo, A.; Loch, A. Watering the Farm: Comparing Organic and Conventional Irrigation Water Use in the Murray–Darling Basin, Australia. Ecol. Econ. 2015, 112, 78–85. [Google Scholar] [CrossRef]
- Kilemo, D.B. The Review of Water Use Efficiency and Water Productivity Metrics and Their Role in Sustainable Water Resources Management. OALib 2022, 9, 1–21. [Google Scholar] [CrossRef]
- Blatchford, M.L.; Karimi, P.; Bastiaanssen, W.G.M.; Nouri, H. From Global Goals to Local Gains—A Framework for Crop Water Productivity. ISPRS Int. J. Geo-Inf. 2018, 7, 414. [Google Scholar] [CrossRef]
- Vellenga, L.; Qualitz, G.; Drastig, K. Farm Water Productivity in Conventional and Organic Farming: Case Studies of Cow-Calf Farming Systems in North Germany. Water 2018, 10, 1294. [Google Scholar] [CrossRef]
- Choudhary, K.K.; Dahiya, R.; Phogat, V.K. Effect of Drip and Furrow Irrigation Methods on Yield and Water Use Efficiency in Cotton. Res. Crops 2016, 17, 823. [Google Scholar] [CrossRef]
- Bhattarai, S.P.; Midmore, D.J.; Su, N. Sustainable Irrigation to Balance Supply of Soil Water, Oxygen, Nutrients and Agro-Chemicals. In Biodiversity, Biofuels, Agroforestry and Conservation Agriculture; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer: Dordrecht, The Netherlands, 2010; Volume 5, pp. 253–286. ISBN 978-90-481-9512-1. [Google Scholar]
- Pool, S.; Francés, F.; Garcia-Prats, A.; Pulido-Velazquez, M.; Sanchis-Ibor, C.; Schirmer, M.; Yang, H.; Jiménez-Martínez, J. From Flood to Drip Irrigation Under Climate Change: Impacts on Evapotranspiration and Groundwater Recharge in the Mediterranean Region of Valencia (Spain). Earth’s Future 2021, 9, e2020EF001859. [Google Scholar] [CrossRef]
- Uddin, M.J.; Murphy, S.R. Evaporation Losses and Evapotranspiration Dynamics in Overhead Sprinkler Irrigation. J. Irrig. Drain. Eng. 2020, 146, 04020023. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X. Precision Agriculture and Water Conservation Strategies for Sustainable Crop Production in Arid Regions. Plants 2024, 13, 3184. [Google Scholar] [CrossRef]
- Sheoran, H.S.; Phogat, V.K.; Dahiya, R.; Seema. Assessment of Physical Properties of Soils Subjected to Organic Farming Practices in Arid and Semi-Arid Regions of Haryana, India. J. Soil Water Conserv. 2021, 20, 237–245. [Google Scholar] [CrossRef]
- De Alencar, G.V.; Gomes, L.C.; Barros, V.M.D.S.; Ortiz Escobar, M.E.; De Oliveira, T.S.; Mendonça, E.D.S. Organic Farming Improves Soil Carbon Pools and Aggregation of Sandy Soils in the Brazilian Semi-arid Region. Soil Use Manag. 2024, 40, e13097. [Google Scholar] [CrossRef]
- Kuyah, S.; Muoni, T.; Bayala, J.; Chopin, P.; Dahlin, A.S.; Hughes, K.; Jonsson, M.; Kumar, S.; Sileshi, G.W.; Dimobe, K.; et al. Grain Legumes and Dryland Cereals Contribute to Carbon Sequestration in the Drylands of Africa and South Asia. Agric. Ecosyst. Environ. 2023, 355, 108583. [Google Scholar] [CrossRef]
- Akchaya, K.; Parasuraman, P.; Pandian, K.; Vijayakumar, S.; Thirukumaran, K.; Mustaffa, M.R.A.F.; Rajpoot, S.K.; Choudhary, A.K. Boosting Resource Use Efficiency, Soil Fertility, Food Security, Ecosystem Services, and Climate Resilience with Legume Intercropping: A Review. Front. Sustain. Food Syst. 2025, 9, 1527256. [Google Scholar] [CrossRef]
- Xiloyannis, C.; Montanaro, G.; Dichio, B. Sustainable Orchard Management in Semi-Arid Areas to Improve Water Use Efficiency and Soil Fertility. Acta Hortic. 2016, 425–430. [Google Scholar] [CrossRef]
- Soulis, K.X.; Elmaloglou, S.; Dercas, N. Investigating the Effects of Soil Moisture Sensors Positioning and Accuracy on Soil Moisture Based Drip Irrigation Scheduling Systems. Agric. Water Manag. 2015, 148, 258–268. [Google Scholar] [CrossRef]
- Mizik, T. How Can Precision Farming Work on a Small Scale? A Systematic Literature Review. Precis. Agric. 2023, 24, 384–406. [Google Scholar] [CrossRef]
- Vasavi, S.; Anandaraja, N.; Murugan, P.P.; Latha, M.R.; Pangayar Selvi, R. Challenges and Strategies of Resource Poor Farmers in Adoption of Innovative Farming Technologies: A Comprehensive Review. Agric. Syst. 2025, 227, 104355. [Google Scholar] [CrossRef]
- Serote, B.; Mokgehle, S.; Senyolo, G.; Du Plooy, C.; Hlophe-Ginindza, S.; Mpandeli, S.; Nhamo, L.; Araya, H. Exploring the Barriers to the Adoption of Climate-Smart Irrigation Technologies for Sustainable Crop Productivity by Smallholder Farmers: Evidence from South Africa. Agriculture 2023, 13, 246. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service. Environmental Quality Incentives Program. Available online: https://www.nrcs.usda.gov/programs-initiatives/eqip-environmental-quality-incentives (accessed on 24 May 2025).
- Agricultural Marketing Service. Transition to Organic Partnership Program. Available online: https://www.ams.usda.gov/services/organic-certification/topp (accessed on 24 May 2025).
- Milovanov, E. Basic Principles of Organic Agriculture: Principles of Fairness and Care. Econ. Ecol. Socium 2019, 3, 23–29. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Jat, H.S.; Choudhary, M.; Abdelaty, E.F.; Sharma, P.C.; Jat, M.L. Conservation Agriculture Effects on Soil Water Holding Capacity and Water-Saving Varied with Management Practices and Agroecological Conditions: A Review. Agronomy 2021, 11, 1681. [Google Scholar] [CrossRef]
- Manga, V.; Jukanti, A.; Bhatt, R. Adaptation and Selection of Crop Varieties for Hot Arid Climate of Rajasthan. Int. J. Plant Sci. 2015, 4, 2319–38241. [Google Scholar]
- Zwart, S.J.; Bastiaanssen, W.G.M. Review of Measured Crop Water Productivity Values for Irrigated Wheat, Rice, Cotton and Maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- Kader, M.A.; Nakamura, K.; Senge, M.; Mojid, M.A.; Kawashima, S. Soil Hydro-Thermal Regimes and Water Use Efficiency of Rain-Fed Soybean (Glycine max) as Affected by Organic Mulches. Agric. Water Manag. 2019, 223, 105707. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Kasper, S.; Mohsin, F.; Richards, L.; Racelis, A. Cover Crops May Exacerbate Moisture Limitations on South Texas Dryland Farms. J. Soil Water Conserv. 2022, 77, 261–269. [Google Scholar] [CrossRef]
- Ranjan, P.; Patle, G.T.; Prem, M.; Solanke, K.R. Organic Mulching—A Water Saving Technique to Increase the Production of Fruits and Vegetables. Curr. Agri Res. J. 2017, 5, 371–380. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Cui, J.; Holden, N.M. The Relationship between Soil Microbial Activity and Microbial Biomass, Soil Structure and Grassland Management. Soil Tillage Res. 2015, 146, 32–38. [Google Scholar] [CrossRef]
- López-Urrea, R.; Sánchez, J.M.; Montoro, A.; Mañas, F.; Intrigliolo, D.S. Effect of Using Pruning Waste as an Organic Mulching on a Drip-Irrigated Vineyard Evapotranspiration under a Semi-Arid Climate. Agric. For. Meteorol. 2020, 291, 108064. [Google Scholar] [CrossRef]
- Song, W.; Han, F.; Bao, Z.; Chai, Y.; Wang, L.; Huang, C.; Cheng, H.; Chang, L. Mulching Practices Improve Soil Moisture and Enzyme Activity in Drylands, Increasing Potato Yield. Agronomy 2024, 14, 1077. [Google Scholar] [CrossRef]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Ma, H.A.; Wen, T.; Guo, X.; Fan, G. The Combined Effects of Maize Straw Mulch and No-Tillage on Grain Yield and Water and Nitrogen Use Efficiency of Dry-Land Winter Wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Qin, W.; Hu, C.; Oenema, O. Soil Mulching Significantly Enhances Yields and Water and Nitrogen Use Efficiencies of Maize and Wheat: A Meta-Analysis. Sci. Rep. 2015, 5, 16210. [Google Scholar] [CrossRef] [PubMed]
- Vanella, D.; Guarrera, S.; Ferlito, F.; Longo-Minnolo, G.; Milani, M.; Pappalardo, G.; Nicolosi, E.; Giuffrida, A.G.; Torrisi, B.; Las Casas, G.; et al. Effects of Organic Mulching and Regulated Deficit Irrigation on Crop Water Status, Soil and Yield Features in an Orange Orchard under Mediterranean Climate. Sci. Total Environ. 2025, 958, 177528. [Google Scholar] [CrossRef]
- Basche, A.D.; Kaspar, T.C.; Archontoulis, S.V.; Jaynes, D.B.; Sauer, T.J.; Parkin, T.B.; Miguez, F.E. Soil Water Improvements with the Long-Term Use of a Winter Rye Cover Crop. Agric. Water Manag. 2016, 172, 40–50. [Google Scholar] [CrossRef]
- Folorunso, O.A.; Rolston, D.E.; Prichard, T.; Loui, D.T. Soil Surface Strength and Infiltration Rate as Affected by Winter Cover Crops. Soil Technol. 1992, 5, 189–197. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Francis, C.A.; Galusha, T.D. Does Organic Farming Accumulate Carbon in Deeper Soil Profiles in the Long Term? Geoderma 2017, 288, 213–221. [Google Scholar] [CrossRef]
- Eash, L.; Berrada, A.F.; Russell, K.; Fonte, S.J. Cover Crop Impacts on Water Dynamics and Yields in Dryland Wheat Systems on the Colorado Plateau. Agronomy 2021, 11, 1102. [Google Scholar] [CrossRef]
- Ghimire, R.; Ghimire, B.; Mesbah, A.O.; Idowu, O.J.; O’Neill, M.K.; Angadi, S.V.; Shukla, M.K. Current Status, Opportunities, and Challenges of Cover Cropping for Sustainable Dryland Farming in the Southern Great Plains. J. Crop Improv. 2018, 32, 579–598. [Google Scholar] [CrossRef]
- Tanaka, D.L.; Bauer, A.; Black, A.L. Annual Legume Cover Crops in Spring Wheat-Fallow Systems. J. Prod. Agric. 1997, 10, 251–255. [Google Scholar] [CrossRef]
- Mubvumba, P.; DeLaune, P.B.; Hons, F.M. Soil Water Dynamics under a Warm-Season Cover Crop Mixture in Continuous Wheat. Soil Tillage Res. 2021, 206, 104823. [Google Scholar] [CrossRef]
- Zhang, H.; Ghahramani, A.; Ali, A.; Erbacher, A. Cover Cropping Impacts on Soil Water and Carbon in Dryland Cropping System. PLoS ONE 2023, 18, e0286748. [Google Scholar] [CrossRef]
- O’Dea, J. Greening Summer Fallow: Agronomic and Edaphic Implications of Legumes in Dryland Wheat Agroecosystems. M.S. Thesis, Montana State University, Bozeman, MT, USA, 2011. [Google Scholar]
- Díaz-Zorita, M.; Grove, J.H.; Murdock, L.; Herbeck, J.; Perfect, E. Soil Structural Disturbance Effects on Crop Yields and Soil Properties in a No-Till Production System. Agron. J. 2004, 96, 1651–1659. [Google Scholar] [CrossRef]
- Qi, J.-Y.; Han, S.-W.; Lin, B.-J.; Xiao, X.-P.; Jensen, J.L.; Munkholm, L.J.; Zhang, H.-L. Improved Soil Structural Stability under No-Tillage Is Related to Increased Soil Carbon in Rice Paddies: Evidence from Literature Review and Field Experiment. Environ. Technol. Innov. 2022, 26, 102248. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C.; Reeves, S.; Thomas, G.; Wang, W.; Thompson, J.P. Changes in Soil Water Storage with No-Tillage and Crop Residue Retention on a Vertisol: Impact on Productivity and Profitability over a 50 Year Period. Soil Tillage Res. 2019, 194, 104319. [Google Scholar] [CrossRef]
- Gallaher, R.N.; Ferrer, M.B. Effect of No-tillage vs. Conventional Tillage on Soil Organic Matter and Nitrogen Contents. Commun. Soil Sci. Plant Anal. 1987, 18, 1061–1076. [Google Scholar] [CrossRef]
- Bescansa, P.; Imaz, M.J.; Virto, I.; Enrique, A.; Hoogmoed, W.B. Soil Water Retention as Affected by Tillage and Residue Management in Semiarid Spain. Soil Tillage Res. 2006, 87, 19–27. [Google Scholar] [CrossRef]
- Acín-Carrera, M.; José Marques, M.; Carral, P.; Álvarez, A.M.; López, C.; Martín-López, B.; González, J.A. Impacts of Land-use Intensity on Soil Organic Carbon Content, Soil Structure and Water-holding Capacity. Soil Use Manag. 2013, 29, 547–556. [Google Scholar] [CrossRef]
- Bernstein, E.R.; Posner, J.L.; Stoltenberg, D.E.; Hedtcke, J.L. Organically Managed No-Tillage Rye–Soybean Systems: Agronomic, Economic, and Environmental Assessment. Agron. J. 2011, 103, 1169–1179. [Google Scholar] [CrossRef]
- Beach, H.; Laing, K.; Walle, M.; Martin, R. The Current State and Future Directions of Organic No-Till Farming with Cover Crops in Canada, with Case Study Support. Sustainability 2018, 10, 373. [Google Scholar] [CrossRef]
- Pandey, D.; Afshar, R.K.; Ghalehgolabbehbahani, A. Cover Crop Roller-Crimping to Manage Weed Pressure in Regenerative Organic CBD-Hemp Production; Rodale Institute: Kutztown, PA, USA, 2024. [Google Scholar]
- Wang, Y.; Zhang, Y.; Zhou, S.; Wang, Z. Meta-Analysis of No-Tillage Effect on Wheat and Maize Water Use Efficiency in China. Sci. Total Environ. 2018, 635, 1372–1382. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, L.; Xie, J.; Li, L.; Coulter, J.A.; Zhang, R.; Luo, Z.; Kholova, J.; Choudhary, S. Conservation Tillage Increases Water Use Efficiency of Spring Wheat by Optimizing Water Transfer in a Semi-Arid Environment. Agronomy 2019, 9, 583. [Google Scholar] [CrossRef]
- Paye, W.S.; Thapa, V.R.; Ghimire, R. Limited Impacts of Occasional Tillage on Dry Aggregate Size Distribution and Soil Carbon and Nitrogen Fractions in Semi-Arid Drylands. Int. Soil Water Conserv. Res. 2024, 12, 96–106. [Google Scholar] [CrossRef]
- Wiese, A.F.; Marek, T.; Harman, W.L. No-Tillage Increases Profit in a Limited Irrigation-Dryland System. J. Prod. Agric. 2013, 11, 247–252. [Google Scholar] [CrossRef]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Bordovsky, J.P.; Lyle, W.M.; Keeling, J.W. Crop Rotation and Tillage Effects on Soil Water and Cotton Yield. Agron. J. 1994, 86, 1–6. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Conservation Crop Rotation for Soil Quality and Soil Health; USDA: Washington, DC, USA, 2015.
- Zgallai, H.; Zoghlami, R.I.; Annabi, M.; Zarrouk, O.; Jellali, S.; Hamdi, H. Mitigating Soil Water Deficit Using Organic Waste Compost and Commercial Water Retainer: A Comparative Study under Semiarid Conditions. Euro-Mediterr. J. Environ. Integr. 2024, 9, 377–391. [Google Scholar] [CrossRef]
- Atoloye, I.A.; Cappellazzi, S.B.; Creech, J.E.; Yost, M.; Zhang, W.; Jacobson, A.R.; Reeve, J.R. Soil Health Benefits of Compost Persist Two Decades after Single Application to Winter Wheat. Agron. J. 2024, 116, 2719–2734. [Google Scholar] [CrossRef]
- Bouajila, K.; Sanaa, M. Effects of Organic Amendments on Soil Physico-Chemical and Biological Properties. J. Mater. Environ. Sci. 2011, 2, 485–490. [Google Scholar]
- Ding, Z.; Ali, E.F.; Elmahdy, A.M.; Ragab, K.E.; Seleiman, M.F.; Kheir, A.M.S. Modeling the Combined Impacts of Deficit Irrigation, Rising Temperature and Compost Application on Wheat Yield and Water Productivity. Agric. Water Manag. 2021, 244, 106626. [Google Scholar] [CrossRef]
- Martínez, J.; Reca, J. Water Use Efficiency of Surface Drip Irrigation versus an Alternative Subsurface Drip Irrigation Method. J. Irrig. Drain. Eng. 2014, 140, 04014030. [Google Scholar] [CrossRef]
- Darouich, H.M.; Pedras, C.M.G.; Gonçalves, J.M.; Pereira, L.S. Drip vs. Surface Irrigation: A Comparison Focussing on Water Saving and Economic Returns Using Multicriteria Analysis Applied to Cotton. Biosyst. Eng. 2014, 122, 74–90. [Google Scholar] [CrossRef]
- Ramadan, A.; Abouhussein, S.; Refaie, K.; El-Metwally, I.M. Effect of Pulse Irrigation on Clogging Emitters, Application Efficiency and Water Productivity of Potato Crop under Organic Agriculture Conditions. Aust. J. Basic Appl. Sci. 2012, 6, 807–816. [Google Scholar]
- Bakeer, G.A.A.; El-Ebabi, F.G.; El-Saidi, M.T.; Abdelghany, A.R.E. Effect of Pulse Drip Irrigation on Yield and Water Use Efficiency of Potato Crop under Organic Agriculture in Sandy Soil. Misr J. Agric. Eng. 2009, 26, 736–765. [Google Scholar] [CrossRef]
- Krishna, J.H. Modelling the Effects of Tied-Ridging on Water Conservation and Crop Yields. Agric. Water Manag. 1989, 16, 87–95. [Google Scholar] [CrossRef]
- Nyamangara, J.; Nyagumbo, I. Interactive Effects of Selected Nutrient Resources and Tied-Ridging on Plant Growth Performance in a Semi-Arid Smallholder Farming Environment in Central Zimbabwe. In Innovations as Key to the Green Revolution in Africa; Bationo, A., Waswa, B., Okeyo, J.M., Maina, F., Kihara, J.M., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 357–363. ISBN 978-90-481-2541-8. [Google Scholar]
- Miriti, J.M.; Kironchi, G.; Esilaba, A.O.; Heng, L.K.; Gachene, C.K.K.; Mwangi, D.M. Yield and Water Use Efficiencies of Maize and Cowpea as Affected by Tillage and Cropping Systems in Semi-Arid Eastern Kenya. Agric. Water Manag. 2012, 115, 148–155. [Google Scholar] [CrossRef]
- Howell, T.A.; Schneider, A.D.; Dusek, D.A. Effects of Furrow Diking on Corn Response to Limited and Full Sprinkler Irrigation. Soil Sci. Soc. Am. J. 2002, 66, 222–227. [Google Scholar] [CrossRef]
- Abdelkdair, A.; Schultz, R.C. Water Harvesting in a ‘Runoff-Catchment’ Agroforestry System in the Dry Lands of Ethiopia. Agrofor. Syst. 2005, 63, 291–298. [Google Scholar] [CrossRef]
- McHugh, O.V.; Steenhuis, T.S.; Abebe, B.; Fernandes, E.C.M. Performance of in Situ Rainwater Conservation Tillage Techniques on Dry Spell Mitigation and Erosion Control in the Drought-Prone North Wello Zone of the Ethiopian Highlands. Soil Tillage Res. 2007, 97, 19–36. [Google Scholar] [CrossRef]
- Araya, A.; Stroosnijder, L. Effects of Tied Ridges and Mulch on Barley (Hordeum vulgare) Rainwater Use Efficiency and Production in Northern Ethiopia. Agric. Water Manag. 2010, 97, 841–847. [Google Scholar] [CrossRef]
- Kiboi, M.N.; Ngetich, K.F.; Diels, J.; Mucheru-Muna, M.; Mugwe, J.; Mugendi, D.N. Minimum Tillage, Tied Ridging and Mulching for Better Maize Yield and Yield Stability in the Central Highlands of Kenya. Soil Tillage Res. 2017, 170, 157–166. [Google Scholar] [CrossRef]
- Nadeem, F.; Rehman, A.; Ullah, A.; Farooq, M.; Siddique, K.H.M. Managing Drought in Semi-Arid Regions through Improved Varieties and Choice of Species. In Managing Soil Drought; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-003-32600-7. [Google Scholar]
- Williams, J.D.; Long, D.S.; Reardon, C.L. Productivity and Water Use Efficiency of Intensified Dryland Cropping Systems under Low Precipitation in Pacific Northwest, USA. Field Crops Res. 2020, 254, 107787. [Google Scholar] [CrossRef]
- Lee, C.; Bauer, A.; Eden, S.; Polle, J. Solutions to Arizona’s Water Challenges: What Can We Do? Water Resources Research Center: Tucson, AZ, USA, 2024. [Google Scholar]
- Richter, B.; Sustainable Waters. Growing Water in the Desert. Available online: https://www.sustainablewaters.org/growing-water-in-the-desert/ (accessed on 26 May 2025).
- Allen, L.N. Irrigation Water Use—Drip v. Surface Irrigation of Onions; Utah State University: Logan, UT, USA, 2020. [Google Scholar]
- Jacinthe, P.-A.; Shukla, M.K.; Ikemura, Y. Carbon Pools and Soil Biochemical Properties in Manure-based Organic Farming Systems of Semi-arid New Mexico. Soil Use Manag. 2011, 27, 453–463. [Google Scholar] [CrossRef]
- Flint, L.E.; Flint, A.L.; Stern, M.A.; Mayer, A.; Silver, W.L.; Casey, C.; Franco, F.; Byrd, K.B.; Sleeter, B.M.; Alvarez, P.; et al. Increasing Soil Organic Carbon to Mitigate Greenhouse Gases and Increase Climate Resiliency for California; California Natural Resources Agency: Sacramento, CA, USA, 2018; p. 26.
- Alvarez, R. Comparing Productivity of Organic and Conventional Farming Systems: A Quantitative Review. Arch. Agron. Soil Sci. 2022, 68, 1947–1958. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The Crop Yield Gap between Organic and Conventional Agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Hanson, J.; Dismukes, R.; Chambers, W.; Greene, C.; Kremen, A. Risk and Risk Management in Organic Agriculture: Views of Organic Farmers. Renew. Agric. Food Syst. 2004, 19, 218–227. [Google Scholar] [CrossRef]
- Schrama, M.; De Haan, J.J.; Kroonen, M.; Verstegen, H.; Van Der Putten, W.H. Crop Yield Gap and Stability in Organic and Conventional Farming Systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the Yields of Organic and Conventional Agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Renwick, L.L.R.; Deen, W.; Silva, L.; Gilbert, M.E.; Maxwell, T.; Bowles, T.M.; Gaudin, A.C.M. Long-Term Crop Rotation Diversification Enhances Maize Drought Resistance through Soil Organic Matter. Environ. Res. Lett. 2021, 16, 084067. [Google Scholar] [CrossRef]
- Biazin, B.; Stroosnijder, L. To Tie or Not to Tie Ridges for Water Conservation in Rift Valley Drylands of Ethiopia. Soil Tillage Res. 2012, 124, 83–94. [Google Scholar] [CrossRef]
- Atwell, R.; Mirsky, S.; Poffenbarger, H.; Reberg-Horton, C.; Zinati, G. Organic No-Till Corn Production: Cover Crop and Starter Fertilizer Considerations; Rodale Institute: Kutztown, PA, USA, 2016. [Google Scholar]
- Gondek, M.; Weindorf, D.C.; Thiel, C.; Kleinheinz, G. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost. Sci. Util. 2020, 28, 59–75. [Google Scholar] [CrossRef]
- Taylor, R.; Zilberman, D. Diffusion of Drip Irrigation: The Case of California. Appl. Econ. Perspect. Policy 2017, 39, 16–40. [Google Scholar] [CrossRef]
- Kumari, D.; Bokado, K.; Kaur, M.; Singh, B. Organic Farming and Its Self—Sustaining Capability: A Review. J. Namib. Stud. 2023, 33, 2197–5523. [Google Scholar]
- Johnson, J.M.F.; Weyers, S.L.; Archer, D.W.; Barbour, N.W. Nitrous Oxide, Methane Emission, and Yield-Scaled Emission from Organically and Conventionally Managed Systems. Soil Sci. Soc. Am. J. 2012, 76, 1347–1357. [Google Scholar] [CrossRef]
- Hurisso, T.T.; Norton, U.; Norton, J.B.; Odhiambo, J.; Del Grosso, S.J.; Hergert, G.W.; Lyon, D.J. Dryland Soil Greenhouse Gases and Yield-Scaled Emissions in No-Till and Organic Winter Wheat–Fallow Systems. Soil Sci. Soc. Am. J. 2016, 80, 178–192. [Google Scholar] [CrossRef]
- Kessavalou, A.; Mosier, A.R.; Doran, J.W.; Drijber, R.A.; Lyon, D.J.; Heinemeyer, O. Fluxes of Carbon Dioxide, Nitrous Oxide, and Methane in Grass Sod and Winter Wheat-Fallow Tillage Management. J. Environ. Qual. 1998, 27, 1094–1104. [Google Scholar] [CrossRef]
- Dadush, U.; Stancil, B. The World Order in 2050; Carnegie Endowment for International Peace: Washington, DC, USA, 2010. [Google Scholar]
Location | Crop | Mulch Type | Soil Type | Impacts of Organic Mulching | Sources |
---|---|---|---|---|---|
Gansu Province, China (2020–2021) | Potato (Solanum tuberosum) | Straw strip mulch (5.55 × 10−4 plants ha−1) | Loessal soil | Increased SWC by 7.3%, WUE by 50%, and tuber yield by 18.6% compared to no mulch | [46] |
Dryland region of China (2015–2017) | Wheat (Triticum aestivum L.) | Maize straw (6 Mg ha−1) | Clay | Increased soil moisture by 11.9% (tillering) and 7.3% (booting) compared to no mulch at p < 0.01 | [47] |
Meta-analysis (19 countries, various years) | Corn (Zea mays)/Wheat | Straw mulch (varied rate) | - | Increased WUE and yield by 60% at p < 0.001 | [48] |
Eastern Sicily (2021–2023) | Orange (Citrus sinensis) | Citrus pruning and weed residues | - | Increased SWC by 27% at 0.75 m distance from tree trunk compared to bare soil at p < 0.05 and 95% CI | [49] |
Location | Crop | Soil Type | Results | Source |
---|---|---|---|---|
Semi-arid region in Spain (1994) | Barley (Hordeum vulgare) | Clay | 20% more soil water content in no-till (NT) as compared to tillage at p < 0.05. | [63] |
Meta-analysis from different studies (different parts of China) published between 1950 and 2018 | Corn | - | Increased WUE by 5.9% under NT compared to tillage | [68] |
Northwest China (2016–2017) | Wheat/pea (Pisum sativum) rotation | Sandy loam | NT with straw cover increased grain yield and WUE compared to tillage, due to increased transpiration, water potential, and decreased water potential gradient (p ≤ 0.05) | [69] |
New Mexico, USA (2020–2021) | Corn–sorghum rotation | Clay loam | Improved soil macro-aggregates and soil organic matter in reduced tillage compared to conventional tillage (p < 0.05) | [70] |
North of Amarillo, Texas (1983–1987) | Sorghum | Clay loam | NT increased irrigation WUE, soil water storage, and yield compared to conventional tillage (p < 0.05) | [71] |
Location | Crops | Soil Type | Impacts of Tied Ridging (TR) and Furrow Diking (FD) | Source |
---|---|---|---|---|
Arid region of Ethiopia (2003–2004) | Sorghum and Chickpea (Cicer arietinum) | Clay loam | Increased soil water content at the root zone by 24%, volumetric soil moisture by 24% at 0–15 cm depth in TR compared to conventional tillage | [88] |
Northern Ethiopia (2004–2009) | Barley | Silt loam | Reduced runoff by 60%, enhanced soil water content by at least 13% with TR and mulching compared to conservation without water | [89] |
Semi-arid region of eastern Kenya (2007–2009) | Corn | Sandy loam | Greatest plant available soil water content and water use efficiency (WUE) in TR tillage compared to subsoiling–ripping tillage and ox-plough tillage | [85] |
Semi-arid region of Kenya (2011–2013) | Corn | Clay | Greater yield due to a larger amount of soil moisture conserved during the season | [90] |
Semi-arid region of Texas (1985) | Sorghum | Silt loam | Increased yield by 16% in FD in growing season compared to non-diked | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Yost, M.A.; Reeve, J.R. Roles of Organic Agriculture for Water Optimization in Arid and Semi-Arid Regions. Sustainability 2025, 17, 5452. https://doi.org/10.3390/su17125452
Sharma S, Yost MA, Reeve JR. Roles of Organic Agriculture for Water Optimization in Arid and Semi-Arid Regions. Sustainability. 2025; 17(12):5452. https://doi.org/10.3390/su17125452
Chicago/Turabian StyleSharma, Shikha, Matt A. Yost, and Jennifer R. Reeve. 2025. "Roles of Organic Agriculture for Water Optimization in Arid and Semi-Arid Regions" Sustainability 17, no. 12: 5452. https://doi.org/10.3390/su17125452
APA StyleSharma, S., Yost, M. A., & Reeve, J. R. (2025). Roles of Organic Agriculture for Water Optimization in Arid and Semi-Arid Regions. Sustainability, 17(12), 5452. https://doi.org/10.3390/su17125452