Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = organic matter load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6926 KiB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Viewed by 928
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

30 pages, 12104 KiB  
Article
Efficacy, Kinetics, and Mechanism of Tetracycline Degradation in Water by O3/PMS/FeMoBC Process
by Xuemei Li, Qingpo Li, Xinglin Chen, Bojiao Yan, Shengnan Li, Huan Deng and Hai Lu
Nanomaterials 2025, 15(14), 1108; https://doi.org/10.3390/nano15141108 - 17 Jul 2025
Viewed by 343
Abstract
This study investigated the degradation efficacy, kinetics, and mechanism of the ozone (O3) process and two enhanced O3 processes (O3/peroxymonosulfate (O3/PMS) and O3/peroxymonosulfate/iron molybdates/biochar composite (O3/PMS/FeMoBC)), especially the O3/PMS/FeMoBC process, [...] Read more.
This study investigated the degradation efficacy, kinetics, and mechanism of the ozone (O3) process and two enhanced O3 processes (O3/peroxymonosulfate (O3/PMS) and O3/peroxymonosulfate/iron molybdates/biochar composite (O3/PMS/FeMoBC)), especially the O3/PMS/FeMoBC process, for the degradation of tetracycline (TC) in water. An FeMoBC sample was synthesized by the impregnation–pyrolysis method. The XRD results showed that the material loaded on BC was an iron molybdates composite, in which Fe2Mo3O8 and FeMoO4 accounted for 26.3% and 73.7% of the composite, respectively. The experiments showed that, for the O3/PMS/FeMoBC process, the optimum conditions were obtained at pH 6.8 ± 0.1, an initial concentration of TC of 0.03 mM, an FeMoBC dosage set at 200 mg/L, a gaseous O3 concentration set at 3.6 mg/L, and a PMS concentration set at 30 μM. Under these reaction conditions, the degradation rate of TC in 8 min and 14 min reached 94.3% and 98.6%, respectively, and the TC could be reduced below the detection limit (10 μg/L) after 20 min of reaction. After recycling for five times, the degradation rate of TC could still reach about 40%. The introduction of FeMoBC into the O3/PMS system significantly improved the TC degradation efficacy and resistance to inorganic anion interference. Meanwhile, it enhanced the generation of hydroxyl radicals (OH) and sulfate radicals (SO4•−), thus improving the oxidizing efficiency of TC in water. Material characterization analysis showed that FeMoBC has a well-developed porous structure and abundant active sites, which is beneficial for the degradation of pollutants. The reaction mechanism of the O3/PMS/FeMoBC system was speculated by the EPR technique and quenching experiments. The results showed that FeMoBC efficiently catalyzed the O3/PMS process to generate a variety of reactive oxygen species, leading to the efficient degradation of TC. There are four active oxidants in O3/PMS/FeMoBC system, namely OH, SO4•−, 1O2, and •O2. The order of their contribution importance was OH, 1O2, SO4•−, and •O2. This study provides an effective technological pathway for the removal of refractory organic matter in the aquatic environment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

35 pages, 2830 KiB  
Article
The Safety of FeedKind Pet® (Methylococcus capsulatus, Bath) as a Cultured Protein Source in the Diet of Adult Dogs and Its Effect on Feed Digestibility, Fecal Microbiome, and Health Status
by Matt Longshaw, Bradley Quest, Walt Miller, Patricia M. Oba, Olivia R. Swanson, Kelly S. Swanson and Kathryn Miller
Animals 2025, 15(13), 1975; https://doi.org/10.3390/ani15131975 - 4 Jul 2025
Viewed by 614
Abstract
Thirty-two healthy adult dogs (16 males and 16 females) were fed control kibble diets for one month, followed by six months (Weeks 0 to 25) of diets containing either 0, 4, 6, or 8% cultured protein derived from Methylococcus capsulatus (FeedKind Pet® [...] Read more.
Thirty-two healthy adult dogs (16 males and 16 females) were fed control kibble diets for one month, followed by six months (Weeks 0 to 25) of diets containing either 0, 4, 6, or 8% cultured protein derived from Methylococcus capsulatus (FeedKind Pet®, FK), then they were fed control diets (0% FK) for a further two months (Weeks 25 to 34). The diets were isonitrogenous, isolipidic, and isocaloric and stage- and age-specific. The dogs were assessed for overall health, weight gain, and body condition score (BCS). Blood samples were collected 1 week prior to randomization, during acclimation, then in Weeks 5, 13, 25, 30, 32, and 34 for hematology, coagulation, and clinical chemistry; urine was collected according to the same time schedule for urinalysis. Feces were assessed for parasite load and presence of occult blood during Weeks 5, 9, 13, 17, 21, and 25. Fecal samples were collected during acclimation and Weeks 25 and 34 for fecal microbiome analysis and in Week 25 for apparent total gastrointestinal tract digestibility (ATTD). All dogs maintained a healthy weight and BCS throughout the study. Hematology parameters were within normal limits at the end of each phase of the study. With the exception of a decrease in serum phosphorus level and in urine pH in all groups at the end of the study, urine and serum chemistry results were within normal limits at the end of each phase. ATTD values for organic matter, protein, and energy exceeded 80%, whilst digestibility values for copper were around 20%. The fecal microbiome was dominated by Firmicutes. Alpha diversity increased during the safety phase before returning to baseline levels during the washout phase. The dominant genera in all groups were Megamonas, Peptoclostridium, Turicibacter, Catenibacterium, Fusobacterium, Romboutsia, and Blautia. The study has shown that the inclusion of cultured protein at up to 8% of the total diet of adult dogs can provide sufficient nutrition and is safe with no long-term effects on a range of health parameters. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

14 pages, 1465 KiB  
Article
Free-Range Chickens Reared Within an Olive Grove Influenced the Soil Microbial Community and Carbon Sequestration
by Luisa Massaccesi, Rosita Marabottini, Chiara Poesio, Simona Mattioli, Cesare Castellini and Alberto Agnelli
Soil Syst. 2025, 9(3), 69; https://doi.org/10.3390/soilsystems9030069 - 3 Jul 2025
Viewed by 275
Abstract
Although the benefits of rational grazing by polygastric animals are well known, little is understood about how chicken grazing affects soil biological health and its capacity to store organic matter. This study aimed to assess the impact of long-term free-range chicken grazing in [...] Read more.
Although the benefits of rational grazing by polygastric animals are well known, little is understood about how chicken grazing affects soil biological health and its capacity to store organic matter. This study aimed to assess the impact of long-term free-range chicken grazing in an olive grove on the soil chemical and biochemical properties, including the total organic carbon (TOC), total nitrogen (TN), microbial biomass (Cmic), basal respiration, and microbial community structure, as well as the soil’s capability to stock organic carbon and total nitrogen. A field experiment was conducted in an olive grove grazed by chickens for over 20 years, with the animal load decreasing with distance from the poultry houses. At 20 m, where the chicken density was highest, the soils showed reduced OC and TN contents and a decline in fungal biomass. This was mainly due to the loss of both aboveground vegetation and root biomass from intensive grazing. At 50 m, where grazing pressure was lower, the soil OC, TN, and microbial community size and activity were similar to those in a control, ungrazed area. These findings suggest that high chicken density can negatively affect soil health, while moderate grazing allows for the recovery of vegetation and soil organic matter. Rational management of free-range chicken grazing, particularly through the control of chicken density or managing grazing time and frequency, is therefore recommended to preserve soil functions and fertility. Full article
Show Figures

Figure 1

14 pages, 1154 KiB  
Article
Enhancing Biomethane Yield from Microalgal Biomass via Enzymatic Hydrolysis: Optimization and Predictive Modeling Using RSM Approach
by Souhaila Hangri, Kerroum Derbal, Abderrezzaq Benalia, Grazia Policastro, Antonio Panico and Antonio Pizzi
Processes 2025, 13(7), 2086; https://doi.org/10.3390/pr13072086 - 1 Jul 2025
Viewed by 325
Abstract
This study investigates the optimization of enzymatic hydrolysis for enhancing carbohydrate release from microalgal biomass and its subsequent impact on methane production during anaerobic digestion. Using Response Surface Methodology with a Box–Behnken design comprising 15 experimental runs, the effects of enzyme loading (20–40 [...] Read more.
This study investigates the optimization of enzymatic hydrolysis for enhancing carbohydrate release from microalgal biomass and its subsequent impact on methane production during anaerobic digestion. Using Response Surface Methodology with a Box–Behnken design comprising 15 experimental runs, the effects of enzyme loading (20–40 mg/gVS), pH (4.5–5.5), and incubation time (24–72 h) were evaluated. A quadratic regression model was developed to predict carbohydrate release, revealing significant interactions between these factors. The optimal conditions for enzymatic hydrolysis were determined to be a cellulase dose of 20 mg/gVS, pH 5.0, and an incubation period of 72 h. The model demonstrated excellent predictive accuracy, with an R2 value of 0.9894 and an adjusted R2 of 0.9704. Enzymatic hydrolysis significantly improved methane and biogas yields, with cumulative production reaching 52.50 mL/gVS and 95.62 mL/gVS, respectively, compared to 6.98 mL/gVS and 20.94 mL/gVS for untreated samples. The findings highlight the importance of optimizing enzyme loading and reaction time, while pH variations within the studied range had minimal impact. This study underscores the potential of enzymatic hydrolysis to enhance the bioavailability of organic matter, thereby improving the efficiency of anaerobic digestion for biogas production. Full article
(This article belongs to the Special Issue Advanced Biofuel Production Processes and Technologies)
Show Figures

Figure 1

20 pages, 3790 KiB  
Article
Fabrication of CF–NiO Electrodes and Performance Evaluation of Microbial Fuel Cells in the Treatment of Potato Starch Wastewater
by Tianyi Yang, Song Xue, Liming Jiang, Jiuming Lei, Wenjing Li, Yiwei Han, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 760; https://doi.org/10.3390/coatings15070760 - 27 Jun 2025
Viewed by 514
Abstract
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its [...] Read more.
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its electrode performance, thereby enhancing the electricity generation capacity of MFCs during the degradation of treated wastewater. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy diffusion spectrometer (EDS) analyses confirmed the successful deposition of NiO on the CF surface. The modification enhanced both the conductivity and capacitance of the electrode and increased the number of microbial attachment sites on the carbon fiber filaments. The prepared CF–NiO electrode was employed as the anode in an MFC, and its electrochemical and energy storage performance were evaluated. The maximum power density of the MFC with the CF–NiO anode reached 0.22 W/m2, compared to 0.08 W/m2 for the unmodified CF anode. Under the C1000-D1000 condition, the charge storage capacity and total charge output of the CF–NiO anode were 1290.03 C/m2 and 14,150.03 C/m2, respectively, which are significantly higher than the 452.9 C/m2 and 6742.67 C/m2 observed for the CF anode. These results indicate notable improvements in both power generation and energy storage performance. High-throughput gene sequencing of the anodic biofilm following MFC acclimation revealed that the CF–NiO anode surface hosted a higher proportion of electroactive bacteria. This suggests that the NiO modification enhances the biodegradation of organic matter and improves electricity generation efficiency. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

24 pages, 2570 KiB  
Article
A Preliminary Model for Forestry Machinery Chain Selection and Calculation of Operating Costs for Wood Recovery
by Luca Nonini, Daniele Cavicchioli and Marco Fiala
Forests 2025, 16(7), 1069; https://doi.org/10.3390/f16071069 - 27 Jun 2025
Viewed by 357
Abstract
Selecting the most suitable machines to use for wood recovery is essential for computing the operating costs of the whole forestry machinery chain (FMC). Nevertheless, a generalized approach for selecting the most suitable FMC and quantifying the corresponding economic performances for wood recovery [...] Read more.
Selecting the most suitable machines to use for wood recovery is essential for computing the operating costs of the whole forestry machinery chain (FMC). Nevertheless, a generalized approach for selecting the most suitable FMC and quantifying the corresponding economic performances for wood recovery (i.e., harvesting and long-distance transport) is still missing. The primary aim of this study is to describe a decision support model, called FOREstry MAchinery chain selection (“FOREMA v1”), which is able to (i) select the most feasible FMC and (ii) calculate the costs (such as EUR∙h−1; EUR∙t−1 of dry matter, DM) of each operation (OP) comprising the FMC. The model is made up of three different modules (Ms): machinery chain selection (M1), machinery chain organization (M2), and cost calculation (M3). In M1, feasible FMCs are defined according to seven technical parameters that characterize the forest area. For each FMC, FOREMA v1 defines the sequence of OPs and the types of machines that can potentially be used. Once the characteristics of the area in which wood recovery occurs are processed, the user selects the types of machines to use according to the model’s suggestions. In M2 and M3, the user is supported in organizing the FMC (e.g., calculation of the required time, working productivity, and so on) and computing the operating costs. The secondary aim of this study is to discuss a case study focused on chips production for energy generation, providing empirical evidence on how FOREMA v1 works. The proposed model provides a systematic approach for the selection and optimization of the most suitable FMC to adopt for biomass recovery, thus supporting decision-making processes. The results showed that felling had the lowest cost per unit of time (63.7 EUR·h−1) but the highest cost per unit of mass (35.4 EUR·t DM−1) due to its longer working time and lower productivity. Loading and long-distance transport incurred the highest costs both per unit of time (223.5 EUR·h−1) and per unit of mass (29.4 EUR·t DM−1), attributed to the use of medium–small-sized trailers coupled with tractors operating at low speeds, leading to a high number of cycles. For the entire FMC the costs were equal to 147.3 EUR·h−1 and 101.1 EUR·t DM−1. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

18 pages, 2348 KiB  
Article
Sedimentary Differentiation Characteristics of Organic Matter and Phosphorus in Eutrophic Lake Special Zones
by Ya-Ping Liu, Di Song, Li-Xin Jiao, Jin-Long Zheng, Miao Zhang, Bo Yao, Jing-Yi Yan, Jian-Xun Wu and Xin Wen
Water 2025, 17(13), 1899; https://doi.org/10.3390/w17131899 - 26 Jun 2025
Viewed by 358
Abstract
Lake eutrophication, often driving harmful algal blooms (HABs) and ecosystem degradation, involves complex biogeochemical shifts within sediments. Changes in the sedimentary dissolved organic matter (DOM) composition during transitions from macrophyte to algal dominance are thought to critically regulate internal phosphorus (P) loading, yet [...] Read more.
Lake eutrophication, often driving harmful algal blooms (HABs) and ecosystem degradation, involves complex biogeochemical shifts within sediments. Changes in the sedimentary dissolved organic matter (DOM) composition during transitions from macrophyte to algal dominance are thought to critically regulate internal phosphorus (P) loading, yet the underlying mechanisms, especially in vulnerable plateau lakes like Qilu Lake, require further elucidation. This study investigated the coupled cycling of carbon (C) and P in response to historical ecosystem succession and anthropogenic activities using a 0–24 cm sediment core from Qilu Lake. We analyzed the total organic carbon (TOC), total phosphorus (TP), sequential P fractions, and DOM fluorescence characteristics (EEM-PARAFAC), integrated with chronological series data. The results revealed an asynchronous vertical distribution of TOC and TP, reflecting the shift from a submerged macrophyte-dominated, oligotrophic state (pre-1980s; high TOC, low TP, stable Ca-P dominance) to an algae-dominated, eutrophic state. The eutrophication period (~1980s–2010s) showed high TP accumulation (Ca-P and NaOH85 °C-P enrichment), despite a relatively low TOC (due to rapid mineralization), while recent surface sediments (post-2010s) exhibited a high TOC, but a lower TP following input controls. Concurrently, the DOM composition shifted from microbial humic-like dominance (C1) in deeper sediments to protein-like dominance (C3) near the surface. This study demonstrates that the ecosystem shift significantly regulates P speciation and mobility by altering sedimentary DOM abundance and chemical characteristics (e.g., protein-like DOM correlating negatively with Ca-P), reinforcing a positive feedback mechanism that sustains internal P loading and potentially exacerbates HABs. DOM molecular characteristics emerged as a key factor controlling the internal P cycle in Qilu Lake, providing critical insights for managing eutrophication in plateau lakes. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Graphical abstract

22 pages, 1199 KiB  
Article
Assessment of Health Risks Associated with PM10 and PM2.5 Air Pollution in the City of Zvolen and Comparison with Selected Cities in the Slovak Republic
by Patrick Ivan, Marián Schwarz and Miriama Mikušová
Environments 2025, 12(7), 212; https://doi.org/10.3390/environments12070212 - 20 Jun 2025
Viewed by 808
Abstract
Air pollution is one of the most serious environmental threats, with particulate matter PM10 and PM2.5 representing its most harmful components, significantly affecting public health. These particles are primarily generated by transport, industry, residential heating, and agriculture, and are associated with [...] Read more.
Air pollution is one of the most serious environmental threats, with particulate matter PM10 and PM2.5 representing its most harmful components, significantly affecting public health. These particles are primarily generated by transport, industry, residential heating, and agriculture, and are associated with increased incidence of respiratory and cardiovascular diseases, asthma attacks, and heart attacks, as well as chronic illnesses and premature mortality. The most vulnerable groups include children, the elderly, and individuals with pre-existing health conditions. This study focuses on the analysis of health risks associated with PM10 and PM2.5 air pollution in the city of Zvolen, which serves as a representative case due to its urban structure, traffic load, and industrial activity. The aim is to assess the current state of air quality, identify the main sources of pollution, and evaluate the health impacts of particulate matter on the local population. The results will be compared with selected Slovak cities—Banská Bystrica and Ružomberok—to understand regional differences in exposure and its health consequences. The results revealed consistently elevated concentrations of particulate matter (PM) across all analyzed cities, frequently exceeding the guideline values recommended by the World Health Organization (WHO), although remaining below the thresholds set by current national legislation. The lowest average concentrations were recorded in the city of Zvolen (PM10: 20 μg/m3; PM2.5: 15 μg/m3). These lower values may be attributed to the location of the reference monitoring station operated by the Slovak Hydrometeorological Institute (SHMÚ), situated on J. Alexy Street in the southern part of the city—south of Zvolen’s primary industrial emitter, Kronospan. Due to predominantly southerly wind patterns, PM particles are transported northward, potentially leading to higher pollution loads in the northern areas of the city, which are currently not being monitored. We analyzed trends in PM10 and PM2.5 concentrations and their relationship with hospitalization data for respiratory diseases. The results indicate a clear correlation between the concentration of suspended particulate matter and the number of hospital admissions due to respiratory illnesses. Our findings thus confirm the significant adverse effects of particulate air pollution on population health and highlight the urgent need for systematic monitoring and effective measures to reduce emissions, particularly in urban areas. Full article
Show Figures

Figure 1

16 pages, 761 KiB  
Article
Combined Continuous Resin Adsorption and Anaerobic Digestion of Olive Mill Wastewater for Polyphenol and Energy Recovery
by Chaimaa Hakim, Mounsef Neffa, Abdessadek Essadek, Audrey Battimelli, Renaud Escudie, Diana García-Bernet, Jérôme Harmand and Hélène Carrère
Energies 2025, 18(13), 3226; https://doi.org/10.3390/en18133226 - 20 Jun 2025
Viewed by 387
Abstract
Olive mill wastewater (OMWW) has high energetic potential due to its organic load, but its complex composition and toxicity limit efficient energy recovery. This study proposes an innovative integrated process combining continuous resin adsorption with anaerobic digestion to detoxify OMWW and recover renewable [...] Read more.
Olive mill wastewater (OMWW) has high energetic potential due to its organic load, but its complex composition and toxicity limit efficient energy recovery. This study proposes an innovative integrated process combining continuous resin adsorption with anaerobic digestion to detoxify OMWW and recover renewable energy simultaneously. It studies the recovery of polyphenols, methane production, and substrate degradation efficiency using resin column bed heights (C1: 5.7 cm, C2: 12.1 cm, C3: 18.5 cm), as well as kinetic modeling of organic matter degradation. Adsorption reduced chemical oxygen demand (COD) by up to 80% and polyphenols by up to 64%, which significantly improved substrate biodegradability from 34% to 82%, corresponding to a methane yield of 287 mL CH4/g COD. Organic matter was fractioned into rapid (S1), moderate (S2), and slow (S3) biodegradable fractions. The highest degradation kinetics was C3, with methane production rates of K1 = 23.86, K2 = 2.47, and K3 = 2.92 mL CH4/d. However, this condition produced the lowest volumetric methane production due to excessive COD removal, including readily biodegradable matter. These results highlight the importance of optimizing the adsorption step in order to find to a balance between detoxification and energy recovery from OMWW, thus supporting the principles of circular economy and promoting renewable energy production. Full article
(This article belongs to the Special Issue Sustainable Biomass Conversion: Innovations and Environmental Impacts)
Show Figures

Figure 1

25 pages, 3287 KiB  
Article
Evaluation of Properties and Bioactivity of Silver (Ag) Nanoparticles (NPs) Fabricated Using Nixtamalization Wastewater (Nejayote)
by Alejandra Ortiz-De Lira, J. A. Lozano-Álvarez, N. A. Chávez-Vela, C. E. Escárcega-González, Enrique D. Barriga-Castro, Hilda E. Reynel-Ávila and Iliana E. Medina-Ramírez
Clean Technol. 2025, 7(3), 51; https://doi.org/10.3390/cleantechnol7030051 - 20 Jun 2025
Viewed by 584
Abstract
Nejayote (Nej), an effluent from nixtamalization process, has an alkaline pH and contains a high load of organic matter in suspension and dissolution, which makes it a highly polluting waste when discharged directly into the environment. However, the sustainable reuse of this effluent [...] Read more.
Nejayote (Nej), an effluent from nixtamalization process, has an alkaline pH and contains a high load of organic matter in suspension and dissolution, which makes it a highly polluting waste when discharged directly into the environment. However, the sustainable reuse of this effluent is relevant since it contains high-value compounds (ferulic acid (FA)) with appropriate activity for the ecological synthesis of silver nanoparticles (AgNPs). This study explores the synthesis of AgNPs using Nej as a reducing and stabilizing agent and evaluates the antibacterial effectiveness of AgNPs against Escherichia coli (E. coli). The AgNPs under study possess excellent optical (UV-Vis) and structural properties (XRD). HR-TEM images show predominantly spherical particles, with an average size of 20 nm. FTIR spectroscopy identified functional groups, including phenols and flavonoids, on the nanoparticle surface, acting as stabilizing agents. HPLC supports the existence of FA in the AgNPs. Biogenic AgNPs exhibit enhanced antibacterial activity due to the adsorption of these functional groups onto their surface, which contributes to bacterial membrane disruption. Finally, no hemolytic or cytotoxic activity was observed, suggesting that the AgNPs exert antimicrobial activity without potentially harmful doses (biocompatibility). The study highlights the potential of Nej as a sustainable source for use in nanoparticle synthesis, promoting the recycling of agro-industrial waste and the production of materials with technological applications. Full article
Show Figures

Graphical abstract

16 pages, 1827 KiB  
Article
Tropical Wetlands as Nature-Based Solutions to Remove Nutrient and Organic Inputs from Stormwater Discharge and Wastewater Effluent in Urban Environments
by Flavia Byekwaso, Gabriele Weigelhofer, Rose Kaggwa, Frank Kansiime, Guenter Langergraber and Thomas Hein
Water 2025, 17(12), 1821; https://doi.org/10.3390/w17121821 - 18 Jun 2025
Viewed by 537
Abstract
Natural wetlands are critical water quality regulators, especially in developing tropical countries. The Lubigi wetland is a large urban wetland in Kampala, the largest city in Uganda in Africa. We studied whether stormwater discharge and wastewater effluent from a nearby stormwater channel and [...] Read more.
Natural wetlands are critical water quality regulators, especially in developing tropical countries. The Lubigi wetland is a large urban wetland in Kampala, the largest city in Uganda in Africa. We studied whether stormwater discharge and wastewater effluent from a nearby stormwater channel and a sewage treatment plant in the western part of the city were cleaned as they flowed through the wetland. Despite the significant pollution, the wetland removed ammonium-nitrogen, orthophosphate, and particulate nutrients during both seasons, achieving removal rates ranging from 50 to 60% for orthophosphate but only 20–40% for ammonium-nitrogen. Overall, seasonal differences in loads and retention rates of nutrient and organic matter inputs were minimal. Interestingly, the wetland mostly released nitrate and nitrite during water passage through the wetland, most likely due to the mineralization of organic nitrogen and agricultural run-off during rainy events in the wet season. However, the limited capacity of the sewage treatment plant and untreated stormwater discharge from the Nsooba main channel reduced the wetland’s ability to clean water. The insufficient carrying capacity of the treatment plant and the release of untreated sewage into the wetland significantly impact the self-purification capacity of the Lubigi wetland. Thus, the concept of Nature-Based Solutions is ineffective if the wetland systems are overloaded. Full article
Show Figures

Graphical abstract

29 pages, 3595 KiB  
Article
Comparative Assessment of Wastewater Treatment Technologies for Pollutant Removal in High-Altitude Andean Sites
by Rubén Jerves-Cobo, Edwin Maldonado, Juan Fernando Hidalgo-Cordero, Hernán García-Herazo and Diego Mora-Serrano
Water 2025, 17(12), 1800; https://doi.org/10.3390/w17121800 - 16 Jun 2025
Viewed by 1203
Abstract
This study evaluated the pollutant removal efficiency of two decentralized wastewater treatment plants (WWTPs) located in the high-altitude southern Andes of Ecuador, Acchayacu and Churuguzo, from 2015 to 2024. Acchayacu previously operated using an upflow anaerobic filter (UAF), and from 2021, it transitioned [...] Read more.
This study evaluated the pollutant removal efficiency of two decentralized wastewater treatment plants (WWTPs) located in the high-altitude southern Andes of Ecuador, Acchayacu and Churuguzo, from 2015 to 2024. Acchayacu previously operated using an upflow anaerobic filter (UAF), and from 2021, it transitioned to using vertical-subsurface-flow constructed wetlands (VSSF-CWs). In contrast, Churuguzo employs surface-flow constructed wetlands (SF-CWs). These systems were assessed based on parameters such as the five-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total phosphorus, organic nitrogen, ammonia nitrogen, total solids, fecal coliforms (TTCs), and total coliforms (TCs). The data were divided into two subperiods to account for the change in technology in Acchayacu. Statistical analysis was conducted to determine whether significant differences existed between the treatment efficiencies of these technologies, and the SF-CW was found to consistently outperform both the UAF and VSSF-CW in removing organic matter and microbial pollutants. This difference is likely attributed to the longer hydraulic retention time, lower hydraulic loading rate, and vegetation type. The findings highlight the environmental implications of treatment technology selection in WWTPs, particularly regarding the quality of receiving water bodies and their potential applications for public health, proper water resource management, and the design of decentralized systems in high-altitude regions, especially in developing countries. Full article
Show Figures

Figure 1

31 pages, 2910 KiB  
Review
Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches
by Jie Kang, Xintong Liu, Bing Dai, Tianhao Liu, Fasih Ullah Haider, Peng Zhang, Habiba and Jian Cai
Sustainability 2025, 17(12), 5433; https://doi.org/10.3390/su17125433 - 12 Jun 2025
Viewed by 1191
Abstract
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, [...] Read more.
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, stormwater runoff, and sedimentation to contaminate air, water, and soil. TWPs are composed of synthetic rubber polymers, reinforcing fillers, and chemical additives, including heavy metals such as zinc (Zn) and copper (Cu) and organic compounds like polycyclic aromatic hydrocarbons (PAHs) and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD). These constituents confer persistence and bioaccumulative potential. While TWP toxicity in aquatic systems is well-documented, its ecological impacts on terrestrial environments, particularly in agricultural soils, remain less understood despite global soil loading rates exceeding 6.1 million metric tons annually. This review synthesizes global research on TWP sources, environmental fate, and ecotoxicological effects, with a focus on soil–plant systems. TWPs have been shown to alter key soil properties, including a 25% reduction in porosity and a 20–35% decrease in organic matter decomposition, disrupt microbial communities (with a 40–60% reduction in nitrogen-fixing bacteria), and induce phytotoxicity through both physical blockage of roots and Zn-induced oxidative stress. Human exposure occurs through inhalation (estimated at 3200 particles per day in urban areas), ingestion, and dermal contact, with epidemiological evidence linking TWPs to increased risks of respiratory, cardiovascular, and developmental disorders. Emerging remediation strategies are critically evaluated across three tiers: (1) source reduction using advanced tyre materials (up to 40% wear reduction in laboratory tests); (2) environmental interception through bioengineered filtration systems (60–80% capture efficiency in pilot trials); and (3) contaminant degradation via novel bioremediation techniques (up to 85% removal in recent studies). Key research gaps remain, including the need for long-term field studies, standardized mitigation protocols, and integrated risk assessments. This review emphasizes the importance of interdisciplinary collaboration in addressing TWP pollution and offers guidance on sustainable solutions to protect ecosystems and public health through science-driven policy recommendations. Full article
Show Figures

Figure 1

15 pages, 2583 KiB  
Article
Pilot Study on Nucleation-Induced Pelleting Coagulation in Treatment of High-Algae Surface Water: Coagulant Dosage and Hydraulic Loading Optimization
by Xiangxuan Xing, Tinglin Huang, Ruizhu Hu and Kai Li
Toxics 2025, 13(6), 418; https://doi.org/10.3390/toxics13060418 - 22 May 2025
Viewed by 348
Abstract
This study proposes a circulating pelletized fluidized bed (CPFB) with micro-sand loading for treating high-algae surface water. Key operational parameters (coagulant dosage, flow rate) were optimized to simultaneously remove algae, turbidity, and disinfection byproduct precursors. Results revealed that 20 mg/L polyaluminum chloride (PACl) [...] Read more.
This study proposes a circulating pelletized fluidized bed (CPFB) with micro-sand loading for treating high-algae surface water. Key operational parameters (coagulant dosage, flow rate) were optimized to simultaneously remove algae, turbidity, and disinfection byproduct precursors. Results revealed that 20 mg/L polyaluminum chloride (PACl) and 0.8 mg/L PAM achieved optimal removal of algae (density removal > 80%) and organic matter. The fluidized bed exhibited robust performance across algal species, with the highest dichloroacetonitrile (DCAN) precursor removal of 66.20%, demonstrating superior efficiency for trihalomethane precursors over haloacetic acids. These findings provide critical operational guidance for high-algae water treatment using fluidized beds. Full article
(This article belongs to the Special Issue Novel Technologies for Degradation of Organic Pollutants)
Show Figures

Figure 1

Back to TopTop